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ABSTRACT

The feature-based methods for bearing fault diagnosis in
prognostics and health management have been achieved sat-
isfactory performances because of their robustness to noise
and reduced dimension by pre-defined features. However,
widely employed time- and frequency-domain features are
insufficient to recognize the global pattern that indicates the
structure of a time-series instance. In this paper, we propose
two novel graph-based features which reflect the connection
strength and degree of time series, respectively. First, we con-
struct a graph of which an edge is defined as the Euclidean
distance between each pair of time steps to measure the
strengths of connections between the nodes. The other graph
is constructed by the visibility algorithm, which converts a
time series into a complex network to reflect the degrees of
connections. Then, we calculate the Frobenius norms of the
adjacency matrices of both graphs and use them as features
for bearing fault diagnosis. To verify the proposed features,
we performed several experiments with both synthetic and
real datasets. From the synthetic datasets, it is observed that
the changes in amplitudes and frequencies are detected by the
features for the connection strength and degree, respectively.
In addition, the proposed features also well-separate the dis-
tributions of each bearing state, including normal and several
fault types, and show significant performance improvement
as applied to the fault diagnosis task.

1. INTRODUCTION

As the complexity of equipment increases with industry de-
velopment, the early detection of faults becomes important
(Wei & Soffker, 2020). Feature-based methods for bearing
fault diagnosis in prognostics and health management (PHM)
have been achieved effective performances because of their
robustness to noise and reduced dimension by pre-defined

Sangho Lee et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

features (Ma, Zheng, Li, & Cottrell, 2019). However, tradi-
tional features require a lot of domain knowledge and are
specialized in time-domain and frequency-domain. Although
the traditional features can reflect the local relationship of the
time series to some extent, it is difficult to reflect the global
pattern of the time series (Ferreira & Zhao, 2016). A graph
is a powerful mechanism to recognize the global pattern of a
time series by identifying the relationship between data points
or groups (Ferreira & Zhao, 2016; Aminikhanghahi & Cook,
2017), so graph-based methods have been introduced to re-
flect structural information.

T. Li et al. (2020) converted frequency information of time-
series signal into an affinity graph and performed the gear-
box fault diagnosis by applying a modified graph convolu-
tional network. Zhou et al. (2021) introduced a framework
for constructing graphs from time-series signals and using it
to rotating machinery fault diagnosis. C. Li et al. (2020) con-
structed a graph by applying a horizontal visibility algorithm
(Luque, Lacasa, Ballesteros, & Luque, 2009) to a time series
and performed bearing fault diagnosis using a graph neural
network. Wang et al. (2019) constructed a graph by deriving
a frequency spectrum based on periodogram estimation for
normal data, and utilized it to detect bearing fault using statis-
tical analysis. However, the previous studies require sufficient
training data and domain knowledge to diagnose the faults ac-
curately. If they are insufficient, it is difficult to diagnose the
fault correctly.

Recently, to solve these limitations, some research based on
spectral graph theory has emerged. The spectral graph the-
ory is the study to recognize the properties of a graph, such
as characteristic polynomial, eigenvalues, and eigenvectors of
adjacency matrices associated with the graph. These studies
aim to detect faults under the assumption that there are struc-
ture changes of data between the normal and fault states of
machinery. The eigenvalues and eigenvectors are used to de-
tect two aspects of structural changes in the graph. First, a
community structure change, namely connection strength, oc-
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curs when strongly connected nodes are weakened or weakly
connected nodes become strongly connected. On the other
hand, a change in community activity, namely connection
degree, happens when the number of connections between
nodes increases or decreases. We can identify the changes
in connection strength and degree by monitoring eigenvalues
and eigenvectors, respectively (Wang, Lu, Liu, & Yan, 2018;
Kannan, Vempala, & Vetta, 2004; Sarkar & Boyer, 1998).
With this approach, the methods based on spectral graph the-
ory show good performance in terms of early fault detection
and generalization with insufficient data owing to the cycle-
to-cycle strategy.

