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ABSTRACT 

In recent years, Prognostic & Health Management (PHM) has 
become a topic of strong interest in the aerospace domain. 
Health assessment and remaining useful life estimation for 
on-board systems provide several advantages, mainly related 
to the increased analysis capabilities and the reduction of 
maintenance interventions (and, consequently, of operating 
costs). For this reason, it is of interest for the aerospace 
industry to identify and define efficient strategies both for the 
introduction of native PHM capabilities in new generation 
on-board systems and for the retrofit of existing ones. This 
paper proposes a strategy for the scalable deployment of 
PHM techniques for on-board systems, with particular focus 
on edge computing capabilities. Different reference scenarios 
(ranging from cloud-based processing to local-only 
processing) are presented, and an edge-focused PHM 
architecture is discussed in detail, with the relative challenges 
addressed. The design and validation of proposed edge-based 
solution is described, with specific reference to its support for 
an existing data analytics framework. The solution is then 
assessed against a reference aerospace use case involving a 
representative aircraft braking system, focusing on 
computational aspects to highlight the compatibility of the 
proposed deployment strategy with efficient on-board 
computations.  

1. INTRODUCTION 

Prognostics and condition-based maintenance (CBM) have 
attracted significant interest of the aerospace sector in the 
recent years.  The goal of prognosis is to track degrading 
aspects of the overall design to predict deviation with respect 
to a reference baseline (e.g., healthy condition). Generally, 
we define prognostic systems as ones that compute remaining 
useful life (RUL), performance life remaining (PLR) or state 
of health (SOH) with sufficient fidelity and sufficient 
advance notice to allow a maintenance action well before an 

operational failure (SAE JA6268).  Prognostics may provide 
significant benefits when applied to complex aerospace 
systems, potentially reducing maintenance-related downtime 
and costs, and improving the overall efficiency of the 
systems.  
Traditional approaches to prognostics relied on physics-
based methods (Cadini, Zio, & Avram, 2009) often involving 
fault propagation and reliability models for the component or 
system under consideration. Such methods require a thorough 
understanding of the system, and they are usually specific to 
a component and not generalizable for a broad variety of 
applications. More recently, data-driven approaches emerged 
as a powerful alternative. These approaches perform RUL 
prediction from the operational run-to-failure raw time series 
data, collected from sensors mounted on the components or 
systems under consideration. There are two types of data-
driven approaches in the literature, direct and indirect. 
Direct approaches rely on training a neural network to learn 
the RUL directly from the run-to-failure time series data 
(Zhang, Wang, Li, Cui, Liu, Yang, & Hu, 2018).  
Indirect approaches rely instead on the so-called health 
monitoring, i.e., mapping the time series data into a one-
dimensional Health Index (HI), which decreases 
monotonically and proportionally to the time series 
degradation (Mosallam, Medjaher, & Zerhouni, 2015). Deep 
learning methods are used frequently (Reddy, Venugopalan, 
& Giering, 2016) for health monitoring purposes. Once the 
health index is computed, RUL can be estimated, for 
instance, as a weighted average of RULs of matching HI 
curves (Wang, 2010) of all the time series in the training 
dataset. 
One of the more relevant problems related to the computation 
of RUL for aerospace systems is the reduced availability of 
operational data from the systems under consideration. An 
efficient prognostics framework should be able to acquire 
data from sensors during relevant periods, collecting 
extended time series and provide them as input to described 
algorithms, which should be in turn deployed over proper 
computation platforms. Those capabilities are generally 
framed in the wider Integrated Vehicle Health Management 
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(IVHM) capability, which could be intended as the 
supporting platform enabling CBM of complex aircrafts. 
Airborne systems include a variety of hardware and software 
components, complicating the definition of standardized 
mechanisms and infrastructures supporting CBM. Over the 
years, several standards (e.g., ISO 13374 or SAE JA6268) 
and architectural specifications (e.g., Open System 
Architecture OSA-CBM) tried to provide guidance for the 
implementation of generic, interoperable architectures 
(Chang, Gao, & Wang, 2018) (Goebel & Rajamani, 2021). 
Several authors presented implementations compliant, or 
inspired to cited reference standards, providing mappings 
over specific supporting technologies. Tambe (2013) 
presented a distributed architecture for avionics sensor health 
assessment compliant with OSA-CBM and using the Data 
Distribution Service (DDS), a standard for real-time 
distributed systems supporting the publish/subscribe 
paradigm. Ezhilarasu and Jennions (2021) developed an 
architecture of a Framework for Aerospace Vehicle 
Reasoning (FAVER), a system-agnostic framework inspired 
by OSA-CBM and developed to isolate propagating faults by 
incorporating Digital Twins (DTs) and reasoning techniques. 
In other cases, the reference standards have not been 
considered, opting for alternative architectural proposals. 
Wang, Pan, Xiong, Fang, and Wang (2017) presented a 
software architecture based on Service-Oriented Architecture 
(SOA) and dual bus technology to share the information from 
on-board systems. Chen, Hu, & Hou (2021) proposed a 
general, time-variant architecture model usable to simulate 
PHM systems. Li, Verhagen, & Curran (2020) discussed a 
generic architecture along with a systematic methodology to 
support the design of PHM systems. 
Only a limited number of works considered the integration of 
high-performance computing unit on-board the aircraft. For 
example, Chen, Liu, & Zhou (2020) presented a VPX-based 
computing platform for aircrafts with an artificial intelligence 
module built-in.  
From a design perspective, several choices must be addressed 
to define a system supporting outlined functionalities (Li et 
al., 2020).  
Differently from the literature presented above, this paper 
proposes a strategy for the scalable deployment of PHM 
techniques for on-board systems, with particular focus on 
edge computing capabilities. Different reference scenarios 
(ranging from cloud-based processing to local-only 
processing) are presented, and an edge-focused architecture, 
along with the challenges related to its implementation, is 
discussed. The selected solution is then detailed and 
evaluated with specific reference to the possibility of 
supporting an existing, mature data analytics framework. 
This integrated solution is then assessed against a reference 
aerospace use case involving a representative aircraft braking 
system, detailing its initial validation, and analyzing the 
feasibility of proposed system for a real-world deployment. 

