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ABSTRACT

Maintenance of industrial systems often cost as much as their
initial investment. Implementing predictive maintenance via
system health analysis is one of the strategies to reduce main-
tenance costs. Health status and life estimation of the machin-
ery are the most researched topics in this context. In this pa-
per, we present our analysis for Sixth European Conference of
the Prognostics and Health Management Society 2021 Data
Challenge, which introduces a fuse test bench for quality-
control system, and asks fault detection and classification for
the test bench. We proposed classification workflows, which
deploy gradient boosting, linear discriminant analysis, and
Gaussian process classifiers, and report their performance for
different window sizes. Our gradient boosting based solution
has been ranked 4th in the data challenge.

1. INTRODUCTION

Fault detection, diagnosis, and prognostics has been active
area of research for the last few decades, which is an essen-
tial part of modern industries to ensure safety and product
quality (Heo & Lee, 2018). By enabling widespread integra-
tion of diagnostics and prognostics into modern production
systems, uncertainties associated with life cycle of system
have reduced. Prognostics and health management (PHM)
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is performed with varying degrees of success for a number of
different reasons. There are currently no standards to demon-
strate best practices comparatively because each problem can
be solved in a variety of ways. The PHM Data Challenge,
an open data competition specialized in PHM, is an opportu-
nity to competitively determine leading solutions for indus-
trial problems. The PHM Data Challenge pioneers the de-
velopment of PHM issues by presenting a wide spectrum of
real-world industrial problems with abundant resources. It
serves as a library of various case studies from which we can
learn about the industrial problems proposed each year and
the current challenges in practice, the flow of thought for ad-
dressing these challenges, and the advantages and disadvan-
tages of different methods (Huang, Di, Jin, & Lee, 2017).

In this paper, we present our analysis for Sixth European
Conference of the Prognostics and Health Management So-
ciety 2021 Data Challenge (PHME21 Challenge) (Giordano
& Gagar, 2021). The challenge asks participants to demon-
strate application of state-of-the-art algorithms and models
to perform fault detection, classification and root cause iden-
tification for a fuse-test bench. Through a data pipeline, we
compared gradient boosting (GB), Linear Discriminant Anal-
ysis (LDA), and Gaussian process (GP) based models to solve
challenge’s tasks.

This analysis paper is organized as follows: Section 2 de-
scribes fault detection, classification and root cause identifi-
cation of a system, and gives information about the challenge
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dataset. Section 3 describes how we attacked the Data Chal-
lenge, and the workflow we used for analysis. Section 4 de-
scribes our implementation and results that we had for the
Data Challenge.

2. FAULT DETECTION AND CLASSIFICATION

Fault diagnosis of machine tools which is provided by real
time condition monitoring of sensors and abnormal pattern
recognition are crucial in root cause identification. Before
proceeding to the stage where the root cause of the failure is
identified, the data must be preprocessed, classified and then
failure diagnosed. The main roles of fault detection and di-
agnosis are to make an effective indicator which can iden-
tify faulty status of a process and then to take a proper action
against a future failure. This indicator provide prediction the
correct fault which is to forecast the time left before the sys-
tem losses its operation ability, based on the condition moni-
toring information.

PHME21 data challenge competitors are challenged to show-
case their abilities on a manufacturing production line setup’s
rich dataset generated from a real-world industrial testbed is
provided by Swiss Centre for Electronics and Microtechnol-
ogy (CSEM). Sub-systems such as conveyor belt motors, in-
frared camera and robotic arms used in the continuous test-
ing process of electronic components constitute the fuse test
bench. The aim of the fuse test bench is to test electrical
fuses on the large-scale quality-control pipeline. The fuse test
bench consists of a 4-axis SCARA-robot picking up electri-
cal fuses with a vacuum gripper, from a feeder to a fuse-test-
bench. On this fuse test bench, if the electrical conductivity of
the fuse is established, the fuse is heated by applying 200mA
current in 1.5s time interval. Heating is measured with a ther-
mal camera. After the testing is completed, the fuse is moved
back into the feeder with two conveyor belts.

