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ABSTRACT 

Data-driven based prognostics approaches are currently 

attracting unprecedented attention. Targeting towards more 

flexibility, statistical model based prognostics, which present 

more transparency and usually incorporate statistical models 

with stochastic filtering, are studied in this paper. 

Traditionally, versions of Kalman filters and Particle filters 

are combined with a single statistical model. However, the 

service life of a bearing undergoes several health stages, such 

as a normal stage, a slight degradation stage, and a severe 

degradation stage. Thus, a single model cannot represent well 

the full degradation process of a bearing. As such, the concept 

of Multi-Model Estimation (MME) has been introduced in 

the field of Condition Monitoring (CM) of rotating 

machinery. Initially the Switching Kalman Filter (SKF) has 

been proposed, combining three linear statistical models, 

based on the Classic Kalman filter (CKF), which on the other 

hand might be insufficient for nonlinearity estimations. In 

this paper, in order to overcome the drawbacks of the CKF, 

we extend the MME from the CKF to nonlinear system 

estimation techniques, such as the Extended Kalman Filter, 

the Unscented Kalman Filter and the Particle Filter. 

Additionally, in the proposed multi-model methodology, 

twelve statistical models are studied and used for automatic 

model switch. The methodology is tested and evaluated on 

fifteen experimental datasets and it can be concluded that the 

extended MME outperforms the classic switching Kalman 

Filter. 

1. INTRODUCTION 

Condition Monitoring (CM) attracts significant attention due 

to high industrial interest and economic potentials. Generally, 

CM includes three stages: fault detection, fault diagnosis, and 

fault prognosis. Fault detection and diagnosis provide 

respectively the existence and the root cause of machine 

defects. In view of a complete optimized maintenance 

strategy, it is important to monitor the machine status and 

estimate the Remaining Useful Life (RUL) in order to avoid 

sudden breakdowns and accidents. 

Typically, prognostics literature can be categorized in three 

main methodology groups: the physics-based, the data-driven 

and the hybrid methods (Meng and Li 2019). Physics model-

based approaches describe the parts’ or the machine’s 

degradation by explicit equations or Finite Element Models 

(FEM). However, these models are usually associated with 

numerous parameters, e.g., the material, the geometry, the 

speed, the load, etc. In contrast to the physics-models where 

a precise model is needed, data-driven models do not need 

detailed physical knowledge and accurate degradation 

evolution. On the contrary, data-driven methods are more 

flexible and their performance rely more on the quality of the 

collected data. In the state of the art, data-driven approaches 

are divided into the statistical model-based ones and the 

machine learning ones. Machine Learning (ML) is capable in 

general to learn the hidden information based on huge amount 

of data. It’s possible to predict the RUL without the need of 

accurate mathematical models and signal processing 

techniques. However, the structure of neural networks seems 

like a black-box and the output is still hard to be interpreted 

in a physical sense. 
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Considering the flexibility and the cost of model construction, 

statistical model based approaches can be preferred. A data-

driven methodology relying on the Extended Kalman Filter 

(EKF) and monitoring indicators (e.g. variance and Choi-

Williams transform) has been proposed and evaluated on an 

experimental degradation dataset (Singleton, Strangas, and 

Aviyente 2015). Moreover the Unscented Kalman Filter 

(UKF) has been combined with self-organizing maps for 

bearing prognostics and has performed better than the EKF 

on an experimental dataset (Jin et al. 2019). Furthermore a 

Kalman smoother has been applied on a selected Health 

Indicator (HI) for prognostics of a high-speed shaft bearing 

of a wind turbine (Saidi et al. 2018). As explained above, the 

machinery’s Health Status (HS) might go through several 

stages, e.g., the normal condition (healthy), the slightly 

degraded condition (pitting), and the extended damage (spall). 

Thus, Multi-Model Estimation (MME) has been proposed to 

overcome the deficiency of the classic stochastic filtering, 

which tracks the extracted HI using a single model. A 

Switching Kalman filter (SKF) (Lim and Mba 2015) 

estimated a bearing’s RUL by three constant state space 

models to represent: a constant trend, a linear trend and a 

polynomial trend. At different HS (healthy condition, gradual 

wear, and accelerated wear), the corresponding model is 

switched. However, the classic SKF utilizes three linear 

models to track the degradation stages and as a result it can 

easily fail to work in the case of complex and higher 

nonlinearities. Thus, a multi-mode estimation (Wang, Yan, 

and Gao 2018) has been also derived for RUL prediction 

using a linear model and a nonlinear model. 

