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ABSTRACT 

Prognostics applications in the automotive industry are 

growing rapidly and customers have begun to expect this 

capability. Remaining useful life (RUL) models are an 

important aspect of a prognostic as they affect both how far 

in advance and with what confidence failures can be 

predicted. Model selection and design must include technical 

considerations such as mathematical complexity and training 

data availability, as well as business considerations such as 

implementation plans, constraints, and risks of inaccurate 

predictions. 

This paper compares different RUL models that have been 

developed for turbo actuators on diesel engines, with the 

business objective of advising bus fleet customers on 

preventive maintenance intervals. The design, development, 

validation, and resulting prediction accuracy of each RUL 

model is detailed. A selection process is then applied to 

choose the model best suited to the intended purpose. In 

doing so, the paper sheds light on strengths and weaknesses 

of deep learning RUL models over statistical RUL models. 

The paper also focuses on the state-of-the-art deep learning 

network “Tabnet” and its results for useful life predictions. 

Among the different methods, Accelerated Weibull Failure 

Time model provides better predictions with a concordance 

of 0.94 and ~15% less error than any other model1. 

1. INTRODUCTION 

Growing automotive product complexity and data 

availability have fueled significant research and innovation 

 

 

in the area of prognostics. Prognostics aims to predict future 

faults and failures of a system/subsystem, providing ample 

time to plan proactive Engine and After treatment 

system/subsystem maintenance; in turn improving uptime. 

Prognostics applied to critical and expensive components 

benefit the automobile industry manufacturers and their 

customers with the control over 1) recurring overhead cost of 

sudden component replacements and 2) extended component 

life with timely maintenance. Further, timely replacement of 

faulty emission control components helps the manufacturer 

to enhance its reputation with customers and in the market. 

The concept of RUL prediction is applied to determine the 

life span of the component to avoid catastrophic failure 

during its service life. Although RUL prediction of 

components comes with uncertainty and has shown limited 

success, they include a powerful set of algorithms. Though 

these algorithms involve multiple set of approximations 

during implementation, if designed well with the backing of 

good data, they result in valuable RUL model. Validation and 

verification of such RUL models are key factors for 

successful implementation.  Typically, there are three broad 

RUL based modelling techniques. First one uses a similarity 

models where historical run-to-failure data from similar 

components showing failure is modelled and one can 

estimate RUL based on those data profiles. Second one uses 

a degradation model based on a threshold of a condition 

indicator or feature. Depending on the present value of the 

condition indicator and the modelled threshold, one can 

estimate the RUL of the component. Last one uses a survival 

models where probability distribution of component failure 

times is used to estimate RUL from lifetime data of the 
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component. This paper focuses on specific survival model 

based on Weibull estimation. 

This paper discusses application of RUL models to a turbo 

actuator on a production diesel engine, including model 

design, model development, validation processes and their 

prediction outcomes. The work also highlights how the 

model was utilized to serve the needs of the business and its 

customers. 

1.1. Turbo Actuator: 

Variable geometry turbochargers (VGT) are in widespread 

use for on-highway diesel engines, due to several advantages 

they provide over fixed geometry and wastegate 

turbochargers. With a VGT, a nozzle ring or inlet guide vanes 

upstream of the turbine stage are positioned to vary the power 

extracted from the exhaust gas and delivered to the 

compressor stage.  This allows continuous adjustment of 

engine air flow rate and exhaust gas recirculation rate to 

achieve optimal fuel economy within emissions constraints.  

Moreover, VGT positioning can also be used to support 

special functions such as engine braking and exhaust 

temperature management, without the need for additional 

components such as intake throttles or exhaust throttles. 

Accurate VGT nozzle ring or inlet guide vane positioning is 

accomplished by a turbo actuator that includes an electric 

motor, a position sensor, and a circuit board. Because 

positioning can affect engine tailpipe emissions, actuator 

failures need to be monitored by on-board diagnostic 

algorithms. If a failure is detected, a dash lamp is illuminated 

and, in some cases, a Derating is triggered by on-board 

diagnostics (OBD) (Feneley, Pesiridis, Andwari (2017)). 

