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ABSTRACT

For the data challenge of the 2022 European PHM confer-
ence, data from a production line of electric circuit boards is
provided to assess the quality of the produced components.
The solution presented in this paper was elaborated to ful-
fill the data challenge objectives of predicting defects found
in an automatic inspection at the end of the production line,
predicting the result of a following human inspection and pre-
dicting the result of the repair of the defect components. Ma-
chine learning methods are used to accomplish the different
prediction tasks. In order to build a reliable machine learn-
ing model, the steps of data preparation, feature engineering
and model selection are performed. Finally, different models
are chosen and implemented for the different sub-tasks. The
prediction of defects in the automatic inspection is modeled
with a multi-layer perceptron neural network, the prediction
of human inspection is modeled using a random forest algo-
rithm. For the prediction of human repair, a decision tree is
implemented.

1. INTRODUCTION

The fourth industrial revolution leads to increasingly auto-
mated production and manufacturing. Production machines
that are fully connected and fully equipped with sensors gen-

erate huge amounts of data enabling new data-driven approaches

to assess the quality of the produced parts. Machine learning
algorithms are used in an increasing number of applications
in production, even if their use is often part of research and
not yet widely spread (Mayr et al., 2019; Liukkonen, Havia,
& Hiltunen, 2012).

Within the production environment, machine learning pro-
vides the opportunity to process the large amounts of data
to improve quality, lower costs or increase the flexibility of
the process and can contribute to sustainable manufacturing
(Mayr et al., 2019; Cioffi, Travaglioni, Piscitelli, Petrillo, &
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De Felice, 2020). In recent years, deep learning approaches
for smart manufacturing have been increasingly studied (Wang,
Ma, Zhang, Gao, & Wu, 2018). In contrast to engineering
features with expert knowledge of the manufacturing pro-
cess, deep learning provides an end-to-end machine learn-
ing approach, but oftentimes lacks interpretability of the re-
sults (Wang et al., 2018).

Within the framework of data challenges in the field of Prog-
nostics and Health Management, several objectives related to
various industrial use cases have already been addressed. In
this context, the suitability of different algorithms could be
demonstrated and compared. As a result, it has been possible
to gather new knowledge about problem-specific approaches
and insights into general solution strategies (Huang, Di, Jin,
& Lee, 2017). Data sets from the manufacturing industry
are currently scarce, but very useful for investigating data-
based improvements in maintenance and quality control pro-
cesses (Jourdan, Longard, Biegel, & Metternich, 2021).

Predictive quality is the main focus of the data challenge for
the 7th European Conference of the Prognostics and Health
Management Society 2022 that is held in cooperation with Bi-
tron Spa. The participants of the challenge receive data from a
production line manufacturing electric circuit boards. In the
production process, the surface mount technology (SMT) is
used, which comprises of several manufacturing and inspec-
tion steps. The use of advanced data-driven algorithms for
quality management in mass soldering processes dates back
to the 1990s (Liukkonen et al., 2012). Since then the technol-
ogy for the production of electronic components as well as
the capabilities of machine learning algorithms evolved. Im-
ages of optical inspections of the circuit boards solder prints
can be processed with machine vision algorithms to detect de-
fects directly (Zakaria, Amir, Yaakob, & Nazemi, 2020). In-
directly supervised learning approaches enhance the outcome
of current automatic optical inspections and measured solder
joint dimensions. This can be used in the production line to
support the operator in assessing defect calls from the auto-
matic optical inspection and identify false positive classifica-
tions (Jabbar et al., 2019). Specifically, Jabbar et al. compared
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Figure 1. PCB production line (PHM Society, 2022)

tree-based machine learning algorithms for this use case and
achieved a good performance (Jabbar et al., 2019). Super-
vised deep learning has also been applied to real production
environment data to enhance the outcome of the optical in-
spections and reduce labor cost (Chang, Wei, Chen, & Hsieh,
2018).

