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ABSTRACT 

The existing helicopter Health and Usage Management 

Systems (HUMS) collect and process flight operational 

parameters and sensors data such as vibrations to provide 

health monitoring of the helicopter dynamic assemblies and 

engines. So far, structure-related mechanical faults, such as 

looseness in bolted structures, have not been addressed by 

vibration-based condition monitoring in existing HUMS 

systems. Bolt loosening was identified as a potential risk to 

flight safety demanding periodical visual monitoring, and 

increased maintenance and repair expenses. Its automatic 

identification in helicopters by using vibration measurements 

is challenging due to the limited number of known events and 

the presence of high-energy vibrations originating in rotating 

parts, which shadow the low-level signals generated by the 

bolt loosening. 

New developed bolt loosening monitoring approach was 

tested on HUMS vibrations data recorded from the IAF 

AH-64 Apache helicopters fleet. ML-based unsupervised 

anomaly detection was utilized in order to address the limited 

number of faulty cases. The predictive power of health 

features was significantly improved by applying the 

Harmonic filtering differentiating between the high-energy 

vibrations generated by rotating parts compared with the low-

energy structural vibrations. Different unsupervised anomaly 

detection techniques were examined on the dataset. The 

experimental results demonstrate that the developed 

approach enable successful bolt loosening monitoring in 

helicopters and can potentially be used in other health 

monitoring applications. 

1. INTRODUCTION 

Health and Usage Management Systems (HUMS) in 

helicopters use permanently installed vibration sensors to 

perform continuous health monitoring and predict failures in 

dynamic assemblies. Unfortunately, mechanical looseness 

monitoring is not in scope by vibration monitoring in 

helicopters (CAP 753, 2018). 

IAF’s field experience shows that not all bolts in helicopters 

have secure wiring and existing monitoring solutions like 

visual inspections including torque checks are not cost 

effective, performed on ground only and are subject for 

human errors. The use of vibration sensors appears to be the 

most cost-effective solution among all the alternatives 

(including additional sensors installation) given the existence 

of HUMS vibration sensors kit on the helicopter. 

1.1. Mechanical Looseness 

The literature divides mechanical looseness into three types 

(VibrAlign, 2019): A, B and C where each type is 

characterized by different changes in vibrations spectrum. 

The spectrum Type A mechanical looseness manifests itself 

as an increase in the amplitude of shaft’s first harmonic (1X), 

while Type B and C affect the energy of shaft harmonics and 

subharmonics (e.g. 0.5X) often characterized by a raised 

vibrations noise floor as a result of changes in system natural 

frequencies. 

Jackson (1996) and Human (2011) suggested that looseness 

is not a simple phenomenon and undergo certain stages, as 

the condition of the equipment deteriorates. Initially 
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looseness will manifest itself as Type A, next as B, then as C, 

and finally only the noise floor will remain in the spectrum. 

Krot et al. (2020) and He et al. (2014) also found that bolt 

loosening is best diagnosed by using system natural 

frequencies. 

1.2. Looseness Isolation 

Bolt loosening detection by using vibration monitoring has 

been investigated in previous studies and ML methods were 

successfully applied (Eraliev et al., 2022). Unfortunately, the 

separation capability between bolt loosening and other 

mechanical failures hasn’t been addressed. A reliable bolt 

loosening isolation is required by helicopter operators to 

reduce false alarms and improve helicopter maintenance. 

As mentioned in 1.1 the changes in vibration noise floor, 

related to system natural frequencies, play a major role in bolt 

loosening detection. In this study, the vibration noise floor 

will be isolated from the periodic vibrations related to 

rotating parts to allow separation between looseness and 

other mechanical failures. 

The methods below enable the separation between vibration 

background noise and periodical vibration signals. Antoni at 

al. (2004) and Randall (2004) exploited the periodic nature of 

the signal in order to build an adaptive filter that rejects 

uncorrelated noise between time-shifted slices of the signal. 