In this paper, a MME based prognostics method, combining 

different prognostic indicators, estimators and statistical 

models, is proposed. The contribution of this paper consists 

mainly of the following two aspects: 

1) Apart from the widely used in the state of the art 

exponential models, polynomial models are introduced 

for bearings’ RUL estimation. In particular, the mixture 

of exponential and polynomial models are proposed to 

remedy the weakness of a single exponential model or a 

single polynomial model. 

2) In order to overcome the weakness of the classic SKF in 

the case of high nonlinearities, the Multi-Model 

Estimation (MME) is extended to advanced versions of 

Kalman Filters and Particle Filters, : EKF, UKF, 

Ensemble Kalman Filter (EnKF), PF, Auxiliary PF (APF) 

and Rao-Blackwellized PF (RBPF), combining a library 

of nonlinear statistical models. 

The rest of the paper is organized as follows: in Section 2, the 

applied HIs, the theory of estimators and the proposed MME 

are introduced. Then, an experimental dataset is detailed in 

Section 3. In Section 4, the proposed methodology is applied 

and the RUL prediction results are subsequently discussed. 

Finally, the conclusions of the paper are presented in Section 

5. 

2. THEORY 

In this section, the applied HIs are firstly reviewed. Then, 

advanced versions of Kalman Filters and Particle Filter are 

briefly presented. Furthermore, the classic SKF and the 

proposed MME are explained. 

 

Figure 1. Flowchart of statistical model based prognostics 

 

Before detailing each individual step, the methodology of 

statistical model based prognostics is presented in Figure 1. 

The flowchart mainly involves four key steps: (1) HI 

extraction, (2) Statistical model, (3) Estimator, and (4) 

Failure Threshold. Firstly, data is measured on the monitored 

machine (e.g. a wind turbine, a motor, etc.), which runs under 

an operating condition. The acquired historical datasets (e.g. 

from N bearings) are used as training data and a number of 

HIs can be calculated. In order to improve the RUL prediction 

performance, a high quality HI is selected, based on the 

training data, considering their trendability and 

prognosability (Jamie, Coble, Hines 2009). Then, the 

statistical model and the failure threshold can be determined. 

When new data is captured from the on-line operating 

machinery, the selected HI will be extracted.Moreover, the 

HI of the testing data is loaded to the estimator and the 

statistical model, e.g. the corresponding model parameters, 

can be online (almost real-time) updated. Finally, by the 

extrapolation to the predefined failure threshold, the 

estimated RUL is calculated. 
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2.1. Prognostics indicator extraction 

As shown in Figure 1, HI extraction is the first step after the 

data acquisition. Thus, it plays a vital role for the future RUL 

estimation. To guarantee the quality of the prognostics HI, a 

large set of HIs is analyzed and their performance is 

compared based on the criteria of trendability and 

prognosability. 

2.1.1. Applied HIs 

In order to capture different types of defects (e.g. localized 

faults presenting high impulsiveness, distributed faults 

presenting low impulsiveness etc.), an extended number of 

HIs are extracted in the aspect of entropy and sparsity. In the 

end, they are compared with some classic statistics indicators, 

e.g. RMS, Kurtosis (K), Peak to Peak (P2P) and Spectral 

Kurtosis (SK). Due to the text limitation, the applied 

indicators will be very briefly introduced and their details can 

be found in the given references. 

1) Spectral Entropy 

Spectral or Shannon Entropy (𝑆𝑝𝑒𝑐𝐸) measures the disorder 

of the spectrum of a signal (Pan, Chen, and Li 2009). 

2) Spectral Negentropy 

Spectral Negentropy (𝑁𝑒𝑔𝐸), equal to the reverse of Entropy, 

measures the order of data. It deals not only with impulsive 

events but also with repetitive transients. The NegE of the 

Squared Envelope (SE) 𝐼𝑆𝐸 , the Squared Envelope Spectrum 

(SES) 𝐼𝑆𝐸𝑆 and their average form  𝐼1/2, are used in Infogram 

(Antoni 2016) . 

3) Spectral Flatness 

Spectral Flatness (𝐹𝑠𝑝𝑒𝑐), also termed as Wiener entropy, has 

been widely applied in the audio processing (Gray and 

Markel 1974). 𝐹𝑠𝑝𝑒𝑐 is a measurement of likeliness between a 

signal and white noise. Following 𝐹𝑠𝑝𝑒𝑐, Flatness is extended 

on the SE (𝐹𝑆𝐸) and the SES (𝐹𝑆𝐸𝑆). In the case of a signal 

having high impulsiveness, Flatness presents a low value. 