1.1. Use Case

The production line for the manufacturing of electric circuit
boards is depicted in Figure 1. In a first production step,
a printing machine places the solder paste on the initially
bare printed circuit boards (PCB). Subsequently, the elec-
tronic components are mounted on the PCB in the surface
mount device (SMD) placement and the soldering process is
finished in the reflow oven. Two different datasets are re-
trieved from the production process. The first one stems from
a solder paste inspection (SPI) conducted after the placement
of the solder paste and before mounting the electronic com-
ponents. In this inspection, the quality of the solder paste
placing in terms of, among others, volume, height and posi-
tion is measured for each pin of the PCB. The second set of
data is recorded in an automatic optical inspection (AOI) that
follows after the soldering. During this inspection, defects on
the produced PCBs shall be automatically detected. In case
of defect detection, an operator visually inspects the PCB and
confirms or rejects the defect found by the AOI Only in case
of a confirmation by the operator, a second operator investi-
gates whether the defect can be repaired.

1.2. Objectives

The objective of the data challenge is the prediction of the au-
tomatic optical inspection for each component and, in case of
a defect, the prediction of the assessment of the two operators.
Consequently, the challenge is divided into three sub-tasks:

1. Prediction of components with a detected defect in AOI
based on the SPI data. For each detected defect, a so-
called AOILabel with information on the defect type is
assigned to the component. Prediction of the defect type

is not required, the only objective is to predict whether
there is an AOILabel for a component. The models are
evaluated using the F1-score of the defect class.

2. Prediction of human inspection. In case of an AOI de-
fect, predict whether the defect is confirmed or rejected
by the human operator, that means predict the binary Op-
eratorLabel. For this task, the SPI data and the assigned
AOILabels can be used as input data. The F1-score of the
class of confirmed defects is used for model evaluation.

3. Prediction of Human Repair. For confirmed defects pre-
dict whether the component is false scrap or not possible
to repair, that means predict the RepairLabel. As for the
prediction of human inspection, both the SPI data and
the AOILabels can be used as input data. The models
are evaluated using the macro-averaged F1-score of the
RepairLabel.

2. APPROACH

In order to solve the given task, the cross-industry standard
process for data mining CRISP-DM is followed (Chapman,
P. et al., 2000). After having understood the use case defined
in the section above, the next important step is to examine the
given data. The SPI data set contains information on every
pin of the printed circuit boards. Apart from the necessary
information to identify the pin, it contains geometry data of
the solder paste that is placed for soldering of the pins. This
includes the measured volume, area and height of the paste.
For volume and area, the data contains also percentages in
relation to the target values. Furthermore, it also includes in-
formation on the shape and the target sizes of the solder paste
deposit, the target position and the percentage offset in x- and
y- direction. At last, there is a SPI Result indicating several
warnings if one of the geometric values of a pin exceeds or
falls below certain thresholds.

All the data from the SPI can be used as features for the tasks
to solve. However, not all of the features are independent of
each other. For example, the volume of the solder paste is the
simple product of area and height. These relations are con-
sidered later when selecting features for the machine learning
applications. Additionally, we define the percentage height
in relation to the target height of the solder paste deposit as a
new useful feature. It is deducted from the available geometry
information as shown in Eq. 1.

, _ Height(um)V olume(%) Area(um?)
Height(%) = Volume(um?)Area(%) M

The AOI data set consists of all defects that are found in the
automatic inspection. For every defect, the affected compo-
nent is indicated and the AOILabel with the type of defect,
OperatorLabel and RepairLabel are given. Moreover, the af-
fected pin of the component is given if available. This means
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that some of the defects can be assigned to a specific pin while
others can only be assigned on component level. It is also
possible that there is more than one defect for a pin or a com-
ponent. As a consequence, one step for the data preparation
must be the assignment between the SPI data that are avail-
able for each pin and the AOI data that might not be assigned
to a specific pin. With the three sub-tasks being independent
of each other, the way of preparing the data and modeling
is different and specific for each task. In the following, the
chosen approach for each of the sub-tasks will be explained.

For the purpose of validation, the available data are divided
into a training and a hold-out validation set. This allows the
testing of models on data not used for training and the op-
timization of hyperparameters. To split the data, 25% of the
total PCB panels are randomly chosen and form the validation
set while the other 75% form the training set. After valida-
tion, the generated models are trained again on the whole data
set to use all available data for learning.