Such a filter quickly becomes impractical as it naturally 

grows with signal’s complexity. Another method pioneered 

by Randall at al. (2011) is cepstrum-based separation of 

discrete components. Cepstrum is the spectrum of log 

spectrum. Transform to the cepstrum domain moves all the 

harmonics of the same shaft to a known place in quefrency 

(the frequency analog of cepstrum), where these harmonics 

can be easily removed. Although the method is generic, it is 

not very accurate, and requires a large number of harmonics 

per shaft to appear in the spectrum.  Groover at al. (2005), 

Braun (2011), and Peeters at al. (2005 and 2007) remove 

periodic content by repeatedly resampling the signal to a 

constant angular basis, removing the bin-centered peaks in 

the order domain and resampling back to the constant time 

domain. Groover’s method is accurate and better suited for 

signals with a large number of periodic sources like 

vibrations, but requires knowledge about system kinematics. 

1.3. ML-based Anomaly Detection 

In aviation applications, plenty of normal recordings exist 

with only a small number of abnormal events. Thus, it would 

be correct to define the bolt loosening detection as an 

anomaly detection problem. The anomaly detection methods 

learn the normal data behavior and identify points, sequences 

or context that deviate from the normal behavior (Goldstein 

et al., 2016 and Barelli et al., 2021). 

In recent years, there has been a rapid growth in application 

of anomaly detection techniques in aviation (Basora et al., 

2019 and Basora et al., 2021) where the unsupervised 

learning techniques are widely used in analysis of mechanical 

vibration data. Xu et al. (2019) proposed anomaly detection 

method in vibration signals collected from a certain type of 

rolling bearing equipment. Camerini et al. (2018) developed 

one-class classification SVDD for detection of micro-pitting 

damage on a helicopter gear. Lee, G.et al. (2020) developed 

unsupervised anomaly detection method for diagnosis of 

industrial gas turbines. The authors included in their model 

different types of data collected from vibration transmitters, 

temperature and pressure transmitters. Unsupervised 

anomaly detection models developed by Park et al. (2019) for 

vibration diagnostics of washing machine and by Oliveira et 

al. (2019) using 257 attributes, such as real measurements 

from thermal, acoustic and impact sensors installed in a 

heavy haul railway line in Brazil. Principi et al. (2019) 

presented unsupervised method for diagnosing faults of 

electric motors. Hu et al. (2020) proposed the features 

extraction method for fault detection based vibration signals 

of rotating machinery where the features obtained by 

vibrations FFT from classic rotor and bearing datasets are 

used as inputs to KCPA and AE models. 

There is a wide use of reconstruction-based methods in 

mechanical fault diagnosis. Liu et al. (2018) and Sun et al. 

(2019) implemented this approach for the rolling bearing 

diagnosis and Ma et al. (2020) for damage identification task 

of a bridge under moving vehicle. 

2. PURPOSE AND PROBLEM DEFINITION 

The purposes of the current study are as follows: 

1. Developing a new methodology for bolt-loosening 

detection by using vibration sensors already existing in 

helicopters 

2. Enabling reliable bolt loosening isolation from other 

mechanical problems  

3. Testing the methodology by using field data recorded by 

HUMS 

The following challenges were addressed in this research: 

1. The helicopter maintenance information in digital form 

was difficult to access limiting thus the labeling of 

normal observations.  

2. The missing information about the start time of the bolt 

loosening events makes the abnormal data labeling to be 

difficult 

3. The number of abnormal observations is usually limited 

in helicopter operations since maintenance actions are 

scheduled to prevent mechanical failures. As a result, the 

supervised ML methods requiring significant statistics of 

abnormal observations cannot be used.  

4. Bolt loosening isolation requires separation between 

vibration noise and shaft-synchronized vibration 

components (see Section 1.2). However, the background 
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noise and faulty bearing vibrations cannot be separated 

since the last are non-synchronized to shaft speeds. On 

the other hand, given a lack of comprehensive 

maintenance information, the faulty bearings may be a 

part of the observations where bolt loosening does not 

exist. 

3. METHODOLOGY  

The flowchart in Figure 1 describes the proposed 

methodology. The feature extraction algorithm generates two 

datasets (raw and advanced) of the same size: with and 

without Harmonic filtering to evaluate its influence on the 

model accuracy. The datasets are divided into training and 

testing sets where healthy data is divided 50/50 between the 

sets and the faulty data was fully a part of the test set to enable 

model performance evaluation.  Three unsupervised ML 

models: Naïve model (less accurate and used as a baseline for 

models performance evaluation), Isolation Forest and Auto 

Encoder were built by using the train data and evaluated on 

the test data. The model evaluation was performed by using 

AUC criterion given the predicted and expected data labels. 