4) Spectral Sparsity 

Sparsity is a measure of few non-zero elements of a raw or 

matrix. It can be quantifies by different indicators: 𝐿2/𝐿1, 

𝐿1/𝐿0 , Gini index and Quasi-Arithmetic Means (QAM) 

(Hou et al. 2021). 𝐿2/𝐿1 is mathematically equivalent with 

SK. 𝐿1/𝐿0  and Gini index ( 𝐺𝑖𝑛𝑖 ) are less sensitive to 

outliers. QAM exhibits an earlier detection and a better 

degradation tendency than other sparsity indicators (Hou et 

al. 2021). All sparsity indicators are calculated on the SE and 

the SES. In Table 1, they are given as: 𝑋𝑆𝐸𝑆 and 𝑋𝑆𝐸𝑆, where 

𝑋 is the corresponding sparsity indicator. Details of 11 QAM 

(QAM1, QAM2, …, QAM11) indicators can be found in 

(Hou et al. 2021). 

 

Table 1. Library of applied HIs. 
 

  Applied HIs 

Entropy 𝑆𝑝𝑒𝑐𝐸 1) 𝑆𝑝𝑒𝑐𝐸 

𝑁𝑒𝑔𝐸 2) 𝐼𝑆𝐸 3) 𝐼𝑆𝐸𝑆 4) 𝐼1/2 

Flatness 5) 𝐹𝑆𝑝𝑒𝑐 6) 𝐹𝑆𝐸 7) 𝐹𝑆𝐸𝑆 

Sparsity 𝐿2/𝐿1 8) 𝐿2/𝐿1𝑆𝐸 9) 𝐿2/𝐿1𝑆𝐸𝑆 

𝐿1/𝐿0 10) 𝐿1/𝐿0𝑆𝐸 11) 𝐿2/𝐿1𝑆𝐸𝑆 

𝐺𝑖𝑛𝑖 12) 𝐺𝑖𝑛𝑖𝑆𝐸 13) 𝐺𝑖𝑛𝑖𝑆𝐸𝑆 

𝑄𝐴𝑀 14) 𝑄𝐴𝑀1𝑆𝐸 15) 𝑄𝐴𝑀1𝑆𝐸𝑆  

16) 𝑄𝐴𝑀2𝑆𝐸 17) 𝑄𝐴𝑀2𝑆𝐸𝑆  

18) 𝑄𝐴𝑀3𝑆𝐸 19) 𝑄𝐴𝑀3𝑆𝐸𝑆 

20) 𝑄𝐴𝑀4𝑆𝐸 21) 𝑄𝐴𝑀4𝑆𝐸𝑆  

22) 𝑄𝐴𝑀5𝑆𝐸 23) 𝑄𝐴𝑀5𝑆𝐸𝑆   

24) 𝑄𝐴𝑀6𝑆𝐸 25) 𝑄𝐴𝑀6𝑆𝐸𝑆  

26) 𝑄𝐴𝑀7𝑆𝐸 27) 𝑄𝐴𝑀7𝑆𝐸𝑆  

28) 𝑄𝐴𝑀8𝑆𝐸 29) 𝑄𝐴𝑀8𝑆𝐸𝑆  

30) 𝑄𝐴𝑀9𝑆𝐸 31) 𝑄𝐴𝑀9𝑆𝐸𝑆  

32) 𝑄𝐴𝑀10𝑆𝐸 33) 𝑄𝐴𝑀10𝑆𝐸𝑆  

34) 𝑄𝐴𝑀11𝑆𝐸 35) 𝑄𝐴𝑀11𝑆𝐸𝑆 

2.1.2. Prognostics HI selection 

To select a high quality prognostics HI, the 35 indicators 

presented in Table 1 are combined with a 1/3-binary tree, 

which is regularly used in diagnostic tools such as Fast 

Kurtogram, Infogram and Sparsogram. Vibration signals are 

firstly decomposed into many sub-signals of different 

frequency bands. Then, Kurtosis, Negentropy and Sparsity of 

these sub-signals are calculated. Thus an extended library of 

HIs is extracted, based on the 35 indicators calculated on all 

decomposed sub-signals. Then, data from N training bearings 

are analyzed and N curves are calculated, in each specific 

frequency band for each HI of Table 1. It is important to 

select the HI from a specific frequency band which presents 

the highest trendability (TRD) and prognosability (PRG) 

(Jamie, Coble, Hines 2009). TRD reflects how early and well 

the degradation tendency is. PRG measures the variance of 

the failure points of HIs, which are linked with the failure 

threshold setting. Good TRD and PRG will finally improve 

the performance of the RUL prediction. Therefore, a score of 

the average TRD and PRG is set to select the HI. 

2.2. Versions of estimators 

Kalman Filters and Particle Filter belong to the typical 

stochastic filtering approaches. Gaussian noise is assumed in 

the process and in the measurements. In a prediction step, the 

priori estimation and the uncertainty are produced. When a 
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new measurement becomes available, the posteriori 

estimation is updated.  

