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ABSTRACT

Estimating the remaining useful life (RUL) of an asset lies
at the heart of prognostics and health management (PHM)
of many operations-critical industries such as aviation. Mod-
ern methods of RUL estimation adopt techniques from deep
learning (DL). However, most of these contemporary tech-
niques deliver only single-point estimates for the RUL without
reporting on the confidence of the prediction. This practice
usually provides overly confident predictions that can have
severe consequences in operational disruptions or even safety.
To address this issue, we propose a technique for uncertainty
quantification (UQ) based on Bayesian deep learning (BDL).
The hyperparameters of the framework are tuned using a novel
bi-objective Bayesian optimization method with objectives
the predictive performance and predictive uncertainty. The
method also integrates the data pre-processing steps into the
hyperparameter optimization (HPO) stage, models the RUL as
a Weibull distribution, and returns the survival curves of the
monitored assets to allow informed decision-making. We vali-
date this method on the widely used C-MAPSS dataset against
a single-objective HPO baseline that aggregates the two ob-
jectives through the harmonic mean (HM). We demonstrate
the existence of trade-offs between the predictive performance
and the predictive uncertainty and observe that the bi-objective
HPO returns a larger number of hyperparameter configurations
compared to the single-objective baseline. Furthermore, we
see that with the proposed approach, it is possible to configure
models for RUL estimation that exhibit better or comparable
performance to the single-objective baseline when validated
on the test sets.

Marios Kefalas et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

1. INTRODUCTION

Prognostics and health management (PHM) is a research area
with multiple methodologies and functions as a decision sup-
port tool that aims at minimizing maintenance costs and pre-
dicting when a failure could occur by the assessment, prog-
nosis, diagnosis, and health management of engineered sys-
tems (Nguyen et al., 2019). The core of PHM is failure prog-
nostics. Failure prognostics refers specifically to the phase
involved with predicting future behavior and the system’s use-
ful lifetime left in terms of current operating state and the
scheduling of required maintenance actions to maintain sys-
tem health (Vachtsevanos, Lewis, Roemer, Hess, & Wu, 2006).
This useful lifetime left is often called the remaining useful
life (RUL) (Nguyen et al., 2019) and is defined as the length
from the current time and operating state to the end of the
useful life (Si, Wang, Hu, & Zhou, 2011). The notice of pend-
ing equipment failure allows for sufficient lead-time so that
necessary decisions, personnel, equipment, and spare parts
can be organized and deployed, thus minimizing equipment
downtime and repair costs. By leveraging RUL estimation1,
industries, such as aerospace, maritime, and energy, can im-
prove maintenance schedules to avoid catastrophic failures and
consequently save lives and costs (Zhang, Lim, Qin, & Tan,
2017). The industry has to also assure that its asset utilization
is optimum by guaranteeing a timely - but not premature -
maintenance. Furthermore, this practice promotes sustainabil-
ity as the use of spare parts is optimum and no useful life is
wasted.

The estimation of the RUL can be done in various ways.
Model-based, data-driven and hybrid methods are the most
prominent approaches (Nguyen et al., 2019), and in general
all methods make some use of the sensor data of the equip-
ment and/or maintenance history. Model-based methods (or

1In this work we will be using the terms RUL prediction and RUL estimation
interchangeably, unless otherwise stated.
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physics-based methods) rely on an established mathematical
model of the system in question and, as a result, call for a
thorough understanding of the system’s physics and processes.
This can be prohibitively costly in terms of time and money
due to the amount of time and domain expertise needed to
develop and fine-tune such models2. On the other hand, data-
driven methods are relatively easier to develop as they do not
need (a lot of) expert knowledge to develop the model, ren-
dering them domain-agnostic or easily transferable between
domains. They can require, however, large amounts of data.
Lastly, hybrid (or fusion) methods leverage the advantages of
the two previous methods while minimizing their limitations.
The previous groups of methods showcase that data-driven ap-
proaches are, in general, available to a broader audience due to
their domain-agnostic nature, allowing universal applicability,
and also because of the plethora of tools that are developed.

Data-driven approaches either fall under the category of clas-
sic machine learning (ML) algorithms (such as random forests
(RF)) (Zhang et al., 2017; Sateesh Babu, Zhao, & Li, 2016a) or
the more recently proposed deep neural networks (DNNs) (Hsu
& Jiang, 2018; Listou Ellefsen, Bjørlykhaug, Æsøy, Ushakov,
& Zhang, 2019; Zheng, Ristovski, Farahat, & Gupta, 2017).
In both cases, though, the estimation of the RUL is a challeng-
ing problem. The remaining useful life is not merely a target
variable that can be predicted from sensor measurements, but
it is a variable that needs to be inferred from a longer trend of
degradation patterns and when those begin to occur. In this
view, and due to the advances in the general field of artificial
intelligence (AI), deep learning (DL) and DNNs have proven
to be a successful candidate to the RUL estimation task (Lei
et al., 2018; Benker, Furtner, Semm, & Zaeh, 2021; Kefalas,
Baratchi, Apostolidis, van den Herik, & Bäck, 2021; Caceres,
Gonzalez, Zhou, & Droguett, 2021; Peng, Ye, & Chen, 2020;
B. Wang, Lei, Yan, Li, & Guo, 2020). One significant advan-
tage of DNNs lies in their ability to learn features from raw
data automatically and extract patterns that can enhance the
RUL estimation accuracy (Benker et al., 2021; B. Wang et
al., 2020). DNNs owe their success to their representational
power and their capacity to learn sets of hierarchical features
from simpler features due to their deep, multilayer architec-
tures (Goodfellow, Yoshua Bengio, & Aaron Courville, 2016).
However, most of the state-of-the-art DL approaches used
in prognostics provide mainly point estimates to their RUL
predictions (Peng et al., 2020; Caceres et al., 2021; Biggio,
Wieland, Chao, Kastanis, & Fink, 2021). This is because
DNNs do not inherently quantify the uncertainty associated
with their predictions but instead treat their weights and biases
as deterministic values. These predictions, though, are uncer-
tain since they are prone to noise and wrong model inference
(see Section 4.4). Specifically, there are two sources of uncer-
tainty, namely epistemic (or model) uncertainty and aleatory

2Model-based methods do not require (a lot of) historical data for their de-
velopment, making them the only option for the development of models for
new systems.

(or data) uncertainty (Hüllermeier & Waegeman, 2021). The
former occurs due to inadequate knowledge, data, and rep-
resentational capacity of the model and the latter due to the
inherent uncertainty of the data distribution (Caceres et al.,
2021; Abdar et al., 2021). Additionally, from the nature of
epistemic uncertainty we can see that it is a reducible part
of the (total) uncertainty of a modeling process, as it can be
reduced on the basis of additional information. On the con-
trary, aleatory uncertainty is an irreducible part of the (total)
uncertainty, due to the inherently random effects in the data-
generating process (Hüllermeier & Waegeman, 2021). Most
problems in engineering involve both sources of uncertain-
ties. However, it may be difficult to distinguish whether a
particular uncertainty should be put in the aleatory category or
the epistemic category, in the modeling phase (Kiureghian &
Ditlevsen, 2009).

