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ABSTRACT 

The demand for Printed circuit boards (PCBs) has increased 

due to the rapid change in technology in recent years. 

Consequently, PCBs health assessment and fault detection 

play an important role in improving productivity. This study 

proposed a novel method which focused on feature 

engineering for health assessment in PCBs. The performance 

of the proposed method has been validated using data 

obtained from PHM Europe 2022 data challenge. In this data 

challenge, PCBs health assessment needs to be performed 

with data from the Solder Paste Inspection (SPI) and the 

Automated Optical Inspection (AOI) machine. The challenge 

has three tasks: 1) Predict the labels of the AOI machine using 

the SPI data. 2) Using both the SPI and AOI machine data, 

predict the operator's verification that the AOI machine 

correctly detected a defect. 3) With the SPI and AOI data, 

predict the classification of the defective PCBs as either 

repairable or unrepairable. The component level features are 

extracted from the original SPI and AOI data which contain 

the pin level features to solve these tasks. Two machine 

learning-based classification models, i.e., Light Gradient 

Boosting Machine (LightGBM) and eXtreme Gradient 

Boosting (XGBoost), have been used for classification 

purposes. Training data given by the organizer was divided 

into 70% training and 30% validation. Based on the 

validation data, the highest F1-score was observed with 

LightGBM in Tasks 1 and 2, whereas, in Task 3, the highest 

F1-score was observed with the XGBoost model. Hence, the 

LightGBM model has been used in Tasks 1 and 2, and the 

XGBoost model was developed for Task 3. 

Keywords: Diagnosis, PCB, Classification, Feature 

Engineering 

1. INTRODUCTION 

A printed circuit board (PCB) goes through the printing 

machine, which laser prints serial numbers onto the PCB and 

applies solder paste according to a predefined structure. The 

PCB production line is equipped with automated, integrated 

and fully connected machines that gather data at different 

stages of production. The electronic components of an 
electric circuit board (ECB) rely on the solder joint to provide 

the electrical connection to the PCB (Lee et al., 2002). PCBs 

demand has been increased due to digitalization and the 

implementation of Industry 4.0. Thus, their reliability needs 

to be improved to increase productivity. Consequently, PCBs 

fault diagnosis plays an important role in technological 

development. Several approaches have been developed for 

PCBs health assessment and fault diagnosis in the past few 

years. 

For instance, Wu et al. (2021) proposed two target detection 

network approaches for health assessment and fault detection 

of PCBs. Image datasets of PCBs with 6 kinds of defects are 

used for training and validation purposes. The proposed 

methodologies show high prediction performance in both 

health assessment and fault detection tasks. Nayak et al. 

(2017) suggests a PCB fault detection algorithm using image 

processing. PCB images are used to train the algorithm and 

detect the faults before the etching process. Al-Obaidy et al. 

(2017) developed a fault detection model for PCBs 

employing thermal image processing. Three algorithms were 

performed: multilayer perceptron, adaptive neuron-fuzzy and 

support vector machine. In Chang et al.'s work (2019), Solder 

Paste Inspection (SPI) data is used to enhance the solder 

joint's detection performance, which is a type of defect for 

PCB. This study indicates that the combination of SPI and 

Automated Inspection (AOI) can make a system with high 

detectability for PCB faults.  

Our present work proposes a novel technique for PCB health 

assessment using machine learning classifiers such as 

LightGBM and XGBoost. The significant contribution of this 

study is to identify novel features for an accurate health 

assessment. The data from the PHM Europe (PHME) 2022 

data challenge has been used to show the performance of the 

proposed methodology. The PHME data challenge for the 

year 2022 features a dataset from an actual industrial 
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application of an ECB production system (PHM Europe Data 

Challenge, 2022), as shown in Figure 1. The PCB is 

transferred to a SPI machine, which assesses the quality of 

the solder by determining various characteristics of the 

solder's placement, such as the volume, area, size, and offset 

from the desired position of solder. It extracts rich metadata 

up to the pin level of each component in every image of a 

particular panel. The data is indexed according to the laser 

inscriptions on the PCB. The PCB now goes through the 

Surface Mount Device (SMD) placement machine which 

assembles various components on the PCB's wet solder paste 

at predefined locations. This assembled PCB goes through a 

reflow oven which reflows the solder paste to create 

permanent solder joints between the PCB and the assembled 

components. Figure 2 illustrates a PCB after solder and 

component placement (PHM Europe Data Challenge, 2022). 