2.1. Prediction of AOI defects

A first, simple idea for the prediction of defect components is
that high deviations from the target values of the solder paste
deposit lead to a defect warning in the AOI. As there is a SPI
Result in the SPI data indicating exactly these high deviations,
a first try is to classify all components with at least one SP/
Result that is not "GOOD” as defect. However, this rule-
based approach only leads to an Fl-score of approximately

7%.

As a consequence, several more complex models are investi-
gated. Besides decision tree and random forest classifiers, a
neural network is chosen instead of the simple rule-based ap-
proach and leads to best results. The model is implemented
using the Scikit-Learn library (Pedregosa, F. et al., 2011). The
model is trained on pin level. That means, every pin in the
SPI data is labeled depending on the presence of its compo-
nent in the AOI data. The algorithm then predicts for every
pin whether it is faulty. A component is classified as defect
when there is at least one faulty pin.

As input features, the geometrical information on the solder
paste deposit are taken from the SPI data without any fur-
ther preprocessing. This includes the features ”Volume(%)”,
“Height(um)”, ”Area(%)”, ”OffsetX(%)”, " OffsetY (%)”, ”Si-

zeX”, ”SizeY”, ”Shape(um)”, "PosX(mm)” and "PosY(mm)”.

The neural network is a multi layer perceptron trained with 3
hidden layers consisting of 20, 50 and 10 neurons, which are
the results of a small grid search. The ReLu activation func-
tion is used and alpha is set to 0.00001.

2.2. Prediction of human inspection

The human operator decides for every component with an
AOI defect whether the component is ”Good” or "Bad”. To
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Figure 2. Optimization of the number of estimators for the
prediction of human inspection.

predict the label given by the operator, we also build a model
that works on component level. By consequence, the infor-
mation on the pins in the SPI data and the AOI defects in the
AOI data has to be aggregated for each component.

To use the categorical data from the AOILabel, one hot encod-
ing is performed and the encoded labels are summed up for
each component. Moreover, the total number of AOI entries
is counted for each component and used as an additional fea-
ture. For the SPI data, the maximum and minimum values of
the percentage area, height, offset in x-and y-direction and the
shape are calculated for every component. By consequence,
only the pins with the highest deviations from the target val-
ues are used for the prediction. The remaining information
on the solder paste is not taken into account. Furthermore,
the size of the solder paste deposit in x- and y-direction is
considered as an additional feature, as percentage deviations
might be more or less critical depending on the size of the
pin.

With all these features, a random forest is learned on the train-
ing data to perform the binary classification. Again, the ran-
dom forest algorithm is implemented using the Scikit-Learn
library (Pedregosa, F. et al., 2011). To tackle the high class-
imbalance with only about 1.5% of the components classi-
fied as ”Bad”, the class weight is set to balanced. Conse-
quently, the "Bad” examples are weighted much higher than
the ”"Good” examples. A hyperparameter optimization is per-
formed using the validation set to find the optimum number of
estimators and maximum depth of the trees. The ideal num-
ber of estimators is found to be around 16 as higher numbers
of estimators do not lead to a higher performance. This is
shown in Figure 2. The maximum depth of the trees is set to
10. Figure 3 shows that higher depths only lead to overfitting
but do not significantly increase the performance on the hold
out validation set.
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Figure 3. Optimization of the depth of the trees for the pre-
diction of human inspection.

Table 1. Comparison of the number of AOI entries per com-
ponent.

RepairLabel | Components | AOI entries | Ratio
NotPossibleToRepair 225 995 4.4
FalseScrap 122 139 1.1

2.3. Prediction of human repair

The RepairLabel of the second operator is only assigned to
components indicated as ”Bad” by the first operator. As men-
tioned, this concerns only about 1.5% of the components with
an AOI defect. Thus, the data base used to learn the model
for the prediction of human repair is rather small. The data
base is even more reduced as some of the components have
a RepairLabel set to “NotClassifiedYet” and the prediction
of not classified components is not part of the task. In total,
there are only 347 components left out of initially more than
27,000 components with an AOI defect.

Due to this low number of data, we tried to keep the model as
simple as possible in order to reduce the risk of overfitting and
guarantee the generalizability to unknown data. As shown in
Table 1, components that are not possible to repair have in
general much more entries in the AOI data than “FalseScrap”
components. The number of AOI entries per component is on
average four times higher. As a result of these considerations,
we count the number of AOI entries for each component and
learn a decision tree on that sole feature.