2. PHM SUPPORT FOR ON-BOARD SYSTEMS 

A CBM support system usually includes multiple functions. 
As a reference, the OSA-CBM functional model (MIMOSA, 
2022) is represented in Figure 1.   
 

 

Figure 1 - OSA-CBM reference functions 
 

The basic functionalities required by a CBM support system 
are two: (i) Data Acquisition (DA), and (ii) Data 
Manipulation (DM). The DA functionality provides access to 
the raw sensors’ data collected from a Target System (TS) 
and may additionally include simple sensing calibration 
capabilities. The DM functionality, instead, implements 
mainly signal processing functions, together with sensor 
fusion and feature extraction algorithms. The State Detection 
(SD) function is used to estimate the current condition of the 
TS. It usually includes various functions ranging from Built-
in Test (BIT) to more advanced components oriented to fault-
detection. The Health Assessment (HA) function provides a 
SOH estimate of the TS, usually considering its operating 
conditions as well as the results of previous assessments. The 
Prognostics Assessment (PA) function estimates the RUL of 
the TS, either directly or indirectly (i.e., relying on the SOH 
estimate provided by the HA function). 
This work mainly focuses on DA and DM, along with the 
integration of the HA and prognostic functions. The Advisory 
Generation (AG) function, that usually provides reports and 
recommendations for maintenance actions based on the 
results of the HA and PA, is not considered in this work.  
The described functions shall be deployed onto suitable 
computing platforms and integrated with the existing aircraft 
systems, such as the TS (to ensure DA from sensors), but also 
other systems (or sub systems) that enable data transmission, 
aggregation, and processing. Ideally, the integration of the 
highlighted functions should have minimal impact on the 
overall aircraft design, especially in terms of Size, Weight, 
And Power (SWAP) consumption. The overall CBM support 
system should also be designed to support modularity and 
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versatility in terms of integration with other systems (Finda 
& Hédl, 2014). CBM functions are frequently delivered 
through a distributed architecture, that can potentially involve 
both on-board and ground-based operations. Figure 2 
represents a high-level view of a possible deployment for 
CBM related functions.  
 