 

 

Figure 1. Flowchart demonstrating a proposed methodology 

3.1. Harmonic Filtering 

The Harmonic filtering (HF) (Groover at al., 2005) was 

chosen as the best preprocessing improvement to the feature 

extraction since it provides the best accuracy given the 

information about system shaft speeds. HF removes the 

periodic vibration components related to the rotating parts 

while leaving the background noise related to system natural 

frequencies (as mentioned in Section 1.2).  

The technique consists of the following steps and repeated for 

each shaft in helicopter drive-train: 

1. Times that correspond to the constant angular intervals 

∆𝜃  are determined from the angular speed of rotating 

shaft 

2. Vibration signal, sampled at constant time intervals ∆𝑡, 
is interpolated into a constant angular basis (cycle 

domain) 

3. The FFT is applied to the interpolated signal 

4. All the shaft harmonies, which are now exactly bin 

centered, are removed from the spectrum 

5. The cleaned signal is transformed back to cycle domain 

via inverse FFT 

6. Vibration signal is interpolated back to the time domain, 

where time intervals ∆𝑡 are constant 

3.2. Order Tracking 

 Order tracking, as used in the feature extraction, is a method 

of vibration analysis. The spectral density is calculated in 

terms of shaft speed (orders) instead of frequency (Hz). Order 

tracking helps to identify speed-related vibrations such as 

shaft, gearwheel and bearing defects. The order tracking 

requires vibration signal to be converted into cycle domain 

instead of time domain where signal is sampled at constant 

increments of shaft angle instead of constant increments of 

time (as described in Section 3.1) and then the spectral 

density is calculated by using Power Spectral Density (PSD) 

estimation. More information about the method can be found 

in Fyfe et al. (1997).  

3.3. Feature Extraction 

Two different features datasets: raw (without HF) and 

advanced (by using HF prior to feature extraction) were 

calculated.  

The features extraction consisted of the following steps: 

 The order tracking was performed (see Section 3.2) 

 The order domain was limited between 0 and 160Hz to 

eliminate the influence of bearing fault frequencies, 

which expected to appear at higher frequency band (see 

Section 2) and divided into M equally spaced bands. 

 The Root Mean Square (RMS) was calculated for each 

band in the order domain resulting in M features per 

sensor. The RMS at band i  was calculated as follows: 

 𝑅𝑀𝑆𝑖 = √
1

𝑁
∑𝑎(𝑗)

𝑁

𝑗=1

, 𝑖 ≤ 𝑀 (1) 

where 𝑅𝑀𝑆𝑖 is RMS of band i, N is a number of bins in band 

i, and 𝑎(𝑗) is a vibrations PSD at bin j of the order domain. 
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M=20 was chosen to achieve a trade-off between the model 

flexibility (requiring high M) and model complexity 

(requiring low M). Each dataset dimension is equal to 60 

(3sensors x 20features).  

3.4. Data Labeling 

The following solutions of data labeling are proposed to solve 

the challenges as described in Section 2: 

1. Assuming the significant majority of healthy 

observations in data, all the observations except the 

known bolt loosening events were labeled as “normal”. 

However, the accuracy of the False Positive (FP) rate 

estimation is expected to be limited since other 

mechanical failures may generate FP alerts. 

2. Given lack of information about bolt loosening start, the 

abnormal data period was labeled roughly by using a 

visual inspection. Thus, the estimation of model True 

Positive (TP) rate is limited when using this type of 

labeling. 

3.5. ML Approach 

The use of anomaly detection techniques is chosen as a best 

way to detect the problems since the abnormal data amount 

is limited as mentioned in Section 2. The anomaly detection 

allows learning from healthy observations only and detecting 

abnormal observations as anomalies. 

Two advanced unsupervised ML techniques were chosen for 

comparison: Isolation Forest (IF) and Auto-Encoder (AE). 