The fuse test bench, which is used in quality-control process,
is shown in Figure 1. In the process, first the fuses are first
picked up by the robotic arm (1). Fuses are carried to the
visual field of a thermal-camera (2) responsible for finding
signs of overheating or degradation. Once the analysis is ter-
minated, fuses are placed on a conveyor belt (3) and sorted
by a robotic bar (4). Fuses are moved to small conveyor belt
(5) that transports them back to the feeder (6) where fuses are
stored before restarting the cycle.

The experimental dataset contains 50 sensors readings which
recording the evolution of a number of quantities of interest
to establish the health state of the machine in real-time. It is
desired to reduce the data size by calculating one statistical
data point for each window and sensor. In addition, each sig-
nal is associated with a specific set of fields specific to that
signal, identifying different signals’ features extracted from
that signal by automated data acquisition process. For each
10 seconds of time window, the signals are described by the

Figure 1. The Fuse Test Bench for The PHME21 Data Chal-
lenge

Table 1. Statistical features derived from sensors

Name Description

vCnt Number of samples recorded
in the time window

vFreq Sampling frequency
vMax Maximum value of the samples
vMin Minimum value of the samples
vStd Standard deviation of the samples
vTrend Derivative-based trend of the samples
value Mean value of the samples

statistical features given in Table 1.

An experiment may run 1 hour to 3 hours. Experiments have
been generated with a variety of seeded faults under con-
trolled conditions. At the same time, some experimental data
have been acquired under fault-free operating conditions. Data
Challenge’s public dataset contains experiments divided into
training and validation and model refinement subsets. In the
evaluations of the challenge submissions, a private test sub-
set is allocated. Training and validation subsets contain 70
experiments describing fault-free experiments (Class 0) and
5 faulty classes (Classes 2, 3, 5, 7, and 9) in total. Model re-
finement subsets contain 29 experiments describing fault-free
experiments (Class 0) and 3 faulty classes (Classes 4, 11, and
12).

Fault-free experiments, which have Class 0, represent the be-
haviour of the machine during its normal operating regime.
In normal operating regime, the machine runs smoothly and
does not present any problem. Fault-free experiments’ sys-
tem parameter configurations lead to a nominal system be-
haviour. Unhealthy experiments which are characterized by
anomalous behaviour, have been labeled with 8 different la-
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Figure 2. Data processing workflow for building classifica-
tion models

bels. Each fault is characterized by an anomalous behaviour
of one or more signals.

The main objective of the PHME21 Data Challenge is identi-
fication and classification of the faults in unlabeled data (Task
#1). Other objectives include identification and ranking of
the features that help us to classify faults correctly (Task #2),
predicting the correct fault in the earliest time stamp (Task
#3), and developing unsupervised solutions that identify the
experiments’ system parameter configurations (Bonus Task).
The methods that handle challenge tasks are given in the next
section.

3. METHODS AND TECHNIQUES

Our main motivation for the challenge was to build a fault
classifier, which would be used to solve Task #1 of the chal-
lenge. We have built a data processing workflow (Figure 2),
which contains data preprocessing, model training, and eval-
uation phases, to satisfy classification objective.

3.1. Data Preprocessing

The dataset is preprocessed and made ready for training and
evaluation using the following steps.

Data Merging: The dataset contains individual data files for
each experiment. We merged individual data files to have
three separate datasets for training and validation (70 exper-
iments) and model refinement (29 experiments). We have
added experiment setups for each sample of reading for fur-
ther processing. The merged training and validation subsets
and model refinement dataset have readings from sensors.
The specific set of fields of each sensors were considered as
features.

Missing Value Imputation: The dataset contains missing
data for each experiment. Because missing data can create
problems for analyzing data, we have used interpolation to
fill in missing data and avoid pitfalls involved cases that have
missing values.