The resulting model is equivalent to a rule-based approach
where all components with only a single defect entry in the
AOI data are classified as "FalseScrap” and components with
more than one entry in the AOI data are classified as ”Not-
PossibleToRepair™.

Table 2. Final scores of the chosen models.

Data set Task NN Task 2 (RF Task 3 (DT)
Training 0.39 0.81 0.85
Validation 0.39 0.66 0.87
Test 0.41 0.38 0.70
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Figure 4. Confusion matrix on validation set for the predic-
tion of AOI defects.

3. RESULTS

The results of the chosen models are presented for each sub-
task separately. An overview of the scores on the different
data sets is given in Table 2. The test set was not provided
to the participants and only used for evaluation of the data
challenge by the organizers.

3.1. Prediction of AOI defects

The neural network for predicting components with AOI de-
fects reaches an F1-score of 0.39 on the training and valida-
tion set. A further look into the confusion matrix depicted
in Figure 4 shows that the precision is at approximately 0.60
while the recall is 0.28 meaning that the model is rather weak
at predicting actual components with AOI defect correctly.
However, it is much better at avoiding false positives and pre-
dicting healthy components correctly.

This behaviour can be partly explained by the given class im-
balance. Since there are much more components without a
defect, the model is fitted to those components. Furthermore,
an accurate prediction of defect components solely relying on
the information on the solder paste as input might not be pos-
sible. The cause of an AOI defect can theoretically lie in a
later production step like the mounting of the components for
which no data are available. As shown in Table 2, the model
works well on unknown data and achieves comparable scores
on the test set.
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Figure 5. Confusion matrix on validation set for the predic-
tion of human inspection.

3.2. Prediction of human inspection

For the prediction of human inspection, the generated random
forest classifier reaches an Fl-score of 0.81 on the training
data and 0.66 on the validation data. Similar to the prediction
of AOI defects, the precision of the model is higher than the
recall. For the training data, the precision is 0.88 and the
recall 0.73

The confusion matrix of the prediction on the validation set
is shown in Figure 5. Apparently, the model precision is high
even on data not used for training while the recall drops sig-
nificantly. The model has no problem in predicting good com-
ponents correctly. Despite balanced weights during training,
it has more difficulties in predicting bad components. One
reason for that might be the relatively low total number of
components with a "Bad” OperatorLabel.

The test score only amounts to 0.38 and is thus significantly
lower than the score on the validation set. This indicates that
the trained and validated model tends to overfit and does not
generalize well on the unknown test data.

3.3. Prediction of human repair

The decision tree shows good results on training and vali-
dation set with a combined F1-score of about 0.85. Thus,
the extremely simple model seems to be a surprisingly good
predictor. The confusion matrix on the validation set in Fig-
ure 6 shows that almost all of the “FalseScrap” components
are correctly predicted as “FalseScrap”. For the “NotPossi-
bleToRepair” components, there are a few more falsely pre-
dicted components. However, the correct label is assigned to
the prevailing majority of components.

There have been several attempts to improve the model by
adding more input features. Since these attempts did not lead
to a significantly better training and validation score, it was

45
40
35

FalseScrap
(=

30
-25
-20

Actual label

NotPossibleToRepair
©

-15

-10

Falseécrap NotPossibleToRepair
Predicted Label

Figure 6. Confusion matrix on validation set for the predic-
tion of human repair.

decided to stay with the simple decision tree based on the
number of entries in the AOI data.

The average F1-score on the test data set is 0.70 and therefore
a bit lower than the training score. It seems that the relation
between the number of AOI entries and the RepairLabel is
less evident on the test data, but the decision tree classifier
still provides satisfactory results.

4. CONCLUSION

The selected models for predicting the quality of manufac-
tured electric circuit boards show overall satisfactory results
and our team was able to reach 4th place at the data challenge.
However, there is still room for improvement. The chosen
model for the prediction of human inspection clearly shows
signs of overfitting and should be adjusted to better classify
the components. Results of the prediction of human repair
show that in some applications simple rule-based approaches
can provide very good results comparable to those of com-
plex machine learning models. A good understanding of the
data based on an explorative data analysis is key to identify
fundamental relationships in the data.
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