 
Figure 1. Electric turbo actuator and actuation mechanism 

While progress continues in developing more reliable and 

durable turbo actuators, there are reasons why an electric 

turbo actuator fails. To name a few – a) Limited temperature 

and vibration capability of the actuator’s electric components 

compared to other engine components is a constraining 

factor, b) Expansion and contraction of board wire connectors 

could eventually lead to breakages and the failure of an 

electric actuator and c) Electric actuators may be more 

susceptible to water ingress owing to the position of the turbo 

in the engine compartment leading to rusting of the actuator. 

Such contaminated actuator results in incorrect signals and 

ultimately failure [2]. Electrical systems do require the 

addition of coolant pipes to avoid overheating that results in 

actuator failures [3]. Also, it is observed that most of the 

electric turbo actuator failures occur in the engine’s late life 

(i.e., when engine has aged and run certain miles), due to 

solder cracks, capacitor depletions and hot shutdowns that 

result in thermal overstress.  

Maintaining an electric actuator benefits the system in terms 

of rapid response time, more precise actuation of the moving 

elements and accurate minimum and maximum air flow 

(Feneley, Pesiridis & Andwari, (2017)). Unexpected 

disruption of vehicle operation due to actuator failure is 

clearly undesirable. The associated customer pain can be 

greatly alleviated by shifting reactive repairs to proactive 

replacements.  There has been prior work in the area of 

predictive maintenance of diesel engines using artificial 

intelligence which helps in failure prediction of other after 

treatment components (Mckinley, Somwanshi, Bhave & 

Verma, (2020)). This prior work will form the basis for the 

RUL based approach described in this paper. Advanced 

analytics can support this transition through guiding the 

selection of preventive maintenance intervals. Development 

of a supporting analytics model for this purpose is described 

in the following sections. 

In this paper, Section 2 describes the problem statement, 

followed by a detailed solution approach in section 3. Section 

4 presents different models to predict RUL of turbo actuator, 

section 5 discusses the results and provides comparison on 

different RUL models. This is followed by a summary of the 

key conclusions of this effort and future work. 

2. PROBLEM STATEMENT 

Diesel engine efficiency, power, and emissions are sensitive 

to the ratio of air flow rate to fuel flow rate delivered to the 

cylinders. The air flow rate is largely determined by engine 

speed and pressurization of the air in the intake manifold 

which is completed by the turbocharger. As such, the 

turbocharger plays a leading role in both engine performance 

and engine emissions.  
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Variable geometry turbochargers allow closed loop control of 

air flow rate by varying turbine stage as mentioned above. 

This is accomplished by commanding the position of the 

turbo actuator. A position sensor on the actuator is used to 

compare actual and commanded position and to adjust 

actuator motor inputs accordingly. 

Should the actuator be unable to accurately and promptly 

achieve its commanded position, tailpipe emissions could 

exceed regulatory limits. Many governmental agencies 

require that this be signaled to the operator using a dash lamp 

and the recording of ‘fault codes’ in the engine control 

module to advise service technicians that the actuator must 

be replaced. Unfortunately, under most circumstances the 

dash lamp is illuminated without prior warning. This leads to 

unplanned downtime, and in some cases to termination of the 

vehicle’s mission. 

The problem to be solved is to provide guidance on when an 

actuator should be proactively replaced to avoid the cost and 

inconvenience of an unexpected fault code and its impact of 

vehicle operation. As described in the following section, this 

can be accomplished by RUL modeling, supported by data 

recorded within the engine control module, historical records 

of past actuator failures, and subject matter expertise. 

3. APPROACH 

3.1. Definition of Data 

Our analytics effort is focused on transit bus engines in the 

United States and Canada. Two main data sources were used: 

(a) Reliability data and (b) Engine snapshot data. Reliability 

data was originally collected for the purpose of warranty 

claim filing and payment (Lawless, Hu &Cao, (1995)). 

Reliability data provides particulars of the engine that 

experienced turbo actuator failure and when the failure 

occurred. Reliability data includes name of the bus fleet 

owner, engine details such as engine type, date of 

manufacture, serial number, service date, vehicle 

identification number, and all warranty claims for each 

engine such as date of repair, odometer reading at repair, type 

or repair, parts replaced, location of repair shop, repair 

explanation by the service technician.  

Engine snapshot data was collected from the engine’s 

electronic control module (ECM) during service events to 

assist the service technician in troubleshooting the fault code. 