 

Figure 2 – Schematization of a ground-based CBM 
supporting architecture 

 
In particular, the setup in Figure 2 represents a generic 
architecture that enables ground-based CBM operations 
through a mix of on-board and ground-based systems. The 
on-board system in only responsible for providing DA 
functions that collect measurement from the TSs. The TSs’ 
data are acquired and collected during flight, continuously or 
only during relevant flight phases. The collected data are 
transmitted towards an on-board aggregation unit (or sink) 
through an airborne network. It should be noted that this 
network is generally a dedicated communication 
infrastructure, distinct from the traditional avionics’ 
communication backbones. Finally, the collected data are 
transferred to a ground-based infrastructure through a ground 
network. Data may be streamed continuously (e.g., satellite 
connections), or stored for the flight duration and transferred 
once the aircraft has landed. The ground-based infrastructure 
is responsible to carry out all the remaining functions of the 
OSA-CBM reference model in an offline fashion (i.e., 
without processing the data as they are received). The data 
may be permanently stored and analysed according to 
specific HA and prognostics techniques. Modern 
deployments may leverage private cloud infrastructure to 
support the ground-based operations (Terrissa, Meraghni, 
Bouzidi, & Zerhouni, 2016). 
This approach presents several advantages in terms of 
implementation: it requires a limited number of functions to 
be deployed onto on-board systems, and the ground-based 
offline computation is not constrained by limited resources in 
terms of computational power and storage. On the other hand, 
this architecture requires the collection of extended time-
series data, which must be transmitted and temporarily stored 

on-board (e.g., by the aggregation unit), and then transmitted 
to the ground infrastructure. Moreover, the availability of 
ground-based facilities to support the required computations 
is generally not guaranteed for every type of aircraft.  
 

 

Figure 3 - Schematization of an edge-oriented CBM 
supporting architecture 

 
A possible way to overcome the aforementioned limitations 
could be through the adoption of edge-oriented architectures. 
Figure 3 provides a representation of this scenario. This setup 
supports the on-board execution of target CBM strategies. 
Indeed, the on-board system would not only support DA 
functionalities, but would also provide extended computing 
capabilities to host other, more advanced functions, as DM, 
HA, and PA. Data are acquired and processed during flight, 
continuously or only during relevant flight phases, in order to 
produce relevant results related to RUL or HA. Only the 
obtained results are transmitted toward the on-board 
aggregation unit. This setup allows to overcome several 
disadvantages of a ground-oriented infrastructure. The 
majority of CBM related functions could potentially be 
hosted onto the on-board system, without the need for 
ground-based support. The acquired data can be processed 
close to the source, without requiring the storage or 
transmission of large-size data sets, neither to an on-board 
sink nor to a ground-based station. As a drawback, this 
approach requires extended capabilities (e.g., increased 
computational power) to be included among on-board 
systems. 
Intermediate scenarios could be also considered. As an 
example, the edge processing capability could be limited to 
DA and DM, with DM delivering only feature extraction 
functionalities. This configuration has the advantage of 
requiring reduced processing resources, while still allowing 
to support significant data reduction, as time series are 
processed to extract only relevant indicators. 
The introduction of CBM support at the edge, from basic DA 
functionalities to full-fledged support for data analytics, 
poses multiple challenges in terms of overall system design. 
The following section analyses the most relevant challenges 
and introduces a reference architecture suitable to support the 
reviewed scenarios. 
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2.1. PHM for on-board systems: proposed approach and 
related challenges 