The IF algorithm was developed specifically for the purpose 

of anomaly detection and works on the principle of isolating 

anomalies. AE allows learning a low-dimensional feature 

representation on which the given data instances can be well 

reconstructed. The reason for using AE in anomaly detection 

is that the learned feature representations are enforced to 

learn complex relations of the data to minimize 

reconstruction errors; anomalies are difficult to be 

reconstructed from the resulting representations and thus 

have large reconstruction errors. Both methods are widely 

used in conditional monitoring. 

3.5.1. Isolation Forest (IF) 

IF is based on an ensemble of random binary trees that 

compute paths to isolate observations. Each tree of the 

ensemble is known as an isolation tree, to partition 

observations until they are isolated. The identifying of a 

normal observation and abnormal observation by IF can be 

observed in Figure 2. A normal point (on the left) requires 

more partitions to be identified rather than an abnormal point 

(right). Therefore, the key idea is that anomalies are easier to 

isolate since they require shorter paths or fewer conditions in 

comparison with normal observations. 

 

  

Figure 2. Identifying normal vs. abnormal observations with 

iForset 

 

The algorithm determines limit values per node based on the 

feature values chosen randomly. At each step, the limits are 

split into 2 parts and being checked whether or not the sample 

observation is within the boundaries. IF determines 

anomalies scores by the following equation: 

 𝑠(𝑥, 𝑛) = 2
−
𝐸(ℎ(𝑥))
𝑐(𝑛)  (2) 

where h(x) is the path length of observation x, c(n) is the 

average path length of search in a Binary Search Tree and n 

is the number of external nodes.  E(h(x)) is the mean value of 

h(x) in the isolation tree. IF can be configured as a binary 

classifier or regression to weight the observation between 

normal (0) and anomalous (1). When configured as a 

classifier, it is possible to define the contamination 

proportion of outliers in the dataset used as a threshold to 

round the value to 0 or 1. Therefore, when s is close to 1, it is 

quite possible to be an outlier. Similarly, a number close to 0 

might also be normal. If all observations are close to 0.5, no 

anomaly is identified (very similar observations). 

More details about anomaly detection by IF can be found in 

Liu, F. T. et al. (2008). 

3.5.2. Auto-Encoder (AE) 

An auto-encoder is a type of neural network used to encode 

the data in efficient unsupervised manner. AE is trained to 

generate the target values equal to the input data through a 

combination of encoder and decoder networks. These 

networks have a bottleneck hidden layer of few neurons in 

the middle, forcing them to generate valid representations 

that compress the input data into a lower-dimensional code 

called a latent vector, which used by the decoder to reproduce 

the original information. AE is trained to minimize 

reconstruction errors  

   
,

min
E D

x D E x
 

(3) 

where x is the input data, E is an encoder network, and D is a 

decoder network. The training of an auto-encoder is 

performed through backpropagation of the error, just like a 

regular feedforward neural network. 
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A typical auto-encoder architecture consists of three main 

components, as shown in Figure 3. 

1. Encoder network: An encoder network is comprised of 

series of layers with a decreasing number of nodes and 

ultimately reduces input data into a latent vector. This 

process is also called dimensionality reduction, and the 

convolution layers are used for encoding. 

2. Latent vector: The latent vector represents the lowest 

level space in which the inputs are reduced, with 

essential information preserved with the strong 

correlation between input features. 

3. Decoder network: A decoder network acts as the mirror 

image of the encoder network. The number of nodes in 

every layer increases and reconstructs the latent vector 

to output as a similar input via transposed convolution. 

As a particular portion of the information is lost during 

reconstruction, the output data always have lower quality 

than the input data. 

 

Figure 3. The typical AE configuration 

 

The efficiency of AE in anomaly detection is strongly related 

to a proper selection of dimension size of hidden layers where 

anomalies are detected by calculating the residual error in the 

reconstruction of the input by the decoder. Since anomalies 

are “few and different”, AE tends to achieve lower error for 

normal observations and abnormal higher residuals for 

outliers. Similar to IF models, the contamination hyper 

parameter defines the percentage cut between normal and 

faults. The records with the highest residual errors are 

classified as abnormal. More detail about AE as an anomaly 

detection technique can be found in Chalapathy, R., & 

Chawla, S. et al. (2019). 