Availability of these snapshots are subject to connecting the 

ECM device at an authorized workshop. The engine snapshot 

data includes a list of active and inactive fault codes and 

frequency of their trigger and the number of times the control 

system entered engine protection mode to name a few – high 

coolant temperature, high intake air temperature. Snapshot 

content also includes data used by the manufacturer to 

associate failures with duty cycle effects. Some of the duty 

cycle parameters available include histograms of engine 

speed – engine load combinations, metrics of vehicle speed, 

and similar. 

We utilized duty cycle, engine age, and usage features in our 

study. These features are listed in our previous work 

(Mckinley, Somwanshi, Bhave &Verma (2020)). Some of the 

significant features considered are: Engine months since 

build, Fleet failure rate, Engine hours per month, Engine 

runtime hour, Average vehicle speed, Coolant temperature 

and Engine miles.  

This study is interested in predicting turbo actuator failures 

in the engine’s late life (i.e., when engine has aged and run 

certain miles), due to different wear out failure modes. 

Hence, we consider data from most recent engine snapshot 

till the first occurrence of the wear out failure, instead of 

random failure engine snapshots.  

3.2. Analytics Model approach  

Figure 2 depicts an overall approach taken to build an 

analytics model to find the useful life of the component – 

Turbo actuator. The approach illustrates 3 steps of modeling. 

They are:  

Step 1. Capturing turbo actuator degradation conditions and 

identifying failure  

Step 2. Building different RUL models capturing different 

details and variation in the data and identifying the model 

best suited to predict the life.  

Step 3. Performing error analysis to choose the best model to 

predict the remaining life for the non-failures to help identify 

the failure time in miles for that component.  

 
Figure 2. Analytics Modeling Approach 

Capturing turbo actuator degradation conditions involve 

assessing the parameters such as Engine age, Engine 
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operational hours, Average engine run per hours and Average 

miles per hour. As this study is interested in finding wear out 

failures due to engine age, we consider the data from most 

recent engine snapshot till the first occurrence of the wear out 

failure, instead of random failure engine snapshots. The first 

occurrence of wear out failure is identified by a look up in 

warranty claim data.  Wear out failures are assumed to occur 

after a certain number of engine hours i.e., threshold engine 

hour, whereas random failures occur prior to the chosen 

threshold engine hour.  

Once the failure data and records are identified, we continue 

with the Step 2 by building different models and executing 

tasks such as data exploration, feature creation, outlier 

treatment, model training and model validation. Three types 

of RUL models were trained on different parameters that 

capture variations in the data from the engine snapshot and 

reliability data. One of those models is a statistical model 

while the other two are deep learning architecture-based 

models. In this paper we call attention to the state-of-the-art 

deep learning model – “TabNet”, a deep learning library by 

Google Research. Deep learning-based approaches use 

failure data to train the model and then predict the time of 

failure for all the non-failures whereas statistical model 

considers both failure and non-failure data and predict time 

of failures for the non-failures.  

In Step 3, we undertake performance analysis of all the three 

developed models to select the one having the minimum 

error. That model was then applied to predict the remaining 

useful life in miles for the non-failure observations. To carry 

out the error analysis, we utilized the ground truth i.e. the 

failure data. 

3.3. Feature Engineering 

Feature engineering is a crucial and foundational step to 

machine learning and statistical studies to create ingenious 

features to assist the model building process by capturing 

variations using multiple variables and minimize information 

loss. Moreover, a good feature engineering process also helps 

us to reduce the model error. Following are the details of 

engineered and inventive features that were engineered 

before training the model. 

We utilized the data sources (a) Reliability data and (b) 

Engine snapshot data defined in 3.1 to narrow down on the 

features.   

Engineered Feature 1: Engine derating is the reduction of 

an engine's output due to less-than-ideal operating 

conditions. Derating sometimes is done intentionally when 

you want to prolong the engine's life and avoid substantial 

wear or damage. Due to less than ideal operating engine’s 

output, Engine derating directly affects the engine, over a 

period. Also, it is observed that electrical turbo systems 

require additional coolant systems to avoid overheating for 

their smooth operations (Feneley, Pesiridis & Andwari 

(2017)). During exploration of the data we observed, effect 

of coolant temperature and Engine Derate on the turbo 

actuator failures and identified that there is a confounding 

effect between two explanatory variables – Coolant 

temperature and Engine Derate.  