The lack of a measure of uncertainty, however, can lead to
overly confident decisions (Caceres et al., 2021; Gal & Ghahra-
mani, 2016). When it comes, for example, to cost-critical or
safety-critical applications, it is necessary to know how much
confidence a DL method has on its prognostic results and even
more so when it comes to the RUL estimation (Peng et al.,
2020; Biggio et al., 2021; Benker et al., 2021; Caceres et
al., 2021). In addition, even though DNNs output predictive
probabilities (e.g., image classification), these probabilities
are falsely interpreted as model confidence (Gal & Ghahra-
mani, 2016). For example, the probability of the softmax on
the final layer of a neural network (NN). will not reflect if
the network has knowledge of the input (see also adversar-
ial examples (Szegedy et al., 2014)). Additionally, decision-
making based on a single-point estimate is error-prone and
leaves no room for the decision-maker to make an action-
able choice (Peng et al., 2020). When such an uncertainty
estimate is available (see also Section 2) it is often the case
that end-users and decision-makers need to choose by lack-
ing broader information, such as distribution of predictions or
other statistics that can assist the logistics further.

Furthermore, the end-user or researcher is faced with a mul-
titude of decisions around the hyperparameters of the pre-
processing of the data (e.g., label construction for RUL data)
and of the learning algorithm (e.g., the number of layers in
a DNN). Hyperparameters are not learnt but have to be set
a-priori, and they have a large impact on the predictive perfor-
mance of a method but also uncertainty. On top of that, there
can be hyperparameter configurations that allow low predic-
tion error but have (relatively) large uncertainty and vice versa.
In such scenarios, where trade-offs exist, it is vital to move
towards a more user-centric approach, where the end-user can
decide which hyperparameter configuration to adopt based on
the criticality of the task. As such, hyperparameters need to
be considered carefully both in terms of model accuracy and
uncertainty estimates.
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The aforementioned statements motivate our main research
question: Can we propose an automated framework for config-
uring RUL prediction models which are highly accurate and
have less estimation uncertainty?

More specifically, our contributions are as follows:

1. We automatically optimize the hyperparameters of the
Bayesian deep learning (BDL) model through Bayesian
multi-objective optimization, jointly minimizing the RUL
prediction error and the combined aleatory and epistemic
uncertainties of the estimations. The reasoning behind
this is that in certain tasks, there can be conflicts between
these two objectives, as we briefly mentioned previously.

2. Together with the model hyperparameters, we further op-
timize the hyperparameters which are specific to the task
of RUL estimation (the RUL label construction, see also
Section 4), which is known to have an effect on the algo-
rithmic performance (Sateesh Babu, Zhao, & Li, 2016b).
We provide thus, a thorough, end-to-end approach that
can further assist researchers and end-users for offline
RUL estimation.

3. We adopt a user-centric approach that allows the user
to estimate the RUL based on the model output, as it
promotes a more interpretable RUL decision. We demon-
strate how survival curves can provide the end-user with
information regarding the RUL and its confidence.

4. We evaluate our multi-objective hyperparameter optimiza-
tion (HPO) approach against a single objective HPO by
taking the harmonic mean (HM) of the objectives. Our
approach is validated on two subsets of the widely used
C-MAPSS dataset (A. Saxena & K. Goebel, 2008).

The rest of the paper is organized as follows. In Section 2,
we present related work in this field and in Section 3, we for-
mally define the problem of the RUL estimation. In Section 4,
the proposed method and its modules are introduced and in
Section 5 we present the dataset used and discuss the experi-
mental results. Finally, in Section 6 we conclude and discuss
the limitations of our framework and suggest future work.

2. RELATED WORK

The field of PHM has been widely credited in the past years
with numerous contributions from researchers. Academic
interest, industrial applications, as well as the scientific chal-
lenge of developing methods to forecast a failure, have been
the driving forces. While model-based prognostic methods,
such as Kalman filters and their variants (Govaers, 2019;
Kalman, 1960), take into account the modeling and data uncer-
tainty, only a few studies in the data-driven domain address this
matter, despite its importance (Biggio et al., 2021). Touching
upon the previous statement, in this section, we will present re-
lated work in the context of uncertainty quantification (UQ) for
the RUL estimation, attending only to data-driven approaches.

From the traditional ML methods, only Gaussian process re-
gression (GPR) (Rasmussen & Williams, 2006) (also known
as Kriging) addresses UQ. GPR is a stochastic interpolation
method where unseen locations of a stochastic process are esti-
mated as a linear function of observed values. It can further be
understood as a form of Bayesian Inference (BI). Specifically,
GPR places a Gaussian prior over the functions that could
have generated the observed data. Using Bayes’s theorem
by combining the Gaussian prior and the Gaussian likelihood
function (for tractability), we get the predictive distribution for
a new value. However, GPR might not be the optimal model
for some data, e.g., the data does not come from a Gaussian
process, or the dimensionality is high. Furthermore, the data
generating the predictions are not learned automatically as in
DL but need proper pre-processing (e.g., feature extraction),
and another downside of GPR is the GPR variance, of which
is known that it can be over-optimistic (den Hertog, Kleijnen,
& Siem, 2006).

In this view, from the data-driven approaches, we will only
review recent work that adopted a DL solution. We made
this decision because, as also mentioned in Section 1, DL is
becoming prominent in data-driven prognostics, as well as
there has recently been a lot of attention on UQ for DL (Gal
& Ghahramani, 2016; Blundell, Cornebise, Kavukcuoglu, &
Wierstra, 2015; Osband, Aslanides, & Cassirer, 2018; Abdar et
al., 2021). This collection is by no means exhaustive. We refer
the interested reader to (Nguyen et al., 2019) and (Krishna &
Baghaei, 2019) for a more thorough overview of related work
on PHM.

Epistemic Uncertainty The work by Peng et al. (Peng et al.,
2020) is a recent data-driven example of UQ in prognostics.
The authors present a DL approach from a Bayesian view-
point to address the confidence of their RUL predictions and
implement the Bayesian approximation using Monte Carlo
Dropout (MC Dropout) (Gal & Ghahramani, 2016) (see also
Section 4.4). Kraus et al. (Kraus & Feuerriegel, 2019) dealt
with epistemic uncertainty in prognostics using variational
inference (VI) (see also Section 4.4) and combine DL with
notions from survival analysis to increase the intepretability
of the estimation. In the same domain, Wang et al. (B. Wang
et al., 2020) used MC Dropout to estimate the epistemic uncer-
tainty of a recurrent convolutional neural network (RCNN) for
the RUL estimation. However, none of the previous studies
touched upon aleatory uncertainty.