 

Figure 1: ECB Manufacturing Process (PHM Europe Data 

Challenge 2022) 

 

 
Figure 2: Electronic Circuit Board Panel Process (PHM 

Europe Data Challenge 2022) 

 

Once the components form permanent solder joints, ECBs go 

through an AOI machine. The AOI machine automates the 

visual solder joint inspection and therefore requires the 

extraction of information from the solder joint surface (Kim 

et al., 1996). This machine uses a non-contact visual 

inspection method to detect and classify a solder joint's 

surface defects (Moganti et al., 1996). It inspects different 

aspects of the PCB after component placement and solder 

reflow, like, misalignment, size and fillets of solders, missing 

components or solder paste, etc.  

After this stage of AOI inspection, operators (humans) are 

employed to verify that the AOI machine did not falsely label 

the PCB as defective. The operators also further classify the 

truly defective PCBs into different types before considering 

any repair work. The structure of this inspection process is 

outlined in Figure 3. Data is provided with labeled data from 

SPI and AOI machines. Using this data, three tasks have to 

be completed 1) Using only the SPI data, predict the labels of 

the AOI machine. 2) With both the SPI and AOI machine 

data, predict whether the operator will verify that the AOI 

machine correctly detected a defect or will label it as a false 

positive. 3) Classify, with the SPI and AOI data, the defective 

PCBs as either non-repairable or as PCBs that should not be 

scrapped. 

 

Figure 3: Data analysis for replacing actual inspection tasks 

The dataset consists of two data types, each from a different 

source: the SPI machine and the AOI machine. The data from 

the SPI contains the attributes of the solder paste placed on 

the PCBs. The AOI data contains the AOI labels, operator 

labels, and repair labels. Every dataset contains a panel I.D., 

a figure I.D., and a component I.D. These three I.D.s can be 

used together as unique I.D.s for indexing the data. Any 

classification task would predict labels for the combination 

of these three I.D.s. This is helpful for predicting 

classification labels at the component level. Any unique I.D. 

from the SPI dataset, which can also be found in the AOI 

dataset, is labelled as faulty. If the unique I.D. from the SPI 

dataset is not found in the AOI dataset, the respective 

component is considered healthy. 

2. PROPOSED METHODOLOGY 

Figure 4 shows the proposed methodology for solving the 

three tasks in the present study. The data is first cleaned for 

any instances of missing values. It is then indexed according 

to the combination of the Panel_ID, Figure_ID, and 

Component_ID. All data columns are then converted to 

numeric formats, and the ones which cannot are discarded.   

The proposed methodology focuses mostly on feature 

engineering and uses readily available machine learning 

libraries for model building. Individual task features have 

been engineered and ranked according to their suitability for 

performing the given tasks. Feature engineering combines 
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multiple raw data features by applying various mathematical 

operations.  

Indexing the data in the aforementioned manner enables data 

analysis at the component level. The original dataset, 

however, contains observations at the pin level. Hence, each 

combination of the aforementioned I.D.s will have the 

number of observations equaling the number of pins for a 

particular component. To combine the data of all pins of a 

single component, aggregation of each raw data variable is 

performed. This aggregation leads to the extraction of 

statistical features like mean, standard deviation, variance, 

etc. 

Feature engineering was performed over the raw data by 

extracting the statistical features by aggregating the data at 

the component level. Finally, this dataset was then divided 

into a training data set with 70% of the whole data and a 

validation dataset with the remaining 30% while keeping the 

ratio of healthy to faulty classes equal to that of the original 

dataset. This preservation of the ratio is done by stratifying 

the class labels. 

The proposed methodology uses two tree-based gradient 

boosting algorithms, LightGBM and XGBoost. After an F1-

score comparison of these algorithms for different tasks, the 

LightGBM model was chosen and used for classification 

tasks1 and 2. For task 3, the XGBoost classifier model was 

used. Figure 4 outlines the proposed methodology for model 

training and evaluation.  

A detailed description of the features and the reasoning for 

choosing different classifier models for different tasks is 

discussed in the next section. 

 

Figure 4: Proposed Methodology 

3. RESULTS AND DISCUSSION  

3.1. Task 1: Predicting AOI Labels 

The classifier model for Task 1 is expected to predict whether 

a data instance similar to the ones in the SPI raw dataset 

would be classified by the AOI machine as healthy or faulty. 

Special emphasis is given to position-based features since 

misalignment of solder paste is a leading factor in the PCB 

being classified as faulty (Chuang et al., 2010) 

3.1.1. Data preprocessing: 

The data is first cleaned by deleting all instances with null 

values in Panel_ID, Figure_ID and Component_ID. Data 

rows containing null values are also erased from the dataset. 

All data columns are then converted to numeric format to 

perform arithmetic operations. 

3.1.2. Feature Extraction: 

This step would include variable generation and statistical 

feature extraction.  

Variable Generation: 

Spatial and positional variables have been generated using 

arithmetic combinations of raw data variables. Along with 12 

raw data variables and 6 additional variables, namely, the 

Total Height, Hypotenuse, Polar Coordinate, Circular Area, 

Rectangular area and Offset Area, are generated. These 

variables are generated at the pin level, as shown in the 

variable column of Table 1. 