All the architectures reviewed in the previous section, require 
the baseline capability of extracting data from the TS. This 
may represent a significant challenge in aerospace systems, 
both in the case of legacy equipment and in the case of newly 
designed platforms. Legacy equipment is usually not 
designed to support expansion for adding the additional 
functionalities required to support data collection, nor it 
provides the communication interfaces required to share 
collected data with other on-board systems. New equipment 
can be designed considering native support for CBM related 
functions, like DA, storage, and communication, with limited 
impact on overall size, weight, and power. Adding CBM-
related function to safety-critical equipment (for example, 
including health-monitoring related items in an Engine 
Control Unit) can also be challenging from the point of view 
of safety-related certification, as these functions are typically 
non-critical (e.g., classified at DAL-E according to RTCA 
DO-178C). A system including both safety-relevant 
functionalities and CBM related functionalities on the same 
platform would be considered a mixed-criticality system and 
should provide guarantees of strong isolation between the 
different DAL levels to be certifiable. 
An intermediate solution is the addition of external dedicated 
unit, specifically designed to support CBM related functions. 
This option would be potentially able to fit both the use case 
of legacy equipment, and that of newly developed systems, 
with limited impact on certification issues. The CBM 
functionalities would be in fact allocated to a separate 
platform, with proper interlock mechanisms in place to 
guarantee the absence of undesired interference at the 
communication interfaces. The platform could not only 
implement DA (passively receiving data transmitted by the 
TS over a dedicated interface, if this is supported by the 
design, or actively interrogating the TS to extract relevant 
data using available access mechanisms, such as dedicated 
test interfaces), but also support local data processing (from 
DM for feature extraction, to local HA). The obvious 
drawback of an external unit is the impact in terms of 
additional SWAP, which could be limited at the expense of 
reduced computational resources. Interestingly, an external 
dedicated unit can deliver more flexibility from the point of 
view of on-board communication, providing support for 
multiple interfaces, and allowing to run dedicated 
communication stacks and middleware.  
This work considers the use of a dedicated unit to support 
edge-based CBM-related functions. Figure 4 provides an 
overview of the reference architecture used in the context of 
this work, with specific focus on the interaction among the 
different systems involved. 

 

 

Figure 4 - High-level view of proposed system architecture 
 
The proposed schematization identifies several reference 
layers, mainly related to the actual technologies supporting 
the distributed deployment. The lowest level includes 
relevant physical systems installed on-board, and related 
communication means. On top of this level, networking 
technologies and protocol stacks are considered. The 
application level is then split into two different layers: the 
middleware layer, including all components responsible for 
communication abstraction and the CBM layer, including the 
different CBM functions detailed in section 2.     
As anticipated, a dedicated unit, the CBM Support Module 
(CSM), is connected to the TS, and it can collect relevant data 
from it.  
The CSM communicates with the TS using a dedicated 
avionic interface. Data exchange is usually managed by 
means of a standard avionic protocol (e.g., ARINC 429), or 
by means of a custom protocol in case of proprietary 
interfaces. 
The CSM also includes an external network interface, used to 
access the dedicated CBM support network.  Different 
approaches can support the communication, ranging from 
traditional wired networks to wireless-based solutions. To 
reduce the overall impact of the CSM, the use of wireless 
technologies (e.g., IEEE 802.11, IEEE 802.15.4) may be 
considered.  
The external network is used to communicate to a network 
sink module, intended as an on-board data collection unit. 
The Message Queuing Telemetry Transport (MQTT) 
middleware provides an abstraction over the low-level 
communication method and allows to implement a publish-
subscribe message transport between multiple on-board 
units. The MQTT model requires a message broker, i.e., a 
server able to receive messages from a sender and route it to 
the intended receiver. Multiple clients can connect to the 
broker over a network to exchange messages. In the presented 
approach, the CSM can run one or more MQTT clients, each 
one implementing a specific function. In a basic setup, only 
one message broker is included, running on the (e.g.) network 
sink module.  In more advanced configurations, the CSM 
may host multiple functions, communicating by means of the 
MQTT middleware. In that case, a local broker runs on the 
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module, leveraging the possibility offering by MQTT of 
bridging multiple brokers in a network.  
In the MQTT model, a hierarchy of topics support the 
exchange of data along the network. Clients publish new data 
over a certain topic and may subscribe to other topics to 
receive data. The broker oversees managing data distribution 
among the client that have subscribed a certain topic. The 
proposed model does not rely on statically configured clients, 
assuming instead that each client requires a configuration at 
startup. The configuration specifies which data shall be 
acquired by the client, the origin of this data and the means 
supporting data acquisition. The configuration also specifies 
the destination of data produced by the client (e.g., the topic 
over which the data shall be published). The use of 
configurations allows to implement re-usable modules, with 
a fixed functionality potentially configurable to 
accommodate the needs of different application scenarios. 
Another advantage of the abstraction provided by the MQTT 
middleware is the possibility of relocating functions on 
different nodes of the network. For example, in the approach 
under analysis the DM function and the prognostic function 
are intended to receive and send data using the MQTT 
publish-subscribe mechanism. This means that those 
functionalities can be easily moved between the CSM and the 
sink module. The mapping is usually done according to 
specific non-functional requirements, as discussed in the 
beginning of this section. 
Functions with specific dependencies on the underlying 
physical equipment have less flexibility. For example, on the 
CSM the data acquisition function only relies on MQTT 
mechanisms to share acquired data, however it requires 
physical connection to the TS. 