Low Engine Derate and high Coolant Temperature 

conditions contributed significantly to the turbo actuator 

failures. Figure 3 shows a multivariable (coolant temperature, 

Engine Derate and Failure and non-failure) scatter plot. The 

plot indicates that if we divide the interaction between these 

two variables by plotting two axes that will help us in 

differentiating failures and non-failures which are color 

coded in the plot. Quadrant 4 does have maximum failures 

occurring with specific range of Coolant temperature and 

Engine Derate. By applying a regular expression, we created 

a new variable – Coolant Derate, basis the interaction of these 

two variables.  

Engineered Feature 2: We calculated the correlation 

coefficients of different duty cycle parameters to select most 

effective features, instead of dimensionality reduction 

techniques. This simple yet effective method was used to 

make feature creation and selection, more explainable. In 

Figure 4, we plotted the interaction plot that indicates the 

interaction of the three parameters – Climbing time, High 

speed time and light load time in identifying the failures. The 

highlighted areas indicate failures. This signifies that high 

highspeed time, low light load time and high climbing time 

had impact on the turbo actuator failures.  The time 

mentioned in the below plot is the percent times the engine 

was at light load, high speed and climbing, out of the total 

trip time. These parameters correlation coefficients were 

calculated which is listed out in the Table 1. 

 
Figure 3. Feature Engineering 1 – Exploration of Coolant 

Temperature and Engine Derate parameters 
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Figure 4. Feature Engineering 2 – Three-dimensional plot 

for Climbing time, High Speed time, Light load time 

 

Table 1. Feature correlation matrix 

Feature 1 Feature 2 Co-

relation 

Low speed time Low speed medium 

torque 

0.93 

High speed time High speed high torque 0.91 

High speed time Cruise mode time 0.70 

Climbing time High speed time 0.27 

Climbing time Low speed time 0.11 

*High correlation- any one variable can represent 

*Low correlation- can use both the variables 

Post this assessment we chose the following features:  

Low speed medium torque, Cruise mode time, Climbing 

time, Key switch cycles, Engine speed in miles per hour, 

Engine Age, Total Engine operational Hours, Fleet failure 

rate, Number of Days since occurrence of secondary fail 

code, Coolant temperature and Coolant Derate. Most of the 

features are operational features as they are the good indicator 

of a component’s state at any given point in time 

During the model-building phase, the analytical model learns 

failure probability of the component through the failure and 

latest engine snapshots with the help of captured/engineered 

feature values. 

4. RUL MODELS  

This section showcases three models that we developed to 

predict “Remaining Useful Life” of Turbo actuator. We 

present the details of these models in below subsections. 

4.1. Deep Learning Model 

Use of deep learning algorithms for remaining useful life 

(RUL) estimation based on telemetry data is very frequent. It 

has been proven that traditional multi-layer perceptron 

(MLP) approach for modeling the remaining useful life of a 

component based on the history is superior to the reliability-

based approaches. 

 
Figure 5. Fully connected network 

Hence, we decided to use the deep learning architecture for 

prognostics that was already presented (Babu, Zhao and Li 

(2016), Yilmaz and Kaynar (2011)). Our data and the way it 

was spread across time, was the challenge to build deep 

learning-based solutions. Our data consisted of Engine image 

data where two images were not separated by constant time 

factor and it was sparse which was spanned across years. 

Most of the deep learning architectures work well when the 

data points are either separated by 1 second, 1 minute, 1 hour 

or 1 day. Hence we trained the deep learning model by 

converting our problem into more of regression based 

problem, where we knew the miles that unit had travelled 

before the failure. So, we built a model to predict the miles 

that the unit would travel before the failure of Turbo 

actuators. This was a challenging problem to solve as few 

data points were captured very close to the failure and few 

were captured distant from the failure. This resulted into high 

range of prediction which in turn induced extreme prediction 

error. Figure 6 depicts extreme predictions of deep learning 

model. 
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Figure 6. Prediction errors of deep learning model 

Deep learning model was trained only on the failure data as 

the ground truth of only failure data points was known to us. 