1) Classic Kalman Filter 

The Classic Kalman Filter (CKF) has been proposed for a 

linear system, which is perturbed by errors that coincide with 

the Gaussian noise (process noise and measurement noise). 

2) Extended Kalman Filter 

The Extended Kalman Filter (EKF) has been proposed for a 

system with low nonlinearities. After linearizing the state 

transition function and the observation function, a Jacobian 

matrix is calculated at each time step. In this way, the 

estimation of the nonlinear system is changed to a linear 

system. 

3) Unscented Kalman Filter 

In order to remedy the problem of EKF in the case of high 

nonlinearities, the Unscented Kalman Filter (UKF) uses a 

number of samples and the corresponding weights to 

approximate the state and the covariance. 

4) Ensemble Kalman Filter 

The Ensemble Kalman Filter (EnKF) (Roth et al. 2017) is a 

Monte Carlo approximation of the Kalman Filter. Using a set 

of samples (or particles), the state covariance in the Kalman 

gain matrix can be replaced by the sample covariance. 

Compared to the Particle Filter, the EnKF is more efficient 

by avoiding the resampling step. 

5) Particle Filter  

The Particle Filter (PF) estimates the state by many particles. 

After the propagation of these particles, the Probability 

Density Function is updated by a resampling strategy. 

Particles with low likelihood are rejected and only high 

weight particles are kept. 

6) Auxiliary Particle Filter  

The Auxiliary Particle Filter (APF) (Arulampalam et al. 

2002) is an improved PF dealing with the deficiencies of 

classic PF, such as the tailed observation density. Instead of 

blindly draw particles from the prior density, APF favors 

particles from a joint distribution, which combines not only 

the prior density, but also the likelihood by incorporating the 

measurement in the update step. 

7) Rao-Blackwellized Particle Filter  

Rao-Blackwellized PF (RBPF) (Mustière, Bolić, and 

Bouchard 2006) marginalizes the probability distribution of 

the state rather than the direct sampling from the 

multivariable probability distribution. In particular, it can be 

more efficient for higher dimension of the states, which 

requires normally more particles using generic PF. 

2.3. Proposed Multiple Model Estimation (MME) 

Traditionally, the Switching Kalman Filter (SKF) (Lim and 

Mba 2015) determines the model states with several 

dynamical models in parallel. The states and the probability 

of each model are computed using the CKF at each time step. 

Then, the estimated states are a combination of the 

contribution of 𝑛  models. In the referred source, three 

constant state space models (zero, 1st and 2nd order Kalman 

filter) are used to represent respectively the stationary trend, 

the linear trend and the polynomial trend. 

Although the SKF has been proposed to overcome the 

disadvantages of tradition single model estimation, it 

estimates the models’ states using the CKF, which might fail 

to track the severe damage by the constant state transition 

matrix. Therefore, instead of the CKF, it is worthy to 

investigate the estimation with other versions of KF and PF. 

In addition, three constant state space models of the SKF have 

the same dimension and physical meaning so that the 

estimated states of one model can interact with another 

model. From this point of view, many nonlinear models of 

the state of the art cannot be jointly integrated. To tackle this 

problem, the proposed MME follows the strategy of a Multi-

Mode Estimation (Wang et al. 2018), which merged two self-

selected models: a linear model and a nonlinear model, to the 

PF. In the end, the model is switched by comparing the 

likelihood of different models. 

 

Figure 2. Principle of extended MME 

 

In Figure 2, the principle of the extended MME is illustrated. 

At step k, the state 𝑥𝑘, i.e., 𝑥𝑘,1, 𝑥𝑘,2, … , 𝑥𝑘,𝑝, is prepared for 

a library of statistical models: 𝑀1 , 𝑀2 , … , 𝑀𝑝 . By 

incorporating the models with the versions of estimators, 

presented in the section 2.2, and the measurement 𝑧𝑘+1, the 

state at step 𝑘 + 1  is estimated for each model, that is, 

𝑥𝑘+1,1, 𝑥𝑘+1,2, … , 𝑥𝑘+1,𝑝 . Unlike the classic SKF, which 

restricts the three constant state space models, the proposed 

Model probablity update

  + 

  + ,   + ,   + , 

Estimator

 

Measurement   + 

  

   2   

   + ,   + ,   + , 

   ,   ,   , 
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strategy can integrate any number of statistical models 

together. The estimation of these models are computed in 

parallel. By comparing the likelihood between the estimation 

and the new measurement, the model with the highest 

likelihood will be automatically switched. 