3.6. Model Performance Evaluation 

Technically, there is no way to measure the performance of 

unsupervised learning models, since there are no labels 

available to compare the ground truth. In this regard, we used 

abnormal signals as labels solely for model’s performance 

evaluation purposes. During the training process, labeled 

datasets are not provided to the models. The validation 

dataset contained both normal and abnormal observations to 

use classification performance metrics. 

Classification performance can be measured independently 

from threshold setting by introducing the receiver operating 

characteristic (ROC) curves. Such curves represent the 

fraction of target objects accepted by the model (i.e. normal 

observations classified as normal) against the fraction of 

outliers accepted (i.e. abnormal observations classified as 

normal). The area under the ROC curve (AUC) gives a scalar 

measure of the achieved separability between states. 

4. DATASET AND EXPERIMENT DESCRIPTION 

Intermediate Gearbox (IGB) represents one of the drive-train 

assemblies in AH-64 helicopters responsible for transfer of 

rotational moment from the main gearbox to the tail gearbox. 

The IGB is attached to the airframe by 4 bolts as shown in the 

Figure 4 and Figure 5. 

 

Figure 4. Intermediate Gearbox (IGB) of AH-64 and the 

corresponding locations of 4 bolts attaching the assembly to 

the airframe 

 

 

Figure 5. Intermediate Gearbox of AH-64 and the upper left 

bolt example 

 

Bolt loosening is manually checked before each flight as well 

as during weekly inspections. The vibrations levels of the 

IGB input shaft harmonies 1X and 2X are being monitored 

by HUMS continuously during flight accompanied by 

periodic manual measurements on-ground. Unfortunately, 

the existing IGB vibration monitoring does not provide a 

solution. 

The bolt loosening events were detected indirectly by visual 

inspection of the bolt holes during IGB overalls. The oval 

form of the holes and signs of corrosion represent the result 
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of bolt loosening needed to be monitored automatically and 

in advance. See Figure 6 below for example. 

 

Figure 6. The oval form detected in one of four holes points 

to bolt loosening 

 

The historical data provided for this research was recorded by 

the T-HUMS of RSL Electronics Ltd. between 2014 and 

2020 from the entire IAF AH64 helicopters fleet. 

Unfortunately, the data set cannot be published due to 

confidentiality limitations. 

There are 3 vibration sensors in close proximity to IGB as 

summarized in Table 1. 

Table 1. Vibration sensors in IGB proximity  

Sensor 

Code 

Sensor 

Description 

Sensor 

Location 

Samp 

Rate, 

kHz 

Recording 

Duration 

IGB Intermediate 

Gearbox  

IGB 

assembly, 

on IGB 

48 10 sec 

HBA Aft Hanger 

Bearing 

IGB input 

shaft, 0.5m 

from IGB 

12 10 sec 

HBF Fwd Hanger 

Bearing 

IGB input 

shaft, 1.5m 

from IGB 

12 10 sec 

 

There are four known cases of IGB bolt loosening in AH-64 

where T-HUMS data exist, each with slightly different 

findings (see Table 2). 

Table 2. IAF Findings of Bolt Loosening in IGB between 

2014-2020 

Case # IGB 

Installation 

IGB 

Removal 

#Oval Holes 

Detected/ #Total 

Holes 

1 10/07/18 19/12/19 4/4 

2 13/11/18 22/10/19 3/4 

No data 13/03/14 20/07/14 No data  

3 25/12/17 06/05/18 3/4 

4 26/03/19 09/03/20 0/4 

 

The problem severity defined as a number of oval holes 

detected after IGB removal. For example, 4 oval holes in case 

#1 points to the higher problem severity vs. 0 holes as in case 

#4 where only low mounting torque was identified. Cases #2 

and #3 are of similar severity with 3 oval holes each. 

4.1. Data Preprocessing: HF 

Figure 7 shows how the high-energy vibrations related to 

rotating parts are being removed with HF approach (Section 

3.1). 

 

Figure 7. Example of IGB sensor vibrations spectrum before 

(blue) and after (orange) HF. 

 

The noise floor difference between the normal and abnormal 

FFT of case#1 (see Table 2) is presented in Figure 8- where 

a minor noise floor increase can be visually identified. 