Scaling: Data normalization is performed before data mod-
elling using RobustScaler from Scikit-Learn Library (Pedregosa
et al., 2011). While in operation, RobustScale removes the
median and scales the data according to the given quantile

range, which defaults to the range between the 1st quartile
and the 3rd. Thus, the nominal data transforms gracefully
while the outliers are respected. Initially training data is scaled,
and then the scaling parameters are applied to validation data.

Feature Selection: We used Leave One Feature Out Impor-
tance (LOFO-Importance) package (Erdem & Collot, n.d.) to
select which features to use during model training. By leaving
out one feature at a time during iterations, LOFO-Importance
calculates each features contribution to the learning task. We
used balanced accuracy metric which handled classification
tasks on imbalance dataset.

Windowing: We have used window sizes of multiples of 5 up
to 50 to create a context for the time series data. Windowed
dataset have passed to model training phase.

3.2. Data Modeling and Optimization

We have used tree based ensemble learning algorithms, namely
gradient boosting for modeling stage. We also deployed lin-
ear discriminant analysis both as dimension reduction tech-
nique and as a classifier. Aside from single classification
model, we have also deployed Gaussian process in two phase
classification processes. For gradient boosting methods, we
performed hyper-parameter optimization using genetic algo-
rithms.

Gradient Boosting (GB): GB, one of the most powerful tech-
niques for performing classification and regression tasks, builds
the model in a stage-wise fashion like other boosting methods
do, and it generalizes them by allowing optimization of an ar-
bitrary differentiable loss function (Friedman, 2001). GB is
an ensemble learner: a final model based on a collection of in-
dividual models. These individual models have poor predic-
tive power and are prone to overfitting, but combining many
such weak models in an ensemble will lead to a much bet-
ter outcome overall. We have used XGBoost (XGB) (Chen
& Guestrin, 2016) and LightGBM (LGBM) (Ke et al., 2017)
implementations in our analysis.

Linear Discriminant Analysis (LDA): LDA, or discrimi-
nant function analysis is a generalization of Fisher’s linear
discriminant, a method used in statistics and other fields, to
find an accurate representation of two or more object ob-
jects denoting their class or distinguishing features. The re-
sulting combination may be used as a linear classifier, or,
more commonly, for dimensionality reduction before later
classification. Three steps needed be performed to achive
the LDA goal. The first step is to calculate the separabil-
ity between different classes. The second step is to calcu-
late the in-class variance (the distance between the mean and
the samples of each class). The last step is to construct the
lower-dimensional space that maximizes inter-class variance
and minimizes intra-class variance (Tharwat, Gaber, Ibrahim,
& Hassanien, 2017). We have used LDA implementation in
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Scikit-Learn Library (Pedregosa et al., 2011).

Gaussian Process (GP): A GP is a probability distribution
over possible functions (Rasmussen & Williams, 2005). GPs
are a generic supervised learning method designed to solve
regression and probabilistic classification problems. Their
greatest practical advantage is that they can give a reliable
estimate of their own uncertainty. GP extend multivariate
Gaussian distribution to infinite dimensionality. The key idea
of GP is to model the underlying distribution training data
as a multivariate normal distribution. Learning a distribution
enables the model to output a prediction and an uncertainty
associated with the prediction. We have used GP implemen-
tation in Scikit-Learn library (Pedregosa et al., 2011).

Genetic Algorithms (GA): GA is a evolution based meta-
heuristic search algorithm, which is inspired by natural selec-
tion process (Back, Fogel, & Michalewicz, 2000). In machine
learning, GA is commonly used for optimization of the hyper-
parameters of the classification (or regression) models. GA
requires the genetic representation of the hyper-parameters,
called individuals, as in gene sequences, and a fitness func-
tion to evaluate the gene’s adaptation to the ”environment.”
The GA process starts with a randomly generated initial pop-
ulation of individuals. For each iteration, also called a genera-
tion, fitness of the individuals are evaluated. The genes of the
most fit individuals are selected to form the next generation’s
individuals. Individuals of the new generations are created
randomly via mating (crossover of the gene sequences), or
via mutation (random changes on the genes). The iterations
continue until enough number of generations are produced,
or until satisfactory fitness level is reached. We have used
DEAP (Fortin, De Rainville, Gardner, Parizeau, & Gagné,
2012) package for GA optimizations.