A library of statistical models (indexed in format of ‘Mx’, 

x=1,…, 12) in Table 2 are merged to the proposed MME 

strategy presented in Figure 2. In order to have a thorough 

study, these 12 statistical models cover not only the most 

frequently used exponential models (‘Exp’), e.g. M3, M4 and 

M6, but also two Polynomial models (‘Poly’). Additionally, 

to overcome the limitation of a single model, e.g. in the case 

of a HI with multiple characteristics or a set of HIs with 

different natures, the mixture types of exponential and 

polynomial models (‘Exp’+‘Poly’) are proposed. The 

parameters 𝑎 , 𝑏 , 𝑐 , 𝑑  (with subscripts) stand for the model 

parameters, 𝑡 is the time index. 

Table 2. Library of statistical Models. 
 

  Model equation 

‘Poly’ M1 𝑎 ∙ 𝑡 + 𝑏 

M2 𝑎 ∙ 𝑡2 + 𝑏 ∙ 𝑡 + 𝑐 

‘Exp’ M3 𝑎 ∙ 𝑒𝑏∙𝑡 

M4 𝑎 ∙ 𝑒𝑏∙𝑡+𝜗−𝜎
2 2⁄  

M5 𝑎 ∙ 𝑒𝑏∙𝑡
2
 

M6 𝑎 ∙ 𝑒𝑏∙𝑡 + 𝑐 ∙ 𝑒𝑑∙𝑡 

‘Poly’ 

+ 

‘Exp’ 

M7 𝑎1 ∙ 𝑡 + 𝑏1 + 𝑎2 ∙ 𝑒
𝑏2∙𝑡 

M8 𝑎1 ∙ 𝑡 + 𝑏1 + 𝑎2 ∙ 𝑒
𝑏2∙𝑡

2
 

M9 𝑎1 ∙ 𝑡 + 𝑏1 + 𝑎2 ∙ 𝑒
𝑏2∙𝑡 + 𝑐2 ∙ 𝑒

𝑑2∙𝑡 

M10 𝑎1 ∙ 𝑡
2 + 𝑏1 ∙ 𝑡 + 𝑐1 + 𝑎2 ∙ 𝑒

𝑏2∙𝑡 

M11 𝑎1 ∙ 𝑡
2 + 𝑏1 ∙ 𝑡 + 𝑐1 + 𝑎2 ∙ 𝑒

𝑏2∙𝑡
2
 

M12 𝑎1 ∙ 𝑡
2 + 𝑏1 ∙ 𝑡 + 𝑐1 + 𝑎2 ∙ 𝑒

𝑏2∙𝑡 + 𝑐2 ∙ 𝑒
𝑑2∙𝑡 

3. EXPERIMENTAL DATA 

The experimental test rig (Wang et al. 2020) consists of an 

AC motor, a motor speed controller, support bearings, a test 

bearing and hydraulic loading. The tested bearings have an 

outer race diameter equal to 39.80 mm, an inner race diameter 

29.30 mm and dynamic load rating 12.82 kN. Experimental 

datasets are captured in three operating conditions: C1 (2100 

RPM, 12 kN), C2 (2250 RPM, 11 kN), C3 (2400 RPM, 10 

kN). The horizontal and vertical vibration data are 

simultaneously acquired with a sampling frequency of 25.6 

kHz. The measurements are recorded for 1.28 seconds with 

an interval of 1 minute. Finally, five degraded bearings have 

been recorded for each operating condition. These 15 

bearings are indexed in format of ‘BCI’, B: bearing, C: 

condition, I: bearing index). 

 

Figure 3. Experimental test rig. 

4. RESULTS AND DISCUSSION 

In this section, the extracted HIs and the RUL prediction 

results are presented. 

4.1. Extracted prognostics health indicator 

Sequences of five bearings are available in each operating 

condition. Data of the four bearings are iteratively chosen for 

training and data from the fifth one are used for testing. Then, 

based on the predefined score mentioned in Section 2.1.2, the 

prognostics HI is selected for each test bearing. The 35 HIs 

presented in Table 1 are firstly calculated using the 

experimental data. The extracted SK of the B11 is displayed 

in Figure 4 (a), where the B14 demonstrates an extreme 

increase at the end stage, while the B11, B12 and B13 show 

a worse (fluctuating and decreasing) tendency after the 

middle stage. However, by analyzing the Figure 4 (b) it can 

be concluded that the selected HI for the B11 shows an 

increasing trend almost since the beginning, and the ‘thr’ 

from the other four bearings nearly coincides with the end 

point of B11. In addition to the visual check, it can be seen in 

Table 3 that the score of the QAM is much higher than the 

four classic HIs: RMS, Kurtosis (K), Spectral Kurtosis (SK), 

and Peak to Peak (P2P). Regarding the other bearings, the 

selected HIs are vividly unveiled in Figure 5. QAM presents 

a better performance compared to the candidate HIs. 