Statistical Features: 

The raw data variables are aggregated with the generated 

variables at the component level. Several rows of 

observations for different pins of a single component are 

aggregated to extract statistical values. The statistical features 

extracted for this task contain: mean, standard deviation, 

variance, count, minimum value, maximum value and 

median. This process reduces the size of data while 

preserving the information from the raw data in terms of 

statistical values. Table 1 lists all the features extracted from 

the raw dataset along with the generated data variables. 

Table 1: List of Features for Task -1 
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3.1.3. Modelling: 

After statistical feature extraction, the resulting feature pool 

consists of 126 distinct data features.  

The dataset used for training the task 1 classifier is the highly 

imbalanced SPI data (98.7% Healthy Class, 1.3% Faulty 

Class). Due to the highly imbalanced nature of SPI data, the 

simplest classifier would yield high accuracy but low recall 

models. Hence, a better metric to assess the performance of 

the classifier would be the F1 score for the minority class 

(faulty PCBs). The performance of the LightGBM model in 

terms of F1-score was compared and found to be better than 

the XGBoost model for task 1, as shown in Table 1. 

Table 2: F1-score comparison for Task 1 

Type of 

Classifier 

F1-Score 

Training Data set Validation Data set 

XG-Boost 0.32 0.31 

Light-GBM 0.43 0.42 

The Light-GBM model for Task 1 considers the values of the 

hyperparameters as follows: learning rate of 0.1 and boosted 

trees of 100. Figure 5 represents the top ten features obtained 

from the LightGBM classifier model while training. 

 
Figure 5: Feature Importance for Task 1 

Predictions: 

Based on the best trained LightGBM model, an F1-score of 

0.44 was observed on the unseen test data set. 

3.2. Task 2: Predicting Operator Labels 

For task 2, predicting the operator label based on SPI and 

AOI data is the objective. The presented approach includes 

steps such as data preprocessing, feature extraction, and 

modeling. 

3.2.1. Data preprocessing: 

All samples that have null values in the Panel_ID, Figure_ID 

or component I.D. are erased. Furthermore, all continuous 

values that are in a string format are converted into a numeric 

format. 

3.2.2. Feature Extraction: 

The feature extraction step considers two datasets: AOI and 

SPI data. A data pivoting technique (Kim et al., 2019) is 

applied to the AOI data. Eleven features corresponding to the 

eleven AOI fault modes (AOILabel) in the training data are 

generated by this technique. The value of the new features is 

the count of each failure mode per component. In Figure 6, 

an example of data pivoting for two fault modes is shown. 

 
PanelID FigureID ComponentID AOILabel 

13 1 C5 Coplanarity 

14 2 C4 Coplanarity 

15 3 C8 LeanSoldering 

16 4 C2 Coplanarity 

17 5 C7 LeanSoldering 

17 5 C7 LeanSoldering 

  

PanelID FigureID ComponentID 

Number of  

Coplanarity 

Number of 

LeanSoldering 

13 1 C5 1 0 

14 2 C4 1 0 

15 3 C8 0 1 

16 4 C2 1 0 

17 5 C7 0 2 

Figure 6 Data conversion to pivot table 

Moreover, the total number of AOI fault modes and the 

number of unique AOI fault modes per component are also 

considered features. Additionally, the component type and 

number are extracted from the component I.D. variable. This 

feature can be extracted either from the SPI or AOI data. The 

list of extracted features is described in Table 3. 

Table 3 Features list for AOI Data 

Feature 

Number 

Feature Name 

1 Number of Soldered 

2 Number of UnSoldered 

3 Number of Coplanarity 

4 Number of LeanSoldering  

5 Number of Translated 

6 Number of Size 

7 Number of Misaligned 

8 Number of Missing 

9 Number of Broken 

10 Number of Jumper 

11 Number of Polarity 

12 Total number of AOI labels 

13 Total number of unique AOI labels 

14 Component type (ex. C, R) 

15 Component number (ex. 5) 
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Due to the low frequency in the training data of the AOI fault 

modes "Missing", "Broken", "Jumper", and "Polarity", they 

are considered as "others" and grouped together. This 

grouping approach reduces the number of features generated 

from AOI from fifteen to twelve. 

 

For SPI data, statistical features are extracted from the pin 

level to the component level. Using SPI data, features such as 

minimum, maximum, and mean values of Volume(%), 

Height(um), Area(%), OffsetX(%), OffsetY(%), SizeX, 

SizeY, and Shape(um) are extracted. 