3. A REFERENCE USE CASE: THE TRAJECNETS 

CBM FRAMEWORK 

The general strategies described in section 2 can be used to 
map an actual CBM framework to a proposed high-level 
architecture and drive the detailed design of some of its 
reference modules. This section provides an overview of the 
reference framework adopted in the context of this work from 
the point of view of data analytics. The different CBM -
related functions will then be identified and mapped onto the 
reference architecture in Figure 4, also detailing their specific 
implementation in hardware and software. 

3.1. Overview of target Analytics 

The proposed CBM framework is built on top of the 
TrajecNets approach (Shahid & Ghosh, 2019), and leverages 
a Recurrent Neural Network (RNN) based autoencoder for 
embedding the run-to-failure time series sensor data in a 2D 
feature space. The embedding is in the form of a trajectory 
representing the temporal evolution of data from healthy to 
failure states. This trajectory can be used for health 
monitoring, which can in turn be used for RUL estimation. 

Figure 5 provides a high-level schematization of the data 
analytics pipeline for the proposed RUL estimation. 
 
 

 
 

Figure 5 - Schematization of a reference data analytics 
pipeline 
 
 
Input variables are acquired and may be pre-processed in 
different ways depending on the specific flight phase. The 
selection of the relevant flight phases and the related pre-
processing strategies usually depend on domain knowledge 
and preliminary data exploration.  
For each pre-processed input variable, up to 13 features may 
be computed: mean, standard deviation, variance, minimum, 
maximum, median, sum, mean absolute deviation, skewness, 
kurtosis, number of null values, 10th percentile, and 90th 
percentile. These features are extracted to statistically 
describe the variables’ range of variation and helps in 
providing an efficient representation of the TS by reducing 
the amount of raw data. 
The data-driven approach developed for the RUL estimation 
of a TS is based on an Auto-Encoder (AE) architecture such 
as the one presented in Figure 6. Starting from high-
dimensional inputs set (i.e., up to 13 dimensions), the AE is 
capable of providing a representation of the TS SOH/RUL in 
a smaller-dimensional latent space (2D for the TrajecNets 
approach). Indeed, the RUL is estimated based on the 
smaller-dimensional representation that stems from the 
computation of current and past data. Due to its complexity, 
this model may involve more than 30,000 weights to be 
trained. During training, the resulting TrajecNets’ RNN 
learns the neurons’ weights with the objective of minimizing 
the reconstruction error of the AE and the exponentially 
weighted mean absolute error of the estimated RUL. For 
more details about the training procedure, and inner details of 
TrajecNets, please refer to (Shahid & Ghosh, 2019). The 
described CBM framework has been implemented using the 
widely adopted TensorFlow library, and it has been 
previously validated using publicly available datasets 
(Shahid et al., 2019). 
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Figure 6 – TrajecNets architecture for data-driven RUL 
estimation (Shahid & Ghosh, 2019). 