Sun et al. (2020) used the spectral graph theory as pre-
processing for feature extraction. Specifically, they intro-
duced a method that extracts fault features using maximum
correlated kurtosis deconvolution. To improve the perfor-
mance of fault feature extraction, they firstly constructed an
adjacency matrix by calculating Euclidean distance between
time steps and used graph similarity based on eigendecompo-
sition to identify fault states in advance. Lu et al. (2018) con-
structed adjacency matrices for time-series instances in a nor-
mal state in the same way as in Sun et al. (2020), and derived
representative eigenvector and eigenvalue using eigendecom-
position for the averaged matrix. Then, with the fixed derived
eigenvector, they used a martingale-test based on the Frobe-
nius norm of the difference of non-diagonal component be-
tween the derived eigenvalue matrix and that of a time-series
instance to be tested. However, these methods only reflect the
connection strength without consideration the presence or ab-
sence of connection degree between time steps and have high
complexity, O(n?), where n denotes the number of time steps
in a time series, due to the use eigendecomposition of the ad-
jacency matrix. Thus, it is difficult to use in practice. In ad-
dition, when calculating the eigenvector for the average of
adjacency matrices, there is a risk of information loss on the
raw time series.

Therefore, we propose simple graph-based features that re-
lieve the limitations above. Euclidean distance and visibil-
ity algorithm (Lacasa, Luque, Ballesteros, Luque, & Nuno,
2008) are applied to time series to construct two adjacency
matrices that reflect the connection strength and degree of a
time-series instance, respectively, and the norms of these ma-
trices are used as graph-based features. These features have
the following advantages:

* It helps to achieve good performance in terms of early
fault detection and generalization even with insufficient
data owing to the cycle-to-cycle strategy of the spectral
graph theory.

* Information loss that may occur from the average of adja-
cency matrices (Lu et al., 2018) is eliminated by analyz-
ing the features of each time-series instance separately.

* Detection delay, which is inevitable for the cycle-to-

cycle strategy, is minimized by reducing the complexity
of feature calculation.

* By reflecting not only the connection strength, but also
the degree of connection between time steps, the struc-
tural information of the time series is sufficiently recog-
nized.

2. PRELIMINARIES

In this section, we first explain traditional time- and
frequency-domain features used to compare with the pro-
posed features. Then, we briefly explain a visibility algorithm
used to derive the connection degree of time series. Finally,
Wasserstein and energy distances used to calculate the dis-
tance between class distributions are explained.

2.1. Time- and Frequency-Domain Features

Among the traditional time- and frequency-domain features
presented in Jeon et al. (2015) and Jung et al. (2017), we
used all (eight) time-domain features and chose three pop-
ular frequency-domain features that are the basis for calcu-
lating other frequency-domain features. The features used in
this paper are presented in Table 1.

Table 1. The traditional time- and frequency-domain features
used for fault diagnosis (Jeon et al., 2015; Jung et al., 2017).
N is the number of time-series instances, ¢,, is a time-series
instance, ¢ is the sample mean of all time-series instances,
and o denotes the standard deviation. f and S(-) denote the
frequency and power spectrum function, respectively.

Domain Feature Description
Kurtosis ij:l (1‘/0;404
Skewness ij:l (1‘/0;3’53
Absolute Mean Zgzl ‘3{;‘
i Maximum maz(|t,|)
Time -
N |t
RMS VoL
Crest factor Mas
RMS
Shape factor Abeolute Mean
Impulse factor Saaximun
JIxs(f)df
FC [ S(Hdf
Frequency RMSF W
J(f=FC)2xS(f)df
RVE T Tsthar

The time-domain features are obtained by using the raw vi-
bration signal itself. First, there are two data statistics-related
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features, kurtosis, and skewness. The kurtosis is a feature of
the sharpness of the data distribution and is used to mea-
sure how intensively the instances are centered. The skew-
ness represents the degree of asymmetry of data distribu-
tion. In addition, there are three commonly included kinetic
energy-related features, maximum, absolute mean, and root
mean square (RMS). The maximum is the maximum value of
the signal, the absolute mean is the average of the absolute
magnitude of the signal, and the RMS denotes the most suit-
able feature to quantify the magnitude of the signal. Finally,
three sinusoidal wave shape-related features calculated using
the above time-domain features are also included in time-
domain features. On the other hand, we used three fundamen-
tal frequency-domain features for comparison with the pro-
posed features. Frequency center (FC) and root mean square
frequency (RMSF) are the scales indicating the change in the
position of the fundamental frequency, and root variance fre-
quency (RVF) indicates the degree of cohesion of the power
spectrum.