 

Figure 4. HIs of B11, (a) SK, (b) QAM1 
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Table 3. Library of statistical Models. 
 

 RMS K P2P SK QAM 

Score 0.675 0.319 0.755 0.324 0.937 

 

 

Figure 5. Selected features for the three conditions 

4.2. RUL estimation results 

Using the extracted HIs of the training datasets, the failure 

threshold is set equal to the averaged end point. After the 

preparation of the prognostics HI, the statistical models and 

the failure threshold, the model parameters can be 

continuously updated and the RUL is on-line calculated by 

the extrapolation to the threshold. Due to space limitation, 

only the B11 results are presented here. The RUL calculated 

by the classic SKF is firstly given. Then, the estimated results 

by all models listed in Table 2 and the estimators mentioned 

in Section 2.2 are presented. In the end, the comparison of the 

extended MME with the classic SKF and the comparison of 

the different models and the estimators are summarized. 

 

Figure 6. (a) HI estimation (b) RUL estimation of B11 by the 

classic SKF 
 

In Figure 6, the estimated HI and the RUL estimated by the 

classic SKF are shown respectively in (a) and (b). The real 

HI exhibits a slight increase before 20 (x 1 min) but then is 

stabilized between 30 (x 1 min) and 60 (x 1 min). After that, 

the HI increases steeply till around 80 (x 1 min). At the last 

stage, the real HI displays more or less a stable tendency. The 

HI estimations by three constant models: zero order (‘M01’), 

1st order (‘M02’) and 2nd order (‘M03’) follow a similar path. 

The probability of each model can be seen in Figure 7 (a). 

‘M01’ has almost the highest probability before 60 (x 1 min), 

which means that the machine status for this period is 

recognized as healthy. From 60 (x 1 min) to around 80 (x 1 

min), the ‘M02’, standing for the slight wear, is computed as 

the most probable model. After that, the ‘M01’ is switched 

again at the last stage. The switched model, corresponding to 

the model probability, is shown in Figure 7 (b). Based on               

i) the information of the estimated HI (Figure 6), ii) the RUL 

estimated by ‘M01’, ‘M02’ and ‘M03’ (Figure 6) and iii) the 

information of the most probable model (Figure 7 (b)), the 

switched HI and RUL are calculated and described in Figure 

8 (a) and (b). The section of the estimated RUL by the ‘M01’ 

has a relative large error, as no trend can be extracted by a 

zero order model. Thus, the RUL estimation only converges 

closer at around 20 (x 1 min) and at the period of 60 (x 1 min) 

to 80 (x 1 min), when the 1st order model is switched. 

 

Figure 7. (a) Probability (b) Most probable model of three 

linear models by the classic SKF on B11 

 

Figure 8. (a) Switched HI estimation (b) Switched RUL 

estimation of B11 by classic SKF 
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Figure 9. HI estimation of B11 by 12 models and (a) EKF (b) 

UKF 
 

Before presenting the switching results based on the proposed 

methodology, the estimations by different models (in Table 

2) are firstly compared. In Figure 9 (a), the real HI (‘rHI’) is 

estimated by the EKF and the 12 models (‘M1’, …, ‘M12’) 

of Table 2. M1 follows the general trend of the real HI, while 

M6 estimates the curve with a large error before 20 (x 1 min) 

and then converges closer to ‘rHI’ at around 40 (x 1 min). 

After that, possibly due to the linearization of EKF, the 

estimation becomes diverse till 60 (x 1 min).  Further, the 

other 10 models, including the proposed mixture types (M7, 

M8, …, M12), track almost similarly close to ‘rHI’. For the 

UKF with the same 12 models, ‘M1’ estimates the HI quite 

similar with the EKF. Regarding ‘M4’, the curve by the UKF 

has been significantly improved, especially with less 

fluctuations between 20 (x 1 min) and 80 (x 1 min). Thus, it 

is rather possible that the severe fluctuation in Figure 9 (a) 

arises from the linearization of the EKF.  

Accordingly, the RUL estimation of the 12 models are 

compared for each estimator, which is exhibited in Figure 10, 

11 and 12, respectively. For the estimated RULs in Figure 10 

(a), the ‘M6’ with the EKF has serious fluctuations between 

40 (x 1 min) and 50 (x 1 min), which coincides with the 

estimated HI in Figure 9 (a). After that, the estimated RUL 

cannot converge well to the real RUL. Another noticeable 

curve ‘M4’ indicates a prolonged RUL while time goes on. 