 

3.2. Mapping to the reference architecture 

The implementation of the CBM framework described in 
section 3.1 requires support for the following high-level 
functions:  
 DA: the input data to the TrajecNets RNN must be 

collected from the TS. 
 DM: the proposed algorithm assumes that the input data 

are collected during specific flight phases, with different 
pre-processing requirements. A set of relevant features 
must be extracted from the acquired time-series.  

 HA and PA: as described, the data-driven model 
developed and trained using the collected data can 
support in providing TS’s HA and RUL estimation. 

The SD function is not considered in the context of this work, 
but it can be potentially integrated in the CSM. 
The DA function shall be allocated both on the TS and on the 
CSM, according to the strategies already detailed in section 
2.1. Considering the low computational complexity, it is 
possible to deploy the DM functions directly on the CSM. 
One possible limitation related to the feature extraction could 
be related to the need of storing the acquired time series on 
CSM’s memory, which can be in general limited. 
Implementing online calculation of target features (e.g., 
statistical indices) may help in mitigating this risk. 
As discussed, the integration of the prognostics function on 
the on-board CSM represents an interesting, but challenging, 
aspect that requires a reduction in size for the TrajecNets-
based RUL model in order to fit the constrained resources of 
the on-board system.  
There are different approaches to reduce the size of a model, 
such as quantization, pruning and clustering. Quantization 

can reduce the size of a model by mapping continuous 
variables onto discrete values, potentially at the expense of 
some accuracy (such as truncating or rounding). Pruning and 
clustering can reduce the size of a model by making it more 
compressible. Pruning works by removing parameters within 
a model that have only a minor impact on its predictions. 
Pruned models are the same size on disk, and have the same 
runtime latency, but can be compressed more efficiently. 
Clustering works by grouping the weights of each layer in a 
model into a predefined number of clusters, then sharing the 
centroid values for the weights belonging to each individual 
cluster. This reduces the number of unique weight values in 
a model, thus reducing its complexity. Clustered models can 
also be compressed more effectively, providing some 
deployment benefits. 
As anticipated, the TrajecNets-based RUL model developed 
in this work relied on the usage of the TensorFlow 
framework; for this reason, the TensorFlow Lite toolset 
(Google, 2022) appeared to be a natural option to support the 
RUL’s model size reduction. 

3.3. Edge platform selection 

Different classes of devices can be considered for the 
implementation of the on-board CSM, ranging from 
microcontroller devices to more capable single board 
computers. Considering the need to host middleware-related 
functionalities, and potentially supporting advanced 
frameworks like TensorFlow, a mid-range single board 
computer has been identified. 
Specifically, the target platform considered in this work is a 
commercial single-board computer based on a Freescale 
i.MX6 System on Chip (SoC), including an Arm® Cortex®-
A9 single core, operating at a clock frequency of 800 MHz. 
The SoC also include a Graphics Processing Unit (GPU), 
providing hardware acceleration for 3D graphics but not 
suitable for more general-purpose computation. The platform 
manufacturer provides support for several GNU/Linux OS 
distributions. The TensorFlow framework has been fine-
tuned to run on top of the standard Ubuntu Linux distribution. 
The platform has a base storage capability of 4GB, with 
support for external expansion. It supports a variety of 
communication interfaces, including wired and wireless 
networking. 