Aleatory Uncertainty Zhao et al. (Zhao, Wu, Wong, Sun, &
Yan, 2020), addressed the aleatory uncertainty by using a deep
convolutional neural network (DCNN) through a shortened
version of the ResNet (He, Zhang, Ren, & Sun, 2015) and
assumed that the target RUL values follow a Gaussian distri-
bution with parameters µ and σ being the network’s outputs.
They also adopted a non-parametric approach by combining
the predicted RUL from the network with quantile regression,
predicting this way multiple RUL at different quantile levels.
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However, this approach did not take into account epistemic
uncertainty and, to the extent of our knowledge, there was no
HPO.

Epistemic and Aleatory Uncertainties Caceres et al. con-
sidered in (Caceres et al., 2021) both epistemic and aleatory
uncertainties. They used an explicit form of VI to account
for the epistemic uncertainty and addressed the aleatory un-
certainty by a probabilistic output layer parameterized by a
Gaussian distribution and further performed HPO through grid
search. In the same manner, Kim et al. (Kim & Liu, 2021)
and Li et al. (G. Li, Yang, Lee, Wang, & Rong, 2021) de-
signed RUL frameworks by taking into account the effects of
both epistemic and aleatory uncertainties. They both used MC
dropout to address the epistemic uncertainties. Kim et al. (Kim
& Liu, 2021) addressed the aleatory uncertainty by a proba-
bilistic output layer parameterized by a Gaussian distribution
and assumed a monotonically decreasing relationship between
the aleatory uncertainty and RUL and further performed HPO
on the number of hidden layers amongst other hyperparame-
ters. Li et al. (G. Li et al., 2021) modeled aleatory uncertainty
by a probabilistic output layer following various types of life-
time distributions (Weibull, Gaussian, and Logistic). Benker
et al. (Benker et al., 2021) adopted a Bayesian neural network
and addressed both uncertainties as well, but took into account
the aleatory uncertainty post-training. They further quantified
the epistemic uncertainty using a Hamiltonian Monte Carlo
method, a more efficient variant of the Markov Chain Monte
Carlo (MCMC) methods in high dimensional spaces.

These recent studies have made a great contribution to the field
of data-driven prognostics by proposing methods to account
for and quantify the uncertainty of their predictions. Nonethe-
less, there remain perspectives to consider. In more detail,
most of the literature reviewed ((Zhao et al., 2020; G. Li et al.,
2021; Benker et al., 2021)) did not state any form of HPO and
those that did ((Peng et al., 2020; Caceres et al., 2021; Kim
& Liu, 2021; Biggio et al., 2021)), did not optimize necessary
hyperparameters in the pre-processing stage and used less ef-
ficient HPO techniques (e.g., grid search). What is more, the
reviewed methods that perform some form of HPO used only
the RUL prediction error as the only criterion to guide the
HPO, as opposed to also taking into account the epistemic and
aleatory uncertainties. Lastly, in our literature review, we did
not come across any methods that allow the end-user to make
an informed RUL prediction based on information output by
the model.

3. PROBLEM DEFINITION

The RUL of an asset or system is defined as the length from
the current time and operating state to the end of the useful
life (Si et al., 2011). Because the adjective useful is subjective,
the previous definition can be extended to the time when the
extent of deviation or degradation of the performance from its
expected normal operating conditions exceeds a pre-defined

threshold (Saxena, Goebel, Simon, & Eklund, 2008), when
the system needs to be repaired or retracted. Based on this, we
can define the RUL at time t ∈ R≥0 as:

RUL(t,Dt) = inf{s ∈ R≥0 : s ≥ t∧1S∁(CI(s,Dt))}− t ,
(1)

where inf represents the infimum of a set and 1 is the indicator
function. S is a user-defined system operating envelope. The
operating envelope is a collection of boundary limits that put
the integrity of an asset at risk when exceeded. CI represents a
user-specified condition index, which monitors if the asset has
exceeded it’s operating constraints. In this case, the CI lies
in the complement of S (S∁), which indicates that the system
must be repaired or maintained.

The time t denotes the time at which the prediction needs to
be performed. Dt represents the data generated by an asset
used for the RUL prediction of that asset. Most commonly Dt

is sensor measurements recorded in time (e.g., pressure, tem-
perature) accompanied by event labels (e.g., times-to-failure),
up until time t. In principle, though, Dt can be any type of
data, structured or not, that can facilitate the estimation.

The quantity inf{s ∈ R≥0 : s ≥ t ∧ 1S∁(CI(s,Dt))} in
Equation 1 can also be referred to as the end-of-life (EoL), to
mark that the system’s “life”, based on user-defined criteria,
has come to an end. Ultimately the estimation of RUL amounts
to the approximation of the EoL. We should note that the EoL
does not necessarily mean that the system has gone through a
catastrophic failure but might operate sub-optimally according
to user-defined criteria.

Finally, from a data-driven perspective, the estimation of the
RUL of an asset involves creating a model which is trained on
data from the same type of assets. Let U be the set of train-
ing data. Each instance u ∈ U is presented as a multivariate
time-series of sensor readings Xu = [x1,x2, . . . ,xT (u)]

T ∈
Rm×T (u), with T (u) time-steps where the last time-step cor-
responds to the end-of-life (EoL) of the unit u. Each point
xt ∈ Rm is an m-dimensional vector corresponding to read-
ings from m sensors at time t.

4. PROPOSED METHOD

Our method works by training a Bayesian deep learning model
on training data U presented in the form of multivariate time-
series. The steps of our method are summarized as:

1. Data pre-processing by removing any redundant signals,
normalizing the remaining sensor values and performing
a sliding window transformation.

2. Target-RUL construction to allow supervised learning.

3. Modeling using a BDL model and taking into account the
uncertainty of the predictions.

4. Hyperparameter optimization of the hyperparameters of
steps 1,2, and 3.

4
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4.1. Pre-Processing

Sensor selection is an initial step of pre-processing multivariate
time-series data. It involves filtering the available data from
sensor measurements which, for example, either do not exhibit
any correlation with the target or have strong correlations with
other sensors. In the latter case, we usually discard some of
the correlated features. Furthermore, even if no correlation
is present, but the sensors do not exhibit any variation, these
features can often be discarded as they do not add any valuable
information. What is more, having a large number of sensors
is not always beneficial for training models as it increases the
chance of overfitting.

Pre-processing also involves normalizing the available data to
mitigate any effect that different ranges of values or large de-
viations can have in the subsequent learning phase. Two of the
most often used normalization methods are Z-normalization
and Min-max normalization:

• Z-normalization (or standardization): This normalization
transforms the data into having 0 mean and unit variance
as: x′ = (x− µ)/σ;

• Min-max normalization (or rescaling): This normaliza-
tion maps the range of the data into [0, 1] or more gener-
ally into [a, b] as: x′ = a+ (x−min(S))(b−a)

max(S)−min(S) ,

where S is a feature (e.g., a sensor), x, x′ are the value and
the transformed value of the feature S, and µ, σ are the mean
and standard deviation of S, respectively. In addition, a, b are
the lower and upper bounds of the projection, and min(S),
max(S), are the minimum value and maximum value of S,
respectively. Normalization is applied on every sensor/feature
independently.