This posed a limitation to train and build the model. Table 2 

lists results of the model.  

 

Table 2. Deep learning model outcomes 

 

Training Error 

MAE 12200 Miles 

RMSE 12600 Miles 

Testing Error 

MAE 14000 Miles 

RMSE 14500 Miles 

4.2. TabNet 

We implemented degradation model to predict remaining 

useful life of turbo actuator using TabNet(Arik and Pfister 

(2019), Xu, Yu, Yan & Xu (2020)). TabNet is a high-

performance and interpretable canonical deep tabular data 

learning architecture. The TabNet uses sequential attention to 

choose features at every decision step, enabling more 

efficient learning for the salient features too. Relevant 

features are selected by using multiplicative sparse masks on 

inputs. Our dataset consisted of sparse features indicating 

indirect implication of other components failure or days 

before the engine was in service before Turbo actuator 

failure, etc. which we wanted the model to consider as salient 

features. The TabNet proved to be suitable choice for the 

implementation as in TabNet, its attention module is trained 

to select feature amongst vast normalized vector of input 

features and in later stage, the feature transformer consumes 

the selected features for overall embedding. Although the 

architecture is empirically motivated it was worth a try to 

compare it with other methods.  

TabNet architecture has three major components as shown in 

the figure 7. 

1. Attentive Transformer – It explains how much each feature 

has contributed before the current decision step. 

2. Mask – It obtains global feature importance by performing 

feature aggregation 

3. Feature transformer – It transforms the features basis their 

interactions. Step1 is encodes the features and Step2 decodes.  

 
Figure 7. TabNet Architecture 

To make use of TabNet regressor that is built on a deep 

learning framework we did modify our problem statement. 

We created a TabNet multi-regressor class and modified the 

problem into a regression problem. Remaining useful life 

parameter was our target variable and all set of complete 

input features were independent variables. The regressor was 

only trained on failures and then the model was applied to 

predict failed miles for non-failures. Hyperparameters of 

TabNet regressor were tuned on the failure data basis 2 

metrics - a validation score and root mean squared error. A 

validation score is defined as mean percentage deviation of 

all the data points.  

Validation Score = Mean (sum (abs (Predicted - True))/ 

sum(true))  

Out of the total dataset we had 25% failure data points to train 

the model. Those points were again divided into training and 

validation. Where 20 percent points were kept aside for 

validation. Figure 8, 9 and Table 3 present results of TabNet 

regressor. 
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Figure 8. Convergence of the TabNet Model 

 
Figure 9. Error distribution of the TabNet Model- Actual 

values are masked and error buckets are considered instead 

 

Table 3. TabNet model outcomes  

 

Training Error 

MAE 10000 Miles 

RMSE 10500 Miles 

Testing Error 

MAE 12000 Miles 

RMSE 12500 Miles 

 

4.3. Accelerated Weibull Failure Time (AWFT) Model  

Warranty terms and conditions are generally based upon 

calculated risks of failure. Many companies and design 

engineers utilize a statistical tool called life data analysis 

otherwise known as Weibull Analysis to determine 

component failure.  By determining the risk of a product or 

component failure, the manufacturer can better estimate 

warranty costs over time and assign a corresponding warranty 

period. Weibull Analysis is a methodology used for 

performing life data analysis.  Life data is the result of 

measurements of a product’s life. Depending upon the 

product or industry, product life data is calculated in hours, 

miles, number of cycles or other metrics used to establish a 

measure of successful function of a product.  

 

Most companies in business today monitor warranty costs 

and product failure rates. The goal is to reduce warranty costs 

and possible loss of brand equity. In addition, information 

gathered using a Weibull Analysis allows the manufacturer 

to plan for any known costs or set the proper warranty terms. 