2.2. Visibility Algorithm

Figure 1. Overview of the visibility algorithm to obtain VG

Visibility algorithm converts a time series into a complex net-
work (Lacasa et al., 2008). Figure 1 shows the overview of
constructing visibility graph (VG) using the visibility algo-
rithm. Several studies using VGs have proven that VGs help
to effectively analyze time series and extract meaningful in-
formation (Y. Gao, Yu, & Wang, 2020; Z. Gao, Small, &
Kurths, 2017). Let T = {¢1,ta,- -+ ,t,} be the set of time
steps in a time series, and Y = {y1,y2, - , yn } be the set of
data values corresponding to time steps. Two arbitrary data
points (t4,y,) and (¢, yp) are connected in a transformed
graph, VG, if Eq. (1) is satisfied for all (¢.,y.) placed be-
tween them.

ty — tc

tbfta7(a<c<b)' 1

yc<yb+(ya_yb)x

The resulting VG has the following properties (Lacasa et al.,
2008):

* Connected: each adjacent node pair is connected
* Undirected: there is no directionality in the connection

* Invariant under affine transformations: the visibility cri-
terion is invariant to affine transformations

In addition, we can recognize the time-series structure by an-
alyzing the degree distribution of the resulting VG. For exam-
ple, a periodic time series is converted into a regular graph,
and a random time series are converted into an exponential
random graph.

2.3. Distance Metrics for Distributions

In general, different classes (states) constitute separate man-
ifolds. A feature that can well-distinguish each class distri-
bution is a good feature that can provide useful information
to a classifier (Bengio, Courville, & Vincent, 2013). To ver-
ify the usefulness of the proposed graph-based features, we
measure the distances between class distributions derived by
each feature. At this time, we use Wasserstein distance and
energy distance to measure the distance between distributions
(Arjovsky, Chintala, & Bottou, 2017; Shen, Qu, Zhang, & Yu,
2018; Bellemare et al., 2017).

The Wasserstein distance is a metric to measure the distance
between two distributions and is defined as follows:

W(Px,Py) = inf

Ez)e — , 2
~EI(Px ,Py) (@) Wllx yHl @

where II(Px, Py ) denotes the set of all possible joint distri-
butions of which the marginal distributions are Px and Py-.
The Wasserstein distance between Px and Py is defined as
the minimum expected value of ||z — y||; (Arjovsky et al.,
2017).

The other metric, energy distance, is also used to measure
the distance between two distributions. When two objects are
located in the same positions in the gravitational space, the
potential energy between the two objects is zero, and the po-
tential energy increases as the distance between the two ob-
jects increases. The energy distance extends this concept to
measure the distance between two distributions. When X and
Y are independent random vectors with cumulative distribu-
tion functions F' and G, respectively, the square of the energy
distance between F' and G is defined as Eq. (3) (Rizzo &
Székely, 2016).

D*(F,G) = 2E|X - Y| -E| X - X"|-E[Y - Y"], 3)

where | - || is Euclidean norm for each component, X’ and
Y’ are random variables identical to X and Y, respectively,
which are independent and identically distributed. The energy
distance between F’ and G is calculated by the square root of
D3(F,G).
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3. PROPOSED FEATURES

In this paper, we propose two novel graph-based features,
variability and connectivity, for two different aspects of time-
series structure. The procedures of calculating two graph-
based features are summarized in Algorithm 1.

Algorithm 1 Novel graph-based features

Input: A time-series instance T' = {¢t1,- - ,t,}
Output: v € R: variability, k € R: connectivity
An Euclidean-based adjacency matrix G € R"*"
A VG-based adjacency matrix H € R™*"™
fori,j=1,--- ,ndo
Euclidean distance d; ; < ||t; — t;]|
GiJ' — di,j
Assign visibility h; ; by visibility criterion (Eq. (1)).
H,’J' < h/j,,j
end for
v ||Gllr, & || H]|r

First, we obtain two adjacency matrices representing two dif-
ferent aspects, strength and degree of connection, of the time-
series structural information. Specifically, given a time-series
instance T' = {t1,- - , t, }, we derive an Euclidean distance-
based adjacency matrix G corresponding to the time-series
instance 7', which is filled with the Euclidean distance values
between all data point pairs (||t; —¢;||). Thus, each element of
G can represent the strength of the connection between data
points. In addition, a VG-based adjacency matrix H corre-
sponding to 7" is obtained. We apply the visibility criterion to
each data point to construct H, so each element of H indi-
cates whether ¢; and ¢; are connected.