As a next step, for each Xu, we perform a sliding window
transformation with a sequence of length w (window size), in
order to enclose the inputs into multidimensional sequential
data, which are to be considered as one sample. This trans-
formation allows one to increase the number of training data,
standardize the sample input lengths, and accelerate model
training (Caceres et al., 2021). For this work, the window size
w is treated as a pre-processing hyperparameter.

4.2. Target-RUL Construction

We would like to tackle this problem as a regression problem.
However, one of the main challenges of RUL estimation is the
lack of ground-truth values (Sateesh Babu et al., 2016b). In
most cases, the only available data are the data from the sensor
measurements. However, these data are not labeled with any
information regarding the RUL, such as the times-to-failure.
The latter is essential for the training procedure as it carries
decisive information that will allow the learner to uncover
rules that estimate the RUL given sensor measurements. There
are two popular ways to create these labels, namely linear
and piece-wise linear methods (Sateesh Babu et al., 2016b).

The former interprets the RUL in the strictest sense, as time to
failure. Thus, every time-step is mapped to a value equal to
EoL− t, where t is the current time-step. This approach, how-
ever, implies that the health of the system degrades linearly
with usage (Sateesh Babu et al., 2016b). The latter reflects the
fact that initially the degradation is negligible, and after a spe-
cific point in time, it becomes more evident (see Figure 1 for
an example). The point after which the RUL degrades linearly
is called the reflection point (Hsu & Jiang, 2018). This, way
we can construct an RUL curve for each u ∈ U , by mapping
each rolling window to the RUL at the end of that window. For
this work, the type of label creation method and the reflection
point are treated as pre-processing hyperparameters.
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Figure 1. Toy example of a piece-wise linear RUL target
function. The reflection point is at time cycle 125. Adapted
from (Kefalas et al., 2021).

4.3. Modeling

As mentioned in Section 1, amongst the data-driven methods
employed for prognostics DNNs have proven to be good can-
didates due to their representational power (Lei et al., 2018;
Benker et al., 2021; Kefalas et al., 2021; Caceres et al., 2021;
Peng et al., 2020; B. Wang et al., 2020). In general, shal-
low learning methods are not designed for large-scale datasets
and, more importantly, need extensive feature engineering ef-
forts (Zhou, Droguett, Mosleh, & Chan, 2021). In this view,
we decided to employ DL to address the RUL estimation prob-
lem. As this task is based on sequential data (multivariate
time-series), we decided to use recurrent layers and specif-
ically gated recurrent unit (GRU) layers as the model base
due to their lower complexity and similarly good performance
in modeling long dependencies (G. Li et al., 2021), when
compared to long short-term memory (LSTM) layers.

4.4. Uncertainty Quantification

As discussed briefly in Section 1 predictions made by neural
networks are inherently uncertain, as they are prone to noise
and/or wrong model inference. At the same time, however,

5
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NNs treat their weights and biases as deterministic values.
This results in NNs being overly confident, even when they
should not be. In general, there are two sources of uncertainty.
In the context of NN, the epistemic and aleatory uncertainties
can be considered by putting a prior on model parameters or
the outputs. The latter means assuming that the model outputs
follow a specific distribution, such as Weibull. The former can
be addressed by treating the weights and biases (we jointly
note them as W ) of the network as random variables, defining
a prior over them, and then using Bayesian inference to learn
the posterior distributions of the network’s weights (Peng et
al., 2020; Zhou et al., 2021; Caceres et al., 2021) as:

p(W |X,Y ) =
p(Y |X,W )p(W )

p(X,Y )
, (2)

where X,Y are the training data and their labels, respectively.
The posterior distribution on the network’s parameters is, how-
ever, computationally intractable even for NNs of any prac-
tical size, as the number of parameters is very large and the
functional form of a NN does not allow for exact integra-
tion (Blundell et al., 2015; Gal & Ghahramani, 2016; Caceres
et al., 2021). Moreover, the denominator in Equation 2 is
unavailable in closed form or requires exponential time to
compute (Blei, Kucukelbir, & McAuliffe, 2017).

A large part of ongoing research is focused on approximating
such posterior distributions (Biggio et al., 2021). Amongst
these, prominent methods are Markov Chain Monte Carlo
(MCMC) methods and its variants and variational inference
(VI) (Biggio et al., 2021; Zhou et al., 2021; Blei et al., 2017;
Caceres et al., 2021). The former, generally, converge slowly
and are computationally expensive for large datasets or com-
plex models. Instead, VI solves the same problem by us-
ing optimization techniques rather than sampling methods
like MCMC (Blei et al., 2017). Specifically, VI sidesteps
the difficulty mentioned above altogether by defining an ap-
proximate variational distribution q(W ) from a distributional
family D, that is the best approximation to the exact poste-
rior p(W |X,Y ), with respect to the Kullback-Leibler (KL)
divergence. This means that,

q(W ) = argminq(W )∈DKL(q(W )||p(W |X,Y )), (3)

where KL(q(W )||p(W |X,Y )) is defined as:

KL(q(W )||p(W |X,Y )) = Eq(W )

[
log

q(W )

p(W |X,Y )

]
(4)

However, because Equation 3 is intractable3 VI maximizes in-
stead what is called the evidence lower bound (ELBO), which
is defined as:

ELBO(q) = E [log(p(X,Y |W )]−KL(q(W )||p(W )) (5)

3See (Blei et al., 2017) page 6 for details.

In turn, though, exactly maximizing Equation 5 is computa-
tionally prohibitive. To address this, VI can be divided into
methods that implicitly use model uncertainties, such as MC
Dropout (Gal & Ghahramani, 2016) and methods that explic-
itly model weight parameters as probability distributions such
as Bayes-by-Backprop (Blundell et al., 2015; Caceres et al.,
2021; Zhou et al., 2021).

In this work, we have decided to use MC Dropout to model the
epistemic uncertainty due to its simplicity, scalability, and
computational efficiency compared to other Bayesian deep
learning approaches (Gal & Ghahramani, 2016; Kim & Liu,
2021). It is implemented through gradient-based learning
methods and stochastic regularization techniques, which are
widely available in existing DL libraries (Peng et al., 2020).
MC Dropout is, in essence, regular dropout applied at both
training and inference steps. The addition of dropout between
every layer can switch off some portion of neurons in each
layer and generate random predictions as samples from a prob-
ability distribution that is considered equivalent to performing
approximate VI. In more detail, MC Dropout showed that
by choosing a specific form of an approximate distribution q,
as a distribution over matrices whose columns are randomly
set to zero, the VI in a NN can be interpreted as performing
one forward pass through the NN with dropout. For more
details on MC Dropout, see (Gal & Ghahramani, 2016) and
the accompanying appendix.