 

Figure 8. IGB sensor vibrations after applying HF: just after 

healthy IGB installation (orange) and before bolt loosening 

is detected (blue) 

4.2. Data Statistics and Partition 

The calculated features statistics after preprocessing is 

summarized in Table 3: 

Table 3. Available Feature Dataset 
Flight 

Regime 

Description Normal 

Observati
ons 

Abnormal 

Observations 

Total 

Observations 

1  Level Flight 

High Speed 

44828 675 45503 

2 Level Flight 

Low Speed 

26371 371 26742 

3 Hover 2714 39 2753 

 

The only flight regime #1 with the largest number of 

observations (45,503 observations in total) was chosen to 

avoid influence of the helicopter operational conditions. 
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Further research is required to estimate the possibility of data 

aggregation from different flight regimes. 

4.3. Benchmark Framework Definition 

In order to perform ML model evaluation, the Naïve model 

was chosen as a baseline where other ML methods were 

evaluated by comparison to this baseline model. The model 

uses a probabilistic model assuming multivariate Gaussian 

statistics of the healthy data, estimates parameters of its 

probability distribution and assigns a log-likelihood to any 

observation during inference. The squared Mahalanobis 

distance is proportional to the log-likelihood and serves as an 

anomaly score for Naïve model, where large score values 

indicate a novelty in the data. To improve the model’s 

robustness, the score was calculated after the features are 

divided into 4 groups 5 features each assuming there is no 

dependency between the groups. 

ROC curve (Receiver Operating Characteristic curve) was 

chosen to define the models performance and benchmarking. 

The ROC was calculated on the whole range of the model 

thresholds where True Positive Rate and False Positive Rate 

represented its axes. The ROC was built by using the test data 

including 50% of the healthy and all the faulty observations. 

Area under the ROC Curve (AUC) was chosen to provide an 

indication of the model performance across all possible 

thresholds. Generally, a higher AUC points to a potentially 

better model performance. In our case, the area of interest is 

mainly in the region corresponding to a low FP rate (lower 

than 0.1) which is more practical for helicopter operators. The 

AUC of the Naïve model was equal to 0.8 as presented in 

Figure 6, where the model was built using all the 3 sensors 

and 20 features each (input dimension = 60). 

Two different cases are presented in Figure 9: where the basic 

and advanced features datasets are used. The AUC in both 

cases for Naïve model is equal to 0.8. The AUC improvement 

is not significant while the low FP area was improved 

significantly by using HF pointing to its importance: 26% 

improvement in TP rate was found for a chosen 0.1 FP rate. 

Further model benchmarking results will be presented for HF 

only due to its significant improvement of the ROC for the 

low FP rate values. 

 

Figure 9. The ROC of Naïve model applied to basic features 

dataset (left) and advanced features dataset (right) 

4.4. Advanced Models Settings 

The performance of two advanced models: Isolation Forest 

and Auto-Encoder were compared to the baseline Naïve 

model. 

The models were trained on the 50% of the healthy data 

(22,414 healthy observations) and the AUC was calculated 

by using the test data including other 22,414 healthy and 675 

faulty observations. 

IF algorithm, implemented on scikit learn library, used the 

default parameters except the contamination = 0.1 allowing 

the proportion of outliers in the dataset. Since its initialization 

is random, the AUC results were generated by averaging 100 

runs. 

Auto-Encoder algorithm was used with the default 

parameters except the contamination = 0.1 and 

hidden_neurons = [10, 4, 4, 10] where the parameter defines 

a number of neurons per hidden layer whose number is lower 

compared with the number of input features (60 in our case). 

5. RESULTS SUMMARY 

Table 4 below summarizes the results. As mentioned above, 

visual data investigation showed significant difference in the 

capability of the healthy-faulty data separation between 

different sensors. It was therefore decided to present the 

model benchmarking for each sensor separately. Table 4 

summarizes the benchmarking and shows significant 

performance improvement when the IGB sensor only is used 

– 0.87 vs. 0.80 when all three sensors are used. All models 

performance on HBA and HBF sensors are poor compared to 

the IGB sensor. Further investigation is required to deeply 

understand the reason for the difference. 