Then, we introduce a formal definition of a graph-based fea-
ture, variability, that represents the strength of time-series
connection.

Definition 1 (Variability) Given an Euclidean distance-
based adjacency matrix G corresponding to T, we define
variability v of T as

v=IGllF, @
where || - || denotes the Frobenius norm.

The variability feature, which is one aspect of the structural
information of the time-series instance 7', quantifies the over-
all strength that the data points in the time-series instance are
connected. The Euclidean distance d; ;, which is an element
in the i-th row and j-th column of GG, implies the connection
strength between two data points ¢; and ¢;. Finally, the graph-
based feature v reflecting the overall connection strength of
the time-series instance is extracted by calculating the Frobe-
nius norm of G. The large variability value means that the
Euclidean distances between all data points in the time-series
instance are large; thus, we can conjecture that the time series
has a large fluctuation.

On the other hand, we define a feature that reflects the degree
of time-series connection as follows:

Definition 2 (Connectivity) Given a VG-based adjacency
matrix H corresponding to T, we define connectivity k of T
as

k= HH ‘ |F ) &)

where || - || 7 is the Frobenius norm.

The connectivity feature that represents another aspect of the
time-series structural information identifies how many con-
nections that satisfy the visibility criterion exists between the
data points in the time-series instance 7'. An element in the
i-th row and j-th column of H is assigned 1 if data points
t; and t; have visibility. Thus, it can represent the degree of
connection for the time-series instance. Similar to deriving
the variability feature v, we reflect the overall connection de-
gree of T' by calculating the Frobenius norm for H. The vari-
ation of connectivity value means that degree of connection
is changed, so it means that the structure of the time series is
changed.

The time complexity of the calculation of variability is O(n?)
because the Euclidean distances between all data points in a
time-series instance should be computed, and that of the con-
nectivity is also O(n?) due to complexity of visibility algo-
rithm. Therefore, we can consider the global pattern of the
time series, which is difficult to be recognized by the tradi-
tional time- and frequency-domain features, using the pro-
posed graph-based features with scalable complexities.

4. EXPERIMENTS

We performed three experiments to analyze the properties of
the two proposed features, variability and connectivity, with a
synthetic dataset and to verify their usefulness and applicabil-
ity for bearing fault diagnosis with the real-world dataset. In
each experiment, the proposed features were compared with
the traditional time- and frequency-domain features.

4.1. Data Description

First, we constructed three synthetic time series to analyze the
properties of the proposed features. Since amplitude and fre-
quency are important properties in the vibration signal (Wang
et al., 2018), three synthetic time series were constructed
in which amplitude and frequency changes exist. Each data
point ¢; of each synthetic time series 7' is composed as fol-

lows:
o sin(2mi),
"5 x sin(2mi),

b {sin(Qm'),

1 < < 2000,
2000 < i < 3000.

1 < i < 2000,

sin(4mi), 2000 < i < 3000.
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Figure 2. The values of each proposed feature corresponding to each cycle when (a) only amplitude change, (b) only frequency
change, and (c) amplitude and frequency change. The x-axis represents the value of each feature, and the y-axis is the cycle.

1 <4 <2000,

) sin(2mi),
2000 < 7 < 3000.

T 5% sin(4mi),

The first and second synthetic time series reflected the only
amplitude and frequency changes, respectively. In the last
synthetic time series, the amplitude and frequency changes
were reflected simultaneously. For the experiment in Section
4.2, each synthetic time series was divided into 30 by setting
the sequence length of a time-series instance to 100.

Next, to verify the usefulness and applicability of the pro-
posed features for bearing fault diagnosis, we used the Case
Western Reserve University(CWRU) bearing dataset (Smith
& Randall, 2015), widely used as a benchmark dataset for
various studies to identify bearing states (Chen, Mauricio, Li,
& Gryllias, 2020; X. Li, Zhang, & Ding, 2019; Zhang et al.,
2020; Afrasiabi, Afrasiabi, Parang, & Mohammadi, 2019).
The CWRU bearing dataset contains vibration signals repre-
senting the operation states from bearings. The vibration sig-
nals were collected at 12 or 48 kHz for bearings under four
types of motor loads (0, 1, 2, or 3 hp). The corresponding ro-
tating speed for each motor load is 1797, 1772, 1750, or 1730
rpm. In addition, there are four bearing states: 1) normal, 2)
inner race, 3) outer race, and 4) ball faults. Each fault state
has various diameters (0.007, 0.014, or 0.021 inches). For the
experiments in Sections 4.3 and 4.4, we only used the vibra-
tion signals collected from the drive end at 48 kHz and used
faults with 0.007 fault diameter. Moreover, the correspond-
ing sequence length for each motor load was calculated to
approximate one rotation cycle dividing sampling frequency
by the rotating speed; hence, we set each sequence length to
1610, 1630, 1650, or 1670.