We should note here that there is a current debate as to the
validity of MC Dropout being Bayesian (Caceres et al., 2021;
Zhou et al., 2021; Osband et al., 2018). In (Osband et al.,
2018), Osband et al. in highlighted that a shortcoming of
MC Dropout is that the dropout rate does not depend on the
data, which translates into the fact that employing dropout for
posterior approximation cannot say anything about a set of
data being observed once or more times. This, of course, can
have significant implications in support of reliable uncertainty
quantification and consequently deserves attention. As this
work was mainly devoted to the usage of bi-objective HPO
and user-centric approach, we have decided to address this
highly relevant but challenging issue in future work.

Finally, in order to model the aleatory uncertainty, inspired
by (Martinsson, 2016), we further assume that the RUL values
follow a Weibull distribution, the reason being that Weibull
is extensively employed in survival and reliability analysis to
model times-to-failure. Moreover, it is simple, but also expres-
sive, being able to take various forms, such as the exponential
distribution (G. Li et al., 2021). The probability density func-
tion (PDF) of the 2-parameter Weibull that we used is defined
as: f(x) = β

α (
x
α )

b−1e−(x/α)β , for x ≥ 0, α, β ∈ (0,+∞),
where α is the scale parameter and β the shape parameter of
the distribution.

In this view and to adopt a user-centric approach for the RUL
estimation (3rd contribution), the output layer of the DNN
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(see Section 4.3) will output the parameters of the Weibull
distribution, α, β. This is a more user-centric approach, as for
a sample input (e.g., a sequence of sensor values), the end-user
is presented with the parameters that govern the distribution
of the times-to-failure. This allows for more informative and
interpretable decision-making in subsequent steps. The end-
user can decide himself what statistics or percentiles (e.g., the
mean-time-to-failure (MTTF)) to use as the point estimate
of the RUL and the overall knowledge of the distribution of
failure times can allow decision-makers to reason if the results
are plausible or not. This contrasts with most methods that
return a point-estimate to the end-user.

4.5. Hyperparameter Optimization

The optimization of hyperparameters enhances the perfor-
mance of a machine learning algorithm, and thus, HPO is
considered an important step in developing AI and ML frame-
works.

Various methods and algorithms are available for HPO, such
as grid search (GS), random search (RS), evolutionary al-
gorithms (EA), and Bayesian optimization (BO) (Feurer &
Hutter, 2019). In this study, a bi-objective variant of a state-of-
the-art BO algorithm, namely Mixed-integer Parallel Efficient
Global Optimization (MIP-EGO), is chosen due to its effi-
ciency for optimizing expensive problems (Stein, Wang, &
Back, 2019). MIP-EGO is based on Efficient Global Opti-
mization, also known as Bayesian Optimization (BO). The
algorithm uses random forests (RFs) models to handle mixed
integer data and mixed integer evolution strategies (MIES) as
internal optimizer. The bi-objective variant of MIP-EGO uses
the S-metric hyper-volume (see also Section 5.3) improvement
infill criterion to select new candidate solutions.

In order to perform the HPO of the Bayesian deep learning
and the problem-specific pre-processing hyperparameters by
jointly optimizing the prediction error and uncertainty address
(1st and 2nd contributions), MIP-EGO is set to determine the
hyperparameter values that minimize simultaneously the point-
wise root mean squared error (RMSE) and the uncertainty
by optimizing the bi-objective function described in Algo-
rithm 1. In more detail, MIP-EGO will evaluate different
configurations hp by preprocessing the data and training a
DNN (lines 1 and 2). In lines 3 − 19 the trained network is
used to make predictions on each sample of the validation
set (size m) by multiple passes R which output different α, β
at each pass using MC Dropout (see Section 4.4). To deter-
mine the RUL estimate for an input sample, we calculated
the median of the predicted αs (ā) and the median of the
predicted βs (b̄) (line 11) and used the mean-time-to-failure
(MTTF) of the Weibull distribution with parameters the cal-
culated medians (line 15). The choice of the MTTF was to
reduce the selection bias to any statistic and the choice of me-
dian to counteract effects of possible outliers. Of course, any

other statistic could be used here. The mean-time-to-failure
is defined as: MTTF (α, β) = αΓ(1 + 1/β), where Γ is the
gamma function. For the over all point-wise performance, f1,
we calculated the RMSE between the predicted RUL (over
all the instances) and the ground truth values (line 18). To
determine the uncertainty for an input sample, we calculated
the standard deviation of the predicted αs (â) and the standard
deviation of the predicted βs (b̂) (line 13) and averaged the
two values. For the overall uncertainty f2, we calculated the
average over all the uncertainties (line 19).

Algorithm 1: Bi-objective Function
Data: X,V, hp,R # Training data, validation data,

hyperparameter configuration, sample size
Result: f1, f2 # RMSE, uncertainty

1 X ′, V ′, YX′ , YV ′ ← Pre processing(X,V, hp); # Data
pre-processing and RUL creation for the training and
validation data (see Sections 4.1 and 4.2)

2 M ← DNN(X ′, V ′, YX′ , YV ′ , hp); # Model training
3 m← |V ′|; RUL← ∅; V ar ← ∅;
4 for i← 1 to m do
5 A← ∅; B ← ∅;
6 for j ← 1 to R do
7 a, b←M(Vi);
8 # Predicting using trained DNN through MC

Dropout (see Section 4.4)
9 A← A ∪ a; B ← B ∪ b;

10 end
11 ā← median(A); b̄← median(B);
12 # Median values of A and B
13 â← std(A); b̂← std(B);
14 # Standard deviations of A and B
15 RUL← RUL ∪ E[Weibull(ā, b̄)];
16 V ar ← V ar ∪mean([â, b̂]); # average between â, b̂
17 end
18 f1 ← RMSE(RUL, YV ′);
19 f2 ← mean(V ar); # Average value of Var
20 Return f1, f2

5. EXPERIMENTAL SETUP AND RESULTS

We are interested in investigating the existence and trade-offs
between the RUL prediction error and the prediction uncer-
tainty when using bi-objective HPO, and to examine the advan-
tages that can be gained compared to using a single-objective
variant. Furthermore, we show how the proposed method
can be more user-centric compared to the current techniques.
Datasets and experimental results are described in this section.

5.1. Data

In this study, we use the widely used C-MAPSS benchmark
dataset (A. Saxena & K. Goebel, 2008). The dataset was re-
leased in 2008 (Saxena et al., 2008) and it has been used in the
field of PHM ever since, to develop techniques and methods
for estimating the RUL (Ramasso & Saxena, 2014; Krishna &
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Baghaei, 2019). It is a simulated turbofan engine degradation
dataset from NASA’s Prognostics Centre of Excellence4. The
dataset consists of four subsets: FD001, FD002, FD003, and
FD004, each of each exhibits a different number of operating
conditions and fault modes. In this work, we used datasets
FD001 and FD003, which exhibited the same number of op-
erating conditions but different number of fault modes. Each
of these datasets is arranged in an n × 26 matrix where n
corresponds to the number of data points (samples) in each
unit and 26 is the number of columns/features. Each row is
a snapshot of data taken during a single operating time cycle.
Regarding the 26 features, the 1st represents the engine num-
ber, the 2nd represents the operational cycle number. Features
3− 5 represent the operational settings, and columns 6− 26
represent the 21 sensor values. Engine performance can be
significantly affected by the three operating settings. More
information about these 21 sensors can be found in (Ordóñez,
Sánchez Lasheras, Roca-Pardiñas, & Juez, 2019). What is
more, each subset exhibits a different number of faults (see
Table 1).