3.3.1. Software architecture overview 

The proposed hardware platform provides a variety of I/O 
interfaces, suitable for interfacing with the TS and for 
communicating over an airborne network supporting the 
overall PHM functions.  
The software architecture of the proposed system is 
represented in Figure 7. 
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Figure 7 – Proposed CSM software architecture 
 
The DA component supports communication over external 
interfaces, data marshalling, and interaction over the MQTT 
middleware, which, as anticipated, provides an abstraction 
for network communications. 
The feature extraction component supports the online 
calculation of target features set and handles the interactions 
with the MQTT middleware. The component receives as 
input the information on the current flight phase and relies on 
it to apply the correct pre-processing approach to the input 
data. 
Finally, the CSM supports PA and HA, based on the 
algorithm described in section 3.1. This component relies on 
the TensorFlow Lite runtime and integrates an MQTT client. 
Besides the described function, the platform includes a 
standard generic component supporting the initial start-up of 
the platform (initialization of networking services and of 
MQTT middleware support) and scheduling of other 
components. 

4. VALIDATION SETUP: SUPPORTING CBM FOR 

AN AIRCRAFT BRAKING SYSTEM 

To validate the on-board PHM architecture introduced in the 
previous sections, in the following part of the paper, a 
representative braking system is presented as TS. 
 

 

Figure 8 - High-level view of an Aircraft Braking System 

Figure 8 shows a simplified control architecture for an 
aircraft electro-hydraulic/electro-hydrostatic braking system 
(SAE International, 2006). 
Common commercial aircraft brakes are made of 
Carbon/Carbon composites. The brake is composed of a stack 
of alternated stator and rotor discs. A servo valve regulates 
the hydraulic fluid directed to the pistons in the brake 
assembly. An increase of the hydraulic pressure causes a 
compression in the stack of stators and rotors, resulting in an 
increase of friction that slows down the wheel rotation. 
During the braking action, most of the aircraft’s kinetic 
energy is transformed into heat and absorbed by the brakes 
(Daidzic, 2017). 
A Brake Control Unit (BCU) hosting the control system is 
responsible for the regulation of the servo valve. The valve 
opening is computed according to the reference signals 
received from the cockpit, namely the pilot (and/or co-pilot) 
brake pedal command and/or the level of required autobrake. 
The BCU can collect data from several sensors deployed 
along the system (wheel speed, brake temperature, brake 
pressure, etc.), and uses them as input for the different control 
algorithms hosted on the unit.  
After each brake application, the brake’s discs tend to wear 
(due to the loss of material induced by friction). Moreover, 
wear dynamics are impacted by the thermal behavior of the 
brake  (Di Santo, 2005).  When the level of wear reaches 
certain limits, the brake needs to be replaced with a new one. 
It is therefore possible to relate a brake’s wear to its RUL. 
The following subsections provide an overview of a possible 
application of the generic framework described in section 3 
for brake RUL estimation, along with its actual deployment 
of an on-board setup that follows the architectural approach 
presented in section 2.1. Due to the confidentiality of the data 
presented, normalization procedures were carried out. 
Despite the normalization process, the results presented in the 
following section highlights the efficacy of the proposed 
approach in supporting the scalable deployment of complex 
PHM functions onto on-board components with limited 
resources. 

4.1. Data generation, acquisition, and manipulation 

To generate data and support the training phase of the 
TrajecNets-based RUL estimator for brakes, a MATLAB-
based simulator was built to emulate the behaviour of both 
aircraft brakes’ wear and thermal dynamics.  
A representative set of variables collected from the simulator 
were used to train TrajecNets (example subset shown in 
Table 1). 

The simulated data are sampled with a frequency of 1 Hz and 
pre-processed applying a moving average. The acquisition 
and pre-processing of input data leads to a total amount of 
1820 data items per flight, for a total size of ~7 KBs. 
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Table 1 – Representative set of input variables 
 

Variable Description 
Wear level Indicator that provides a 

quantification of the current brake’s 
wear level. 

Brake temperature Indicator that provides the current 
temperature of the brake. 

Flight phase Flag that indicates in which flight 
phase the system is working in. 

 
As discussed in section 3.1, a set of features was computed to 
support the brake RUL estimation. These features are 
computed for each input variable, per each flight phase of a 
given flight. It should be noted the features could be 
computed online, leading to a potential further reduction of 
memory footprint.  
The outcome of the training step provided a TrajecNets-based 
model (original model) trained with a high-fidelity 
parameterization of its internal structures (~30,000 32bit float 
parameters). However, due to its complexity and 
dimensionality, the online execution of such model onto the 
edge computing device defined in section 3.3 resulted to be 
prohibitive. 