Our GB and LDA models are built as a pipeline, which con-
tains a scaler, a dimension reducer, and a classifier. Our two
phase classification model deploys two pipeline for each phase.
The first phase uses 8 one-vs-one classifiers, which are trained
for Class 0 vs Class N (N is for each of the faulty classes).
Modeled with GP, this phase is used to predict the probability
distribution each possible classifier. The second phase uses
LDA on the concatenation of these probability distributions
to predict the true class labels.

3.3. Evaluation Metrics

Since the dataset is imbalanced, evaluation of the model is
performed using F1 score (F1), and Matthews correlation co-
efficient (MCC) (Matthews, 1975) metrics in a 3-fold cross
validation setup. MCC is more informative than other met-
rics, because it takes all the balance ratios of the all the mea-
sures, namely true positives (tp), true negatives (tn), false
positives (fp), false negatives (fn), into account. Thus, MCC
is our chosen metric for imbalance datasets. Calculations of
F1 and MCC metrics is are given in Equation 1 and Equa-

tion 2, respectively.

F1 = 2× tp

tp+ 1
2 × (fp+ fn)

(1)

MCC =
tp× tn− fp× fn√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)
(2)

We used cross validation scores to compare model perfor-
mances. For the final predictions during the test experiments,
we use most occurring fault label as the final classification
label of the experiment.

3.4. Other Challenge Tasks

Classification of the fault is the main driver for the challenge.
When we have good enough classifier, we can solve Task #2
and #3 of the challenge.

For solving Task #2, i.e. identification and ranking of the sen-
sors per faulty class, we used LOFO based approach on sen-
sors. In this approach, first we use all sensor features to cal-
culate a base score for the binary classification model. Then
we iterate over the features. By removing one feature at each
iteration, and calculating a new score from the model using
the remaining features, we calculate each feature’s contribu-
tion to the base score. Sorted list of score contributions gives
us the feature rank for the fault.

The final classification label for an experiment is assigned as
the most occurring prediction label of the experiment’s sensor
data. For solving Task #3, i.e. the shortest time prediction,
we search for a cut time that satisfies the above requirements,
namely the two most occurring labels for the full experiment
data are also the two most occurring labels for the trimmed
experiment data.

Feature selection step in data preprocessing stage reports hu-
midify and temperature as the most important features for
the fault-free experiments (Class 0). For the Bonus Task, i.e.
identifying system configurations, these features are adopted
to build a clustering model using K-Means algorithm with
k=2.

4. EXPERIMENTS AND RESULTS

We used Scikit-Learn and other python libraries to implement
the classification workflow. Our analysis with the training
data showed that some experiments of the Class 0, namely 6,
23, 35, 49, 54, 56, 74, and 83, decreased the classification
performance. Since Class 0 had ×16 more experiments than
other classes, we simply removed these runs from the dataset.

Initially, we used the classification methods with their de-
fault settings. We adopted 3-fold cross validation for differ-
ent window sizes on the dataset. During the evaluation, we
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watched the model performance through evaluation metrics
F1 and MCC, and through confusion matrix (CM) for indi-
vidual folds. While F1 and MCC metrics showed models’
overall performance numerically, CMs showed the models
performance on class separation. CMs of a sample run for
XGB model is given in Figure 3.

The final 3-fold cross validation results are given in Table 2.
Two-phase classification (i.e. GP+LDA) gave better results
when the window size is small (i.e. 5 or 10). This is because
of the classification power of GP to deal with uncertainty and
lesser data. When the window size increases other methods
perform better. Although GB implementations gave similar
results for different window sizes, XGB’s MCC scores were
0.01 to 0.02 points better than LGBM. LDA score are be-
tween LGBM and XGB scores.