Each of these subsets are further split into training set and
test set (see Table 1 for details). For each engine trajectory
within the training sets, the last data entry corresponds to the
end-of-life (EoL) of the engine, i.e., the moment the engine is
declared unhealthy or in failure status. The test sets contain
data up to some time before the failure and the aim here is to
predict the RUL for each of the test engines.

These multivariate time-series are from a different engine i.e.,
the data can be considered to be from a fleet of engines, of
the same type though, and each trajectory is assumed to be
the life-cycle of an engine. Every engine starts with different
degrees of initial wear and manufacturing variation which is
unknown to the user. This wear and variation is considered
normal, i.e., it is not considered a fault condition.

To compare the model performance on the test data, we need
some objective performance measures. In this study, we us
the Root Mean Square Error (RMSE) (Zheng et al., 2017;
Listou Ellefsen et al., 2019; X. Li, Ding, & Sun, 2018), defined
as: RMSE =

√
1/n

∑n
i=1 d

2
i , where di = ˆRULi −RULi,

ˆRULi is the estimated RUL and RULi is the ground truth
RUL for instance (engine) i, respectively.

5.2. Experimental Setup

The experiments5 were executed on 10 NVIDIA Tesla T4
GPUs, of 16GB, GDDR6 memory. Source code has been de-
veloped in Python V3.8.86. Experimental time was around
3-5 days (wall clock time), per dataset.

4https://ti.arc.nasa.gov/tech/dash/groups/pcoe/
5The source code of the experiments can be found at
https://github.com/MariosKef/RULe.

6We used tensorflow(2.5.0), scikit-learn(0.24.1), pandas(1.2.3),
numpy(1.19.5).

Table 1. FD001 and FD003 C-MAPSS dataset details

Data-Set FD001 FD003
Train trajectories 100 100
Test trajectories 100 100
Operating conditions 1 1
Fault conditions 1 2
Max train trajectory (cycles) 362 525
Min train trajectory (cycles) 128 145
Max test trajectory (cycles) 303 475
Min test trajectory (cycles) 31 38
Training samples 20631 24720

We began by randomly selecting 80% of units from the train-
ing set and using the remaining 20% as the validation set to
select the hyperparameters. We then randomly truncate the
trajectories of the validation set at five different locations such
that five different cases are obtained from each trajectory fol-
lowing (Malhotra et al., 2016). The truncation is needed to
replicate the dedicated test data, i.e., trajectories up to some
time before the failure. Note here, however, that we did not
use any information from the dedicated test set. Minimum
truncation is 5% of the total life, and maximum truncation is
96% of the total life. We continued with the pre-processing
of the training and validation sets. In more detail, we normal-
ized the data transforming the 3 operational settings and 21
sensor values to the range [−1, 1] (min-max normalization)
and discarded any of them that have zero variance. Constant
values do not provide any useful degradation information for
determining the RUL.

For the next steps of the pre-processing and data transforma-
tion (sliding window and RUL target construction), as well as
for the DNN training, we performed HPO to select their opti-
mal hyperparameter values that optimize simultaneously the
pointwise RMSE and the uncertainty, in order to address our
1st and 2nd contributions (see Section 4.5). The tuned hyper-
parameters and their respective ranges can be seen in Table 2.
Note that the search space contains not only integer variables
but also categorical ones. We executed the hyperparameter
optimization (see Section 4.5) with a budget of 300 function
evaluations (of which 100 are initial configurations sampled
with the latin hypercube sampling (LHS) method). Moreover,
the MIP-EGO configurator is set to evaluate 10 configurations
per step in parallel for FD001 and 9 configurations for dataset
FD0037.

Following the hyperparameter optimization phase, we are
presented with a two-dimensional set of points showing the
RMSE and UQ on the validation set. Each point corresponds
to a specific hyperparameter configuration. By considering
only the non-dominated solutions, we end up with (an ap-
proximation to) the Pareto front. The Pareto front is set of
points, which cannot be improved with respect to one objective
without making another objective worse (Emmerich & Deutz,

7This was a result of GPU availability. In any case, this did not affect the
validity of the computations.
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2018) (see blue points in Figure 2). The non-dominated set of
solutions delivers hyperparameter configurations which allow
us to view the trade-offs between the RMSE and the UQ. We
can subsequently pre-process and train on the entirety of the
training data (training and validation) using the configurations
corresponding to the points on the Pareto front and finally test
our method on the dedicated test set. During this stage, we
use Algorithm 1 by inputting as X the entire training set, V
the dedicated test set, and hp the configuration corresponding
to the selected point from the Pareto front.

Additionally, we used the Adam optimizer (Kingma & Ba,
2017) with a clip value of 0.5, R = 30 for the number of
MC Dropout passes, and trained for 100 epochs with early-
stopping (patience = 5). Finally, since we want our DNN to
learn the relationship between the input sequences and the
Weibull parameters, we used as a loss function the negative
log-likelihood of the 2-parameter Weibull distribution (Yang,
Ren, & Hu, 2019; Martinsson, 2016) to train the network.

5.2.1. Baseline

We also performed a baseline experiment to evaluate the bi-
objective hyperparameter approach. Our baseline differs from
the work we reviewed in Section 2, as none of the related
work took into account the joint optimization of the RMSE
and the uncertainty. Our baseline transforms the bi-objective
optimization problem into a single-objective by minimizing
the harmonic mean (HM) of the RMSE and uncertainty, as:

HM =
2

RMSE−1 + Uncertainty−1
(6)

For this task we used the single-objective MIP-EGO, which
uses the so-called Moment-Generating Function (MGF) based
infill-criterion (H. Wang, van Stein, Emmerich, & Back, 2017)
to select new candidate solutions. Moreover, the MIP-EGO
configurator is set to evaluate 10 configurations per step in
parallel for FD001 and FD003, for a maximum of 300 function
evaluations. We used this baseline in order to investigate the
benefits of using the bi-objective HPO compared to the single-
objective approach. The reason of taking the HM compared
to e.g., the arithmetic mean, is because it is less susceptible
to fluctuation of the observations, thus making it a more ideal
baseline for this first study.

5.3. Hypervolume Indicator

To compare the bi-objective HPO approach to the single-
objective approach based on the HM we decided to use the
hypervolume indicator (HVI). The HVI or S-metric (Zitzler,
Deb, & Thiele, 2000) is the hypervolume in the objective space
Rm that is dominated by the Pareto points bounded by a refer-
ence point yref ∈ Rm. The reason for choosing the HVI as a
measure of comparison is that it is intuitive, as dominating a
large part of the objective space is desirable. Furthermore, the

HVI is widely used in evaluating the performance of various
multi-objective optimization algorithms.