Besides, ‘M3’ estimates the RUL well before 40 (x 1 min), 

then starts to diverge far from the real RUL. Further, ‘M5’ 

performs good prediction before 90 (x 1 min), but 

overestimates the RUL at the last stage. Finally, it can be 

found that the proposed mixture models (‘M7’, ‘M8’, …, 

‘M12’) converges closer to the real RUL than the popular 

exponential models, a visual difference is obviously seen 

before 60 (x 1 min). For UKF estimation in Figure 10 (b), 

‘M4’ and ‘M6’ discloses large estimation error, while ‘M1’ 

and ‘M3’ track almost along the real RUL. Compared to ‘M2’ 

and ‘M5’, estimations by mixture models (dash lines) 

approach closer to the real RUL. In Figure 11 (a), ‘M3’ and 

‘M9’ combined with EnKF attain relative good RUL 

estimation. Like other estimators, ‘M4’ and ‘M6’ fail to 

extrapolate useful RULs for B11, while the mixture models 

gain superior performance than ‘M1’ and ‘M5’. Regarding 

classic PF in Figure 11 (b), ‘M3’ and ‘M5’ have similar 

estimation with EnKF. The mixture models have better 

prediction than ‘M2’ and ‘M5’. In Figure 12 (a), the 

estimated RUL by APF has similar performance with classic 

PF. ‘M3’ and ‘M9’ converge closer to real RUL compared to 

other models. Yet, the estimation by ‘M4’ is significantly 

improved compared to the classic PF, it converges to real 

RUL at the last stage. In Figure 14 (b), although ‘M3’ and 

‘M9’ still win the best prediction in RBPF, the performance 

of other curves (e.g. ‘M7’ and ‘M8’) differs slightly from the 

classic PF and APF. The bump between 40 (x 1 min) and 60 

(x 1min) is a bit higher than other versions of PF. 

Furthermore, ‘M2’ and ‘M5’ estimate more accurate than 

classic PF and APF. 

 

Figure 10. RUL estimation of B11 by 12 models and (a) EKF 

(b) UKF 

 

Figure 11. RUL estimation of B11 by 12 models and (a) 

EnKF (b) PF 
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Figure 12. RUL estimation of B11 by 12 models and (a) APF 

(b) RBPF 
 

As explained in Section 2.3, the model is continuously 

switched by comparing the maximal likelihood of 12 models. 

In Figure 13 (a) and (b), switching EKF and switching UKF 

has quite similar switched models. ‘M12’ and ‘M5’ switch 

frequently before 40 (x 1 min). Then, from 50 (x 1 min) till 

the end, ‘M2’ and ‘M8’ hold for a long period. Analyzing 

Figure 13 (c), (d) and (e), models are changed more 

frequently between ‘M1’ and ‘M12’, it is caused by the 

strategy of particles. A large amount of particles are 

randomly generated from a prior distribution, during the 

particles’ propagation, the estimation of different models 

may have a higher or lower likelihood to the measurement. 

However, the enhanced PF, switching RBPF in Figure 13 (f) 

has less switching frequency than other versions of PF. The 

model is firstly switched to ‘M9’ and ‘M11’ before 20 (x 1 

min), then use ‘M4’ to 50 (x 1 min). From around 70 (x 1 

min) on, ‘M5’ is chosen till the end. 

 
Figure 13. Switched model from M1 to M12 by (a) SEKF (b) 

SUKF (c) SEnKF (d) SPF (e) SAPF (f) SRBPF 

 

Utilizing the information of switched models, the HI and 

RUL can be switched from 12 models for each estimator, 

which are performed in Figure 14 (a) and (b). The switched 

HI tracks well the real HI in Figure 14 (a). Before 80 (x 1 

min), switching EKF and UKF show a relative smooth RUL, 

both curves deviate far from real RUL before 20 (x 1 min), 

then converge till 50 (x 1 min). After that, they start to have 

a decreasing life. Switching EnKF follows similar trend as 

SEKF and SUKF, but more closer to real RUL. However, 

switching PF presents more fluctuation due to the frequent 

switch, but estimates RUL more accurately before 40 (x 1 

min). By comparison, the estimated RUL by switching APF 

has a similar behavior with SPF. After the 80 (x 1 min), the 

RUL by switching RBPF convenes together with other 

switching estimators, however, it possesses a larger error 

between 20 (x 1min) and 50 (x 1 min). 