The stability of the model performance was estimated by 

randomly choosing subsets from the training set to generate 

AUC. Both Naïve and AE models were stable while IF model 

performance was different for different data sets. Given a 

similar performance between the models, the Naïve or AE 

model are preferred options for use in production. AUC 

values presented in Table 4 show that AUC for IF and AE 

models show no improvement vs. baseline Naïve model. The 

main reason for the models inaccuracy is the inaccuracy in 

dataset labeling due to lack of information about the bolt 

loosening beginning and info about mechanical failures in the 

healthy dataset. The best results are obtained when the IGB 

sensor only is being used. 
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Table 4. AI models benchmarking 

Model AUC – all 

sensors 

AUC – 

HBA 

AUC - 

HBF 

AUC-

IGB 

Naïve model 

( Baseline) 

0.80 0.61 0.66 0.86 

Isolation 

Forest 

0.79 0.51 0.64 0.87 

Auto-

Encoder 

0.77 0.50 0.63 0.86 

 

The IF ROC of IGB sensor is demonstrated in Figure 10. 

AUC of the IF model built on IGB sensor data is equal to 

maximal 0.87. The maximal TP rate of 0.75 can be obtained 

for a chosen 0.1 FP rate.  

 

Figure 10. The best ROC of IGB sensor (left image) and 

histogram of anomaly scores (right image) 

 

The difference in models performance between different 

sensors required additional data analysis. The histograms of 

the healthy and faulty data were analyzed in order to 

understand the difference in data statistics between the 

sensors. The difference in faulty and healthy data stats is 

more significant in IGB sensor. See example in one of the 

inputs in Figure 11. 

 

Figure 11. Comparison between the healthy and faulty data 

statistics for IGB (left), HBA (middle) and HBF (right) 

sensors 

 

The best difference between the healthy and faulty data is 

visually recognized mainly in IGB sensor (Figure 11, left 

image) vs. HBA, HBF. The results fit also physical intuition 

since only IGB is located on the faulty assembly. As a 

comparison, the HBA and HBF data statistics are presented 

(Figure 11, center and right images). 

The output of the models represents an anomaly score 

corresponding to a distance measure between each test 

observation and the training dataset. 

The anomaly score can be used as a Condition Indicator in 

detecting bolt loosening. All the known bolt loosening cases 

were successfully detected by the Condition Indicator. Figure 

12 shows an example of the Condition Indicator performance 

of AE model applied to all the data of the helicopter where 

the case #1 bolt loosening was found. The red line on the 

Figure 12 helps to identify the healthy and faulty data and is 

set to zero when no bolt loosening exists and equal to a high 

value in the period of IGB installation and removal when the 

problem appeared. 

 

Figure 12. Example of Case #1 loosening detection by new 

Condition Indicator (blue) 

 

6. CONCLUSIONS AND RECOMMENDATIONS 

A new algorithm of bolt loosening detection by using 

vibrations and ML is developed and tested on field data 

recorded by IAF HUMS.  

No significant difference in model performance was found 

between three ML models: Naïve model, Isolation Forest and 

Auto-Encoder. The models performance evaluation was 

limited due to dataset challenges as explained in Section 2. 

The use of data from IGB sensor only outperforms the models 

using data from all three sensors. The actual reason is not 

clear yet and future research is required.  

The use of HF as a preprocessing stage improves model TP 

rate especially for low FP rates where the model is of main 

interest for operators. 

Recommendations for future research 

The use of sequence-based anomaly detection instead of 

point-based may decrease FP rate where anomaly is detected 

if the samples neighborhood is considered. 

Since data is time-based, the use of serial data structure may 

help to improve model performance.  The use of time-based 

LSTM AE vs. AE as in our case may improve both FP and 

TP rates. 
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The use of more information about maintenance actions 

performed as well as the mechanical failures detected during 

the helicopters operations may improve significantly data 

labeling accuracy and improve models performance. 

Further investigation of the difference in model performance 

between different sensors is required for deeper 

understanding the directions of model improvements. 

Contribution 

The new developed methodology allows bolt loosening 

detection and isolation from other mechanical failures. The 

methodology will improve helicopter maintenance activity 

by replacing non-reliable human factor used in periodical 

visual inspections and will expand monitoring scope also to 

flight conditions vs. existing manual ground-based 

inspections.  
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