5.4. Results and Discussion

Having generated the Pareto front of the hyperparameter con-
figurations (see Section 5.2) we selected each configuration,
trained on the entirety of the dataset and made inferences about
both the training and (dedicated) test data.

Figures 2 and 3 show in blue circles the Pareto front of the
hyperparameter configurations performance on the validation
sets of datasets FD001 and FD003, respectively. The red tri-
angles depict the results on the dedicated test set (dominated
solutions might exist). The number next to each point rep-
resents the hyperparameter configuration giving rise to that
specific solution and are shown here to manifest how the solu-
tions’ topology changes when validated on the dedicated test
set.

In order to see if the neural network can learn from the data,
in Figures 4 and 5, we show the evolution, over time, of the
Weibull PDFs, of units 2 and 9 from the FD001 and FD003
training data, respectively. We do this by plotting the Weibull
PDFs per time-index of the units’ data. For this task, we used
the models which returned the lowest RMSE on the dedicated
test sets of FD001 and FD003 (points with green shade in
Figures 2 and 3). In the Figures, we can see that as the time-
index of the data increases (darker-red shades in the legend),
the PDFs variance decreases. Even though the distributions’
variance does not initially seem to be monotonically decreas-
ing, as we approach the end-of-life of the assets (darker-red
shades), we can see that the variance decreases, giving more
mass to the expected time-to-failure, and that the expected
time-to-failure approaches 0. This is a desirable property as it
indicates that the model can learn the correct failure dynamics
because the more time-steps have passed, the more data has
been collected, and consequently, there is more degradation
information, especially near the end-of-life of the asset.

In Figures 6 and 7 we show the evolution of the HVI per a max-
imum of 300 function evaluations between the bi-objective
and single-objective HPO. To be able to compare the HVI
of the single-objective approach to the bi-objective approach,
we calculated the HVI of the Pareto efficient solutions of the
RMSE and uncertainty as pre-images of the HM. Further-
more, we normalized both objectives to [0, 1] and used as
yref = (1.1, 1.1).

We can see from the two figures that the HVI of the single-
objective approach and the bi-objective approach plateau to
the same final HVI, albeit the bi-objective approach reaches
the plateau in fewer iterations, on FD001, whereas on FD003,
the single-objective approach reaches the plateau in slightly
fewer iterations than the bi-objective method. The HVI might
indicate that the harmonic mean manages to also identify a

9

Proceedings of the 7th European Conference of the Prognostics and Health Management Society 2022 - ISBN – 978-1-936263-36-3

Page 253



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

Table 2. Hyperparameters in the model development for the C-MAPSS dataset

Type Hyperparameter Search Space

Pre-processing

Sliding window size [20, 50]
Reflection point
(percentage of total life) [25, 75]

Initial RUL value [110, 130]
RUL degradation style [’linear’, ’nonlinear’]

DNN

Number of recurrent layers [1, 3]
Number of dense layers [1, 3]
Number of neurons per layer [10, 100]
Activations [’tanh’, ’sigmoid’]
Recurrent dropout rate [1e-5, 0.9]
Dropout rate [1e-5, 0.9]
Output activations [’softplus’, ’exp’]

Learning rate [1e-1, 1e-2, 1e-3,
1e-4, 1e-5, 2e-5]

Batch size [32,64,128]
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Figure 2. RMSE-UQ points corresponding to the hyperparam-
eter configurations on FD001 using the bi-objective approach.
Blue circles are the Pareto front as calculated on the validation
set. The red triangles are the points calculated on the dedicated
test set.

balance between the objectives and can be used as an alterna-
tive to the bi-objective HPO. The seemingly smaller number
of function evaluations of the single-objective approach in the
figures, compared to the bi-objective approach, is simply an
artifact of infeasible configurations that were discarded by the
single-objective MIP-EGO.

Examining Figures 2 and 8 we can see that the bi-objective
approach returned more hyperparameter configurations lying
on the Pareto front (7 blue points on Figure 2) compared to the
single-objective approach (6 blue points on Figure 8). Even
though the number is marginally larger, this might suggest
that the bi-objective approach might be more suitable for iden-
tifying a more diverse set of hyperparameters. Moreover, it
is interesting to see that the configurations returned from the
two HPO methods (blue points in Figures 2 and 8) present
similar values of uncertainty, even though more than 80% of
the configurations of the single-objective HPO exhibit uncer-
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Figure 3. RMSE-UQ points corresponding to the hyperparam-
eter configurations on FD003 using the bi-objective approach.
Blue circles are the Pareto front as calculated on the validation
set. The red triangles are the points calculated on the dedicated
test set.

tainty lower than 2, with that number being around 29% for
the bi-objective HPO. Regarding RMSE, however, we observe
the inverse trend. In the bi-objective method, more than 70%
of the returned configurations result in RMSE lower than 20,
with this number being 50% in the single objective approach.
In addition, we can see that the performance of the resulting
hyperparameters (blue points) on the dedicated test set (red
triangles) differs between the two figures. Firstly, in the bi-
objective approach, the performances on the dedicated test set
per hyperparameter configuration are clustered together when
compared to the single-objective approach in Figure 8 where
the points are spread out more, especially in the uncertainty
axis. Secondly, in the bi-objective method, the RMSE and
uncertainty values of the dedicated test set lie in the range
of [20.73, 29.82] and [4.88, 8.51], respectively. In the single-
objective method these ranges are [25.97, 37.51] and [0, 7.93],
respectively, for the RMSE and uncertainty. It is interesting
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Figure 4. Evolution of Weibull distributions of unit 2 from
FD001. Blue shades indicate the start of the unit’s trajectory
and red shades the end. Note that the x-axis is inverted for
clarity.
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Figure 5. Evolution of Weibull distributions of unit 9 from
FD003. Blue shades indicate the start of the unit’s trajectory
and red shades the end. Note that the x-axis is inverted for
clarity.

to see that the bi-objective HPO returned better scores for the
RMSE and more “concentrated scores” for the uncertainty
compared to the single-objective approach.

Regarding FD003 when examining Figures 3 and 9 we can see
that the bi-objective approach returned, again, a larger number
of hyperparameter configurations lying on the Pareto front
(9 blue points on Figure 3) compared to the single-objective
approach (7 blue points on Figure 9). Even though the number
is marginally larger, this suggests, like previously, that the
bi-objective approach might be more suitable for identifying
a more diverse set of hyperparameters. In the bi-objective
method, around 44% of the returned configurations result in
RMSE lower than 20, with this number being around 57%
in the single-objective approach. Nevertheless, we observe
that the hyperparameter configurations from the bi-objective
approach returned overall configurations with lower levels of
uncertainty compared to the single-objective method. Specifi-

cally, more than 66% of the configurations on the bi-objective
HPO result in uncertainty that is less than 2, with this number
being around 43% in the single-objective HPO. Regarding
the resulting hyperparameters’ performance (blue points) on
the dedicated test set (red triangles), there are no apparent
differences between the two methods’ topologies. Lastly, in
the bi-objective method, the RMSE and uncertainty values
of the dedicated test set lie in the range of [28.05, 68.01] and
[0, 10.96], respectively. In the single-objective method, these
ranges are [23.82, 50.76] and [0.14, 18.53], respectively, for
the RMSE and uncertainty. This shows that for this dataset,
the bi-objective method returned lower uncertainty values, but
the single-objective approach returned RMSE values that lie
in a more favorable range, thus indicating no clear winner.