4.2. Results of Property Analysis

We performed change detection using the synthetic dataset
to analyze the properties of the proposed features. Figure 2
shows the changes of variability and connectivity values over-
time for three synthetic time series.

The proposed features, variability and connectivity, can de-
tect amplitude and frequency changes, respectively. For the
synthetic time series with only amplitude change, the value
of the variability feature changes at the time step where the
amplitude changes, whereas the value of the connectivity is
maintained. Conversely, in the synthetic time series with only
frequency change, only the value of the connectivity feature
changes according to the change in frequency. When both am-
plitude and frequency change, we can observe that both the
values of variability and connectivity change at the time of
change.

4.3. Results of Usefulness Verification

A feature that can provide useful information should have a
well-distinguished distribution for each class (Bengio et al.,
2013). Therefore, for the CWRU dataset, we calculated the
distance between the class distributions formed by each fea-
ture. At this time, min-max scaling was applied to each fea-
ture to remove the influence of the scales of features. We used
the Wasserstein and energy distances as the distance metrics.
In this experiment, we used data with O hp of motor load. The
results of the Wasserstein and energy distances are shown in
Table 2 and Table 3, respectively.

The variability has a property that can detect amplitude
change of the vibration signal. In general, there is a signifi-
cant difference in amplitude between fault types; hence, we
can observe that the variability had the largest distance be-
tween fault class distributions (BI, BO, and 10). In addition,
the max and RMS, which belong to the time-domain features
that can reflect amplitude information, had larger distances
between fault class distributions than that of the frequency-
domain features. Conversely, there is a considerable differ-
ence in frequency between normal and fault classes (NB, NI,
and NO). Thus, the connectivity, which can detect the fre-
quency change of vibration signal, had a third largest dis-
tance between normal and fault class distributions. In this
case, most frequency-domain features also had larger dis-
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Table 2. Wasserstein distance between the class distributions derived by each feature. The three largest average distances are
highlighted in boldface. (N, normal state; B, ball fault; I, inner race fault; O, outer race fault; F, fault states; AVG., average)

Domain | Feature [ NB [ NI | NO [ NFAVG. | BI [ BO [ I0 | FF AVG.
Kurtosis 0.61 | 0.05 | 0.76 0.47 0.56 | 0.15 | 0.71 0.47
Skewness 0.13 | 0.07 | 0.28 0.16 0.08 | 0.16 | 0.23 0.16
Abs. Mean 0.43 | 0.07 | 0.88 0.46 0.35 | 0.45 | 0.80 0.54
Time Max 0.41 | 0.04 | 0.86 0.44 0.36 | 0.46 | 0.82 0.55
RMS 0.38 | 0.06 | 0.90 0.45 0.32 | 0.51 | 0.84 0.56
Crest factor 0.51 | 0.07 | 0.42 0.33 0.44 | 0.09 | 0.35 0.30
Shape factor | 0.00 | 0.00 | 0.24 0.08 0.00 | 0.24 | 0.24 0.16
Impulse factor | 0.01 | 0.00 | 0.27 0.09 0.01 | 0.26 | 0.27 0.18
FC 0.00 | 0.00 | 0.00 0.00 0.00 | 0.00 | 0.00 0.00
Frequency RMSF 0.71 | 0.82 | 0.61 0.71 0.11 | 0.10 | 0.21 0.14
RVF 0.46 | 0.70 | 0.90 0.69 0.24 | 0.44 | 0.20 0.29
Graph Variability 0.38 | 0.06 | 0.90 0.44 0.32 | 0.52 | 0.84 0.56
Connectivity | 0.53 | 0.53 | 0.83 0.63 0.01 | 0.30 | 0.30 0.20

Table 3. Energy distance between the distributions of each state derived by each feature. The three largest average distances are
highlighted in boldface. (N, normal state; B, ball fault; I, inner race fault; O, outer race fault; F, fault states; AVG., average)