Using DEAP Library (Fortin et al., 2012), we also performed
Genetic Algorithms (GA) based optimization on the hyper-
parameters of LGBM and XGB to increase model perfor-
mances. Hyper-parameters for GA evolutions are given in
Table 3. GA optimization parameters are selected manually
after a few experimental runs. The hyper-parameters for the
best model is constructed from these optimizations. The hyper-
parameters and evaluation results are given in Table 4. Al-
though GA optimization added 0.01 point to our previous re-
sults, we preferred to submit XGB model for window size 40.

The notebooks and other material we used throughout the
challenge is available at https://github.com/zakkum42/phme21-
public.

5. CONCLUSION

We presented our analysis for PHME21 Data Challenge, which
asks for fault detection and classification of a fuse test bench
for quality-control system. We built a data pipeline, and used
gradient boosting (LGBM, and XGB), linear discriminant anal-
ysis (LDA) and Gaussian process (GP) classification algo-
rithms. Two-phase Gaussian process classifier predicted bet-
ter than other algorithms for smaller window sizes. Perfor-
mance of LGBM, XGB, and LDA classifications were better
with the increased window sizes. We also performed hyper-
parameter optimization using genetic algorithms, which added
0.01 points to out previous results. Our XGB based solution
has been ranked 4th in the data challenge.

REFERENCES

Back, T., Fogel, D. B., & Michalewicz, Z. (2000). Evolu-
tionary computation 1: Basic algorithms and operators
(1st ed.). IOP Publishing Ltd.

Chen, T., & Guestrin, C. (2016). Xgboost. Proceedings
of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining - KDD ’16.
doi: https://dx.doi.org/10.1145/2939672.2939785

Erdem, A., & Collot, S. (n.d.). Lofo (leave one feature
out) importance. (https://github.com/aerdem4/lofo-
importance)

Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau,
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Figure 3. The figure displays sample confusion matrices for different folds during training of an XGB model. The CMs suggest
that the model fails to separate Class 4, 5 and 7, and that these classes are confused with each other and with Class 0.

Table 2. Results of Classification Models for Different Window sizes

Classifiers ws=5 ws=10 ws=15 ws=20 ws=30 ws=40 ws=50
F1 MCC F1 MCC F1 MCC F1 MCC F1 MCC F1 MCC F1 MCC

LGBM 0.8 0.67 0.87 0.79 0.9 0.84 0.9 0.86 0.9 0.86 0.91 0.87 0.9 0.85
XGB 0.8 0.69 0.89 0.82 0.9 0.86 0.91 0.87 0.91 0.88 0.91 0.89 0.92 0.88
LDA 0.83 0.7 0.88 0.81 0.9 0.83 0.9 0.83 0.9 0.84 0.92 0.86 0.91 0.85
GP+LDA 0.89 0.82 0.9 0.84 0.87 0.78 0.87 0.77 0.49 0.43 0.53 0.43 0.54 0.41

Table 3. Genetic Algorithms Search Parameters for Model
Hyper-parameter Optimization

GA Parameter Value
Initial population size 30
Number of generations 4
Population size per generation 10
Mate probability 0.5
Mutation probability 0.5
Number of selected individuals
per generation 3
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Table 4. Hyper-parameters and Results with GA optimiza-
tions

Classifier Parameters F1 MCC

LGBM

ws=49
learning rate=0.01
boosting type=’gbdt’
no of leaves=10
max depth=-1
no of estimators=300
min split gain=0
subsample=0.5
subsamplefreq=0
colsample=0.8
objective=’multiclass’

0.91 0.88

XGB

ws=20
learning rate=0.001
booster=’dart’
max depth=40
no of estimators=750
min child weight=0.5
gamma=0
max leaves=10
subsample=0.8
colsample=0.8
objective=’multi:softmax’

0.93 0.90
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