Weibull Analysis is an effective method of determining 

reliability characteristics and trends of a population using a 

relatively small sample size of field or laboratory test data 

(Zhang (2016)). Life data is the result of measurements of a 

product’s life. Weibull analysis has two important parameters 

– a) The “scale parameter”. It is called the scale parameter 

because in the Weibull age reliability relationship it scales the 

value of age, t. That is, it stretches or contracts the failure 

distribution along the age axis. Its value and unit are 

determined by the unit of age, t, (e.g. hours, miles, fuel 

consumed, rounds fired, etc.). and b) The “shape parameter”, 

is also known as the Weibull slope. This is because the value 

is equal to the slope of the line in probability plot. Different 

values of the shape parameter can have marked effects on the 

behaviour of the distribution. In fact, some values of the 

shape parameter will cause the distribution equations to 

reduce to those of other distributions. For example, 

when slope = 1, the probability distribution function of the 

three-parameter Weibull reduces to that of the two-parameter 

exponential distribution. The slope parameter is a pure 

number (i.e., it is dimensionless).  

We model the failure rate in Weibull analysis through a 

hazard function (Conditional density given that the event in 

question has not yet occurred prior to time t.) which can be a 

function of component age in years, in miles, operational 

hours etc. Our survival variable is Miles.  

4.3.1 Hazard function for Weibull Shape and Scale 

regression model  

The basic structure of the Weibull regression model has 

distribution of time to event, T, as a function of multiple 

covariates. This is also called the accelerated failure-time 

model because the effect of the covariate is multiplicative on 

time scale and it is said to “accelerate” survival time. In 

contrast, the effect of covariate is multiplicative on hazard 

scale in the proportional hazard model.  Weibull regression 

model can be written in both accelerated and proportional 

forms, allowing for simultaneous description of treatment 

effect in terms of HR and relative change in survival time 

(event time ratio) (Lin (2018)). Accelerated Failure Time 

model (AFT model) is a parametric model that provides an 

alternative to the commonly used proportional hazards 

models. Whereas a proportional hazards model assumes that 

the effect of a covariate is to multiply the hazard by some 

constant, an AFT model assumes that the effect of a covariate 

is to accelerate or decelerate the life course of a disease by 

some constant. This is especially appealing in a technical 
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context where the 'disease' is a result of some mechanical 

process with a known sequence of intermediary stages. The 

main assumption of an AFT model is that survival time 

accelerates by a constant factor when comparing different 

levels of covariates (Saikia & Pratim (2017)).  

To assess the model performance, we used different metrics 

such as MSE, RMSE and Concordance. Although MSE and 

RMSE and MAPE are used in most of the regression 

problems we used Concordance as our main model 

performance indicator during this study.  

Concordance is like accuracy as a metric, but it is more of a 

ratio. Concordance explains the variance of the model that we 

develop. For example, if we have several features, out of 

which feature-pairs on interaction that add value to the model 

either for detecting fail/non-fail correctly these number of 

feature pairs / total number of feature pairs is calculated as 

concordance. Usually the MAPE and RMSE values are 

expected to be lower for a model to be a good fit but the 

concordance value is expected to be higher. Table 4 

showcases the features used and their significance Figure 10 

shows the predicted vs. actual graph with median prediction 

considered to calculate the error. 

Table 4. Feature importance – The actual importance values 

are masked but the significance was obtained using pvalues 

Features Significance 

Engine hours per month Very High 

Coolant Derate Very High 

High Speed Low torque High 

Average Vehicle speed High 

Engine load Medium 

Idle fuel used Medium 

 

 
2 Due to the organization’s confidentiality rules, actual values could not be 
presented in the papers. Instead, representative terminologies such as low, 

medium and high have been used, wherever applicable. 

 
Figure 10. predicted vs. actual graph2 

Figure 11 and Table 5 provide error distribution of the WFT 

model. If we look at the error distribution, then 34% error is 

in the low and very low bucket. This error is calculated basis 

the failures only. Here are the values of other metrics. 

 

Table 5. Error distribution of WFT model  

Training Error 

MAE 9000 Miles 

RMSE 9500 Miles 

Testing Error 

MAE 12000 Miles 

RMSE 12500 Miles 

 
Figure 11. Error distribution of the WFT model – Actual 

Values are masked, and error buckets are considered instead 
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5. COMPARISON OF THE MODELS  

This subsection we discuss comparison of all three models 

we developed and explain the process of validation. Figure 

12 depicts validation graph of Deep learning, TabNet and 

WFT models. 