From the previous results, we conclude that the usage of bi-
objective HPO can reveal interesting trade-offs between the
RMSE and uncertainty. Additionally, the results show that
even though the bi-objective approach can return more config-
urations on the Pareto front, the single-objective HPO is also
a good alternative for this task. The differences in the exper-
imental findings between the two datasets might be justified
by the the fact that FD003 has 2 simulated fault conditions
compared to FD001. In addition, we cannot rule out that the
maximum allowable number of function evaluations or train-
ing epochs might have affected the findings, as more epochs
might allow the network to learn more. More function eval-
uations of the HPO, on the other hand, will explore a larger
part of the hyperparameter configuration space which might
uncover better configurations.
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Figure 6. Evolution of the HVI of the bi-objective HPO and
the single-objective HPO on FD001.

5.5. Application

Next, we will demonstrate how the proposed method can allow
a more user-centric and interpretable approach to end-users
(3rd contribution). For this application, we used the models
which returned the lowest RMSE on the dedicated test sets of
FD001 and FD003. These points are indicated with a green
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Figure 7. Evolution of the HVI of the bi-objective HPO and
the single-objective HPO on FD003.
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Figure 8. RMSE-UQ points corresponding to the hyperpa-
rameter configurations on FD001 using the harmonic mean
approach. Blue circles are the Pareto front as calculated on
the validation set. The red triangles are the points calculated
on the dedicated test set.

marker on Figures 2 and 3. Specifically, since the trained
network outputs the α and β parameters per input sample, the
end-user can utilize this information to visualize, for example,
the survival curves corresponding to each input sample, as
well as other important information.

Survival curves are visualization methods from survival analy-
sis that show the probability of an event not happening up to
a point in time. In our case, this means that a failure has not
occurred up to a point it time t (hence the asset will survive
longer than t). A survival curve is defined as 1−CDF, where
CDF stands for the cumulative distribution function (in this
case, the Weibull’s CDF). For example in Figures 10 and 11
we plot the survival curves of test units 81, 4 from the FD001
dataset and test units 28, 3 from the FD003 dataset. For each
test unit, we plot all the survival curves (shown within shaded
areas for clarity) resulting from the multiple values of α and β
that the network outputs through the MC Dropout, as well as
the “median” curves that have as parameters the median val-
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Figure 9. RMSE-UQ points corresponding to the hyperpa-
rameter configurations on FD003 using the harmonic mean
approach. Blue circles are the Pareto front as calculated on
the validation set. The red triangles are the points calculated
on the dedicated test set.

ues of the αs and βs, for a reference. This allows two things:
the end-user can visually inspect the survival curves and, for
instance, select a probability-of-survival threshold, based on
one of them (e.g., the “median” curve), after which a unit
should be maintained. Additionally, based on how wide the
shaded areas are, the user can decide whether to employ the
recommendation or proceed to further actions, such as further
inspection by a field expert. For example, in Figure 11 the
“median” survival curve of test unit 28 tells us that the proba-
bility of not having a failure up to time 100 from the current
point in time (time 0) is about 80% and that this estimation is
“more confident” compared to that of test unit 3, as the shaded
area is less wide than the shaded area of test unit 3. Similarly,
in Figure 10 the estimation of the survival curves of test unit
81 is “more confident” compared to that of test unit 4.
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Figure 10. Survival curves of three units 81, 4 from FD001.
The shaded areas include all the survival curves from the
multiple passes through MC Dropout.
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Figure 11. Survival curves of three units 28, 3 from FD003.
The shaded areas include all the survival curves from the
multiple passes through MC Dropout.

6. CONCLUSIONS AND OUTLOOK

In this work, we dealt with the remaining useful life (RUL)
estimation using Bayesian deep learning (BDL) by taking into
consideration the uncertainty of the estimate together with
the predicted point estimate. We investigated the first, to our
knowledge, usage of bi-objective hyperparameter optimization
(HPO) that minimizes simultaneously the pointwise RMSE
and the uncertainty. In this direction, we optimized together
with the hyperparameters of the neural network (NN) the hy-
perparameters that govern the pre-processing steps, delivering
thus, an end-to-end, data-driven, pipeline for the (offline) RUL
estimation. We validated our approach on two subsets of the
famous C-MAPSS dataset (A. Saxena & K. Goebel, 2008).
We, further, demonstrated how survival curves can provide the
end-user with information regarding the RUL and its confi-
dence.

The experimental results indicate that, the bi-objective HPO
might be more suitable for identifying a more diverse set of hy-
perparameter configurations compared to the single-objective
HPO that aggregates the two objectives through the harmonic
mean (HM). However, both methods reach the same hyper-
volume indicator value of the Pareto front in, more or less,
the same number of function evaluations and the findings did
not indicate whether a method is more suitable for lower un-
certainty or lower RMSE scores. Regarding the performance
of the Pareto front configurations, when validated on the ded-
icated test sets, there was no clear winner between the two
methods, although in the first examined case the RMSE values
are better and the overall performance scores are clustered to-
gether. Overall, the results show that, for the examined cases,
the bi-objective method is able to suggest more hyperparame-
ter configurations and that the single-objective alternative is
able to compete in terms of scores. This suggests that for a
certain class of problems single-objective HPO methods are
sufficient, allowing practitioners an ample selection of efficient

single-objective HPO methods.

Concerning the limitations of our work, due to the high com-
putational costs of running the experiments multiple times
no statistical significance tests are performed. Despite that
fact, our methodology is experimentally sound and suggests
an alternative approach for HPO in PHM. Furthermore, as
indicated, we are aware that there is a current debate as to the
validity of Monte Carlo Dropout being Bayesian (Osband et
al., 2018). This could, in turn, make the corresponding pre-
dictive models problematic in support of reliable uncertainty
quantification. As this work was mainly devoted to the usage
of bi-objective hyperparameter optimization and user-centric
approach, we have decided to address this highly relevant
but challenging issue in future work. Future work should, in
general, emphasize research on computationally efficient and
accurate uncertainty quantification of DL models, as this will
further open the road of AI applied in real-world applications.

Finally, we would be very interested in extending the bi-
objective HPO to a many-objective context to add more ob-
jectives, such as run-time, to find a compromise between ac-
curacy, uncertainty, and training time. The authors hope that
multi-objective hyperparameter optimization methods become
a new alternative, as it is not the case that a single objective
method can always capture the conflicting interests that exist
in real-world problems.
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