Table 4 Features list for SPI Data 

Feature 

Number 

Feature Name 

1-3 Volume(%) (max, min, mean) 

4-6 Height(um) (max, min, mean) 

7-9 Area(%) (max, min, mean) 

10-12 OffsetX(%) (max, min, mean) 

13-15 OffsetY(%) (max, min, mean)  

16-18 SizeX (max, min, mean) 

19-21 SizeY (max, min, mean) 

22-24 Shape(um) (max, min, mean) 

3.2.3. Modeling 

Similar to task 1, two algorithms are used and compared for 

modelling: LightGBM and XGBoost. Each algorithm is 

trained using cross-validation ensemble to enhance 

robustness.  

Furthermore, three combinations of features were performed: 

only AOI features, only SPI features, and both AOI and SPI 

features. As shown in Table 5, models that use only the AOI 

features perform better than the other attempted approaches.  

The model leads to overfitting using AOI-SPI features and 

only using SPI features. Thus, only the AOI features are used, 

and LightGBM is selected due to its higher F1 performance 

than XGBoost. 

 

Table 5 F1-score calculation using different classifiers  

Type of 

Classifier 

AOI data SPI data AOI-SPI data 

Train Val Train Val Train Val 

XGBoost 

F1-Score 

0.66 0.68 0.65 0.34 0.78 0.62 

LightGBM 

F1-Score 

0.69 0.69 0.66 0.33 0.71 0.61 

The LightGBM model for Task 2 considers the 

hyperparameters such as a learning rate of 0.2 and a count of 

boosted trees of 5000. The feature importance ranking given 

by the LightGBM classification model is shown in Figure 7.  

 
Figure 7 Feature importance ranking 

 

Predictions: 

The classification model gives probabilities as its output. 

Then, the probabilities are used to calculate the optimal 

threshold to maximize the F1-score of the validation data. 

The thresholds are obtained using the package 'metric' from 

the Sklearn library. The optimal threshold is obtained by 

iterating all possible thresholds and selecting the one that 

provides the maximum F1-score for the validation data. The 

approach for task 2 gives an F1-score of 0.48 in the unseen 

test data. 

3.3. Task 3: Predicting Repair Labels 

The objective of Task 3 is to predict the Repair Labels based 

on SPI and AOI data. Similar to other tasks, the approach 

includes steps such as data preprocessing, feature extraction, 

and modeling. 

3.3.1. Data preprocessing: 

Similar to task 2, null values in the Panel_ID, Figure_ID or 

Component_ID are erased from SPI data. Also, all 

continuous values have been converted into the float type. 

3.3.2. Feature extraction 

The solution for task 3 first uses the component level features 

instead of the pin level features like the solutions for the other 

tasks. In this task, 17 variables are already available from SPI 

and AOI data, and additional 11 variables shown as serial 

numbers 18 to 28 in Table 6 are formed using the existing 17 

variables. From these 28 pin level variables, component level 

features have been created from pin level features which have 

the same Panel_ID, Figure_ID, and Component_ID. These 

features are calculated based on statistical metrics such as 

mean, sum, standard deviation, maximum, minimum, peak-

to-peak, median, and count. A total of 153 component-level 

features have been extracted, as shown in Table 6.  
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Table 6 Features extracted for Task 3 

 

3.3.3. Modeling 

Two classification algorithms were tested, XGBoost and 

LightGBM, and the best performing model was selected. 

Based on these 153 features, Table 7 shows the F1-score 

obtained using each model. Based on the F1-score, XGBoost 

was found to perform better and hence has been used for 

model development. 

Table 7 F1-score calculation using different classifiers  

Type of Classifier F1-Score 

Training  Validation 

XGBoost 0.99 0.90 

LightGBM 0.87 0.89 

The XGBoost model for Task 3 considers the 

hyperparameters such as a learning rate of 0.1 and a 

maximum of boosted trees of 100. The feature importance 

ranking given by XGBoost for this task is shown in Figure 8.  

Figure 8 Feature importance ranking 

Predictions: 

The approach for task 3 gives an F1-score of 0.78 in the 

unseen test data. 

4. CONCLUSIONS 

This work has developed methodologies to detect printed 

circuit board manufacturing defects based on SPI and AOI 

data released by the PHM Society (2022). The component 

level features are extracted from original SPI and AOI data 

which contain the pin level features. The PCB health 

assessment problem has been divided into three tasks, and 

based on the extracted features, two machine learning 

algorithms, LightGBM and XGBoost, have been applied. It 

was determined that the models using LightGBM for tasks 1 

and 2 had a better F1-score on the validation data set than the 

XGBoost models. Hence, LightGBM classification models 

were selected for first two tasks. The XGBoost model has 

been used in task 3, due to its higher F1-score compared to 

the LightGBM model's results. The F1-score obtained from 

Task 1, Task 2 and Task 3 are 0.44, 0.48 and 0.78 

respectively. 
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