4.2. Model reduction, integration & assessment 

To overcome the edge deployment limitations, a model 
reduction and integration process was carried out. The 
original model was reduced to a quantized version through 
TensorFlow Lite, where a quantization of the ~30,000 
parameters from float (32bits) to integer (16bits) has been 
adopted. 
The overall reduction process required two steps:  
(i) the original model with a size of 340 KBs, was initially 

reduced to a TensorFlow Lite float model of 211 KBs 
in size, and 

(ii) the float model was finally reduced into the quantized 
version which size was 164 KBs (about 77% of the float 
model size).  

The impact of the model size reduction through quantization 
on the model accuracy has been evaluated through 
simulation. The accuracy of the model is defined as the Root 
Mean Squared Error (RMSE) between the RUL prediction 
and a target value, over a statistically meaningful number of 
unseen simulated flights.  
From the comparison results, it emerged that both the 
quantized and float models provided RMSE indices ~5% 
higher with respect to the original model (considered our 
best-case scenario). The accuracy of the reduced models is 
slightly impacted but not in a significant manner for the 
application under analysis. 
The performance of the reduced models has been 
characterized on the reference platform using the standard 

TensorFlow Lite Benchmark tool. The tools allow to measure 
relevant execution times (initialization time, inference time 
of warmup state, inference time of steady state) and memory 
usage (memory usage at initialization time, overall memory 
usage during execution). As a reference, the same 
characterization for the reduced models executed on a high-
end processor (Intel Core i5-8365U with a clock frequency of 
1.60 GHz) is included. 
The inference timings of the reduced models are summarized 
in Figure 9 and Figure 10, respectively for the quantized 
version and the float version. 
 

 

Figure 9 – Inference times, quantized model 
 

 

Figure 10 – Inference times, float model 
 
In both cases, estimated time figures resulted acceptable with 
respect to target performance requirements, especially 
considering the non-real time nature of the execution for this 
part of the application. 
The peak memory footprint for the reduced models is detailed 
in Table 2 and Table 3, respectively for the quantized version 
and the float version. 

 
Table 2 - Quantized model, peak memory footprint [MB] 

  
CSM Intel i5 

Init 2.74 3.24 

Overall 3.52 3.99 
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Table 3 - Float model, peak memory footprint [MB] 
  

CSM Intel i5 

Init 2.93 4.16 

Overall 3.64 4.78 

 
Both in the case of the quantized model and the float model, 
the peak memory footprint proved to be compatible with the 
memory capabilities of the described processing platform. 

5. CONCLUSION 

This paper presented a strategy for the scalable deployment 
of PHM techniques for on-board systems, with particular 
focus on edge computing capabilities.  

The relevant scenario for deployment of CBM support for on-
board systems have been presented, and a system level 
architecture able to address significant use-cases has been 
introduced. The proposed approach allows flexibility both in 
the on-board deployment and in targeting different on-board 
systems.  

In the proposed approach, the TS is extended with an external 
support module, able to host relevant CBM related functions.  

The application of the proposed approach to an actual 
aerospace use case has been discussed, first introducing a 
generic CBM framework, previously validated in a 
traditional offline setup, and then mapping this framework 
over the proposed reference architecture. 

The proposed implementation proved to be viable in a real 
use case, a representative aircraft braking system, used for the 
overall validation of the proposed approach. The described 
methodology is in any case generalizable and can be applied 
to different aircraft systems. 

Based on proposed analysis, it was shown that the 
TrajecNets-based model trained off-line using simulation 
data (and based on the full TensorFlow library) can be 
converted and reduced in size (and complexity) for an 
embedded application using TensorFlow Lite toolset. A non-
significant impact on the model accuracy for RUL estimation 
related to brake wear was evaluated for this use case. 
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