The objective of our model is to predict the remaining useful 

life for a predictive maintenance interval selection. But this 

interval will be selected according to a bus fleet. The failure 

rate for every bus fleet can be different and hence the 

maintenance interval can be different too. Hence it is 

important to validate the model on fleet level. The X axis of 

the graph shows the miles and Y axis of the graph shows 

failure probability. Failure probability indicates how many 

percentage units for a particular fleet will fail by certain 

number of miles 

Now if we look at all the models built, WFT gives the best 

prediction at on or before between low to medium miles. The 

failure percentage curve is closer to the actuals than any other 

model’s prediction. We extrapolated the actual curves due to 

unavailability of quality data post warranty period and hence 

a two-point extrapolation method is used to identify the 

failure curve, post warranty period. WFT model regresses 

well with the extrapolated curve till medium miles and at 

50% failure rate. For us 50% failure rate is high enough to 

identify or schedule a maintenance interval. The slope of the 

two-point extrapolated curve is high because of the high 

failures between last few miles of warranty period and hence 

it shows an aggressive failure percent estimation stating 

every unit would fail till high miles. So, we selected the 

model which is closer to the actual data at the end of warranty 

period miles. WFT outperforms the other two models at the 

selected point miles and hence it is our selected model. 

 

Figure 12. Validation graph of Deep learning, TabNET and 

WFT models 

Table 6. - Summary of comparison of WFT, TabNet and 

RNN 

 WFT TabNet RNN 

Training data All data 

points 

Only Failures Only failures 

Performance 

at high failure 

rate 

Satisfactory Good Good 

Performance 

at low failure 

rate 

Better than 

TabNet and 

RNN 

Satisfactory Satisfactory 

Performance 

on new data 

Good Satisfactory Satisfactory 

Out of time 

validation 

Low RMSE Relatively 

high RMSE 

High RMSE 

Dependencies Low High High 

Feature 

importance 

Feature 

significance 

can be 

obtained 

based on p 

values 

Feature 

importance 

extraction is 

difficult 

Feature 

importance 

extraction is 

difficult 

 

6. CONCLUSION 

The objective of this study was to demonstrate that Turbo 

actuator life in miles during the warranty period could be 

predicted with an acceptable error using available data.  The 

results will allow preventive replacement of sensors using 

generic fleet specific maintenance intervals. 

 

- The study also compared the simple generic model (AWFT) 

with other deep learning models like TabNet and Recurrent 

Neural Networks (RNN). We had also established a 

hypothesis that the AWFT model will perform better than 

Deep learning technique due to nature of the available data. 

The results that we got prove this assumption right.  

 

The results mentioned in the study show that this has been 

accomplished, setting the stage for preventive replacement of 

sensors using either unit specific life prediction or fleet 

specific maintenance intervals basis the predicted life failure 

probability curve. This was a challenging task, since Turbo 

Actuators have multiple failure modes, some of which are 

due to random events. Keys to success include Minimizing 
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the influence of random failures, which comprise about 10% 

of all failures during the warranty period, by screening out 

failures occurring prior to an acceptable threshold engine 

hours. This allowed model training to focus on prediction of 

life basis more predictable wear-out failure modes. Using 

exploratory analysis in conjunction with subject matter 

expertise to rapidly accelerate feature engineering and the 

screening of features to be included in the model. Including 

system interactions through the consideration of prior failures 

(warranty claim fail codes and fault codes). Next steps also 

include preparing the model for production so that business 

benefits can be achieved through a precise estimate of 

developed remaining useful life model. The prediction of 

failure timing in miles can be improved by tuning the model 

by getting more data and identifying more failures. The 

techniques developed and proven here will also be reapplied 

to other key engine components. 
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8. NOMENCLATURE 

Table 7. Nomenclature  

Sr.NO Abbreviation Definition 

1 XGBoost eXtreme Gradient Boosting 

2 WFT Weibull Failure Time 

3 RNN Recurrent Neural Network 

4 AFT Accelerated Failure time 

5 WAFT Weibull Accelerated Failure 

Time 

6 HR Hazard Rate 

7 OBD On-board diagnostics 

8 MAE Mean Absolute Error 

9 RMSE Root Mean Squared Error 

10 MAPE Mean Absolute Percentage 

Error 

11 DL Deep Learning 

12 RUL Remaining Useful Life 

13 MLP Multilayer Perceptron 

14 ReLU Recti Linear Unit 
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