Domain \ Feature \ NB \ NI \ NO \ NF AVG. \ BI \ BO \ 10 \ FF AVG.
Kurtosis 1.05 | 0.18 | 1.17 0.80 0.99 | 035 | 1.12 0.82
Skewness 0.22 | 0.14 | 0.55 0.30 0.15 | 0.35 | 0.47 0.32
Abs. Mean 091 | 0.37 | 1.30 0.86 0.82 | 091 | 1.24 0.99
Time Max 0.88 | 0.27 | 1.29 0.81 0.82 | 0.90 | 1.25 0.99
RMS 0.87 | 0.33 | 1.32 0.84 0.79 | 097 | 1.27 1.01
Crest factor | 0.89 | 0.19 | 0.83 0.64 0.82 | 0.22 | 0.75 0.60
Shape factor | 0.05 | 0.05 | 0.59 0.23 0.08 | 0.59 | 0.60 0.42
Impulse factor | 0.11 | 0.03 | 0.63 0.25 0.12 | 0.62 | 0.63 0.46
FC 0.00 | 0.00 | 0.00 0.00 0.00 | 0.00 | 0.00 0.00
Frequency RMSF 1.14 | 1.23 | 1.06 1.14 0.33 | 0.38 | 0.60 0.44
RVF 092 | 1.15 | 1.32 1.13 0.65 | 0.92 | 0.60 0.72
Graph Variability 0.86 | 0.32 | 1.32 0.83 0.79 | 098 | 1.27 1.01
Connectivity | 0.53 | 0.53 | 0.83 1.08 0.01 | 0.30 | 0.30 0.48

Table 4. Accuracy (%) of the model trained various feature combinations of the time-, frequency-domain, and graph-based
features. In each motor load, the best performance is highlighted in boldface.

Motor Load Feature Combination
(hp) Time | Frequency | Graph | Time & Frequency | Time & Graph | Frequency & Graph | All
0 9611 ] 21.67 99.72 96.67 99.72 99.72 99.44
1 97.78 21.67 100.00 98.06 100.00 100.00 100.00
2 97.22 25.00 97.22 93.89 97.22 97.22 97.22
3 97.50 25.83 100.00 97.78 100.00 100.00 100.00

tances than the time-domain features. In summary, similar to ing to their properties demonstrated in Section 4.2.
the time- and frequency-domain features, the variability and

connectivity can represent amplitude and frequency informa- 4.4. Results of Applicability Verification

tion of the vibration signal using two aspects of time-series
structure, respectively. Moreover, we confirmed that the pro-
posed features well-distinguished class distributions accord-

To verify that the proposed graph-based features, variability
and connectivity, are adequate for bearing fault diagnosis, we
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performed a classification task and compared the results of
the model trained with various feature combinations, includ-
ing the time-, frequency-domain, and graph-based proposed
features. We used logistic regression as a classifier because it
does not require additional parameter tuning. Table 4 shows
the accuracy of each model, which was derived with a one-
vs-rest strategy. In this experiment, we constructed a dataset
with 30 instances randomly sampled per class, and 70% of
the dataset was used to train the model and the rest to test
model performance. To reduce the effect of randomness, we
repeated the procedure ten times and reported the averaged
results across all runs.

Although the number of the graph-based features is smaller
than that of the other domains, the trained model only with the
proposed features showed better performance than the trained
model only with the traditional features, regardless of motor
loads. Furthermore, when the traditional and proposed fea-
tures were used together to train the model, the performance
was improved compared to training the model only with the
traditional features. It can be explained that the proposed fea-
tures, variability and connectivity, play an important role in
bearing fault diagnosis by reflecting structural information
of time series, amplitude and frequency, while the traditional
features only provide redundant information.

5. CONCLUSION

We propose novel graph-based features, variability and con-
nectivity, for reflecting structural information of time se-
ries. We construct two graphs using the Euclidean distance
and visibility algorithm and obtain the proposed features
by calculating Frobenius norms of their adjacency matrices.
Through several experiments on synthetic and real bearing
datasets, we demonstrated that the variability and connectiv-
ity could reflect amplitude and frequency information, respec-
tively, with reasonable complexities and well-separate the
distributions of bearing states. The model trained only with
the proposed features achieved significant performance in the
bearing fault diagnosis task. Moreover, the proposed features
helped improve the model performance trained with the other
domain features. Therefore, the variability and connectivity
features are useful features to classify bearing states in fault
diagnosis.
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