 

Figure 14. (a) Switched HI estimation (b) Switched RUL 

estimation of B11 by proposed approach 
 

To better compare the seven estimators of Section 2.2 and the 

twelve models of Table 2, the Root Mean Squared Error 

(RMSE) between the real RUL and the estimated RUL for 

the whole time are compared in Figure 15 (a) and (b). In 

Figure 15 (a), 12 models and the proposed switched model 

‘sM’ are compared for each estimator. In the cluster of bars 

of EKF, ‘M9’ and ‘M1’ have the least error. Excepting the 

large error of ‘M4’ and ‘M6’, the proposed mixture models 

(‘M7’,…,’M12’) achieve equivalent or better performance 

than the classic exponential models. Analyzing other 

estimators, ‘M9’ and ‘M1’ win other models in most cases. It 

should be mentioned that the proposed ‘sM’ does not give the 

best RUL estimation, but surpasses many single models. In 

Figure 15 (b), the performance of estimators for each model 

is presented. For ‘M1’, PF achieves best RUL estimation, 

then APF and UKF follows. By contrast, EnKF surges the 

highest RMSE for ‘M1’, while RBPF and EKF reach a 

moderate performance. Checking all other models, EnKF 

shows less error for most of cases. In the view of model 

performance, ‘M9’ and ‘M3’ give out a relative smaller error 

than others. 
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Figure 15. RMSE comparison in the cluster of (a) estimators 

(b) statistical models 
 

In addition to the visual results for B11, comparisons of 

estimated RULs by the single models of Table 2 are 

summarized in Table 4. For each estimator, a value in format 

of ‘X/Y’ is given, where ‘X’ stands for the minimal RMSE 

of the 12 models, and ‘Y’ is the corresponding model index. 

For the bearing B11, although ‘M9’ has minimal error for 

most estimators, PF with ‘M1’ achieves the minimum error. 

Regarding the B12, ‘M9’ achieves still the least error in 

combination with UKF, EnKF and RBPF. However, the EKF 

with the ‘M3’ shows superior performance. Analyzing B13, 

‘M3’ performs best with almost all estimators. Checking all 

other bearings, it can be found that the ‘M9’ and ‘M3’ 

appears most frequently over all estimators. M1’ and ‘M6’ 

follow. In the aspect of an estimator with a single model, the 

EnKF achieves the best performance for the 15 bearings. 

Then, the APF and the UKF have a followed performance. 

Using the proposed MME strategy, the estimated RULs by 

switching MME and classic SKF are compared in Table 5. 

Switching RBPF and APF have won the most cases among 

the 15 bearings. It should be mentioned that the extended 

MME achieves better RUL than the classic SKF. 

Table 4. RMSE comparison of estimators with single model 
 

 EKF UKF EnKF PF APF RBPF 

B11 22.6/9 21.9/9 21.9/9 18.3/1 22.2/1 22.8/9 

B12 57.9/3 69.3/9 68.3/9 71.0/8 61.1/10 68.2/9 

B13 18.0/1 17.6/3 18.5/3 18.4/3 18.2/3 17.9/3 

B14 62.3/5 31.9/5 68.6/4 18.8/12 11.4/3 32.4/5 

B15 24.1/13 23.3/13 17.0/12 21.6/1 21.3/11 20.2/1 

B21 154.2/2 153.6/2 150.8/10 152.9/12 152.8/12 151.8/2 

B22 23.4/1 22.1/3 24.1/1 24.8/1 12.7/1 21.8/3 

B23 182.9/9 228.5/3 185.5/9 186.5/9 186.8/9 228.7/3 

B24 95.4/3 20.9/6 21.2/6 40.6/4 40.9/4 21.7/6 

B25 122.1/7 122.5/8 116.5/8 151.7/3 134.4/7 132.8/7 

B31 1.9e3/5 1.7e3/9 2.2e3/12 0.8e3/2 0.9e3/2 1.9e3/3 

B32 1.1e3/7 1.0e3/8 0.7e3/9 0.8e3/9 0.8e3 0.9e3/4 

B33 9e2/3 6e2/3 5e2/3 1.3e3/3 1.3e3/3 6e2/3 

B34 851.7/4 663.9/3 578.9/3 834.8/2 744.8/9 663.9/3 

B35 35.1/6 32.1/6 31.9/6 60.5/6 63.3/6 31.9/6 

 

Table 5. RMSE comparison of proposed switching MME 
 

 CKF EKF UKF EnKF PF APF RBPF 

B11 4.1e3 34.0 35.6 29.1 30. 0 35.5 50.7 

B12 4.3e3 80.4 76.3 79.5 78.2 70.5 68.4 

B13 2.7e3 91.3 92.8 65.3 61.6 45.9 3.0e3 

B14 3.6e3 117.0 126.3 665.5 1.8e3 891.1 168.2 

B15 3.6e3 24.1 23.3 30.3 23.6 22.4 29.5 

B21 4.3e3 167.2 163.1 700.9 177.9 667.9 347.1 

B22 3.4e3 67.3 66.6 55.6 50.0 44.3 45.0 

B23 3.9e3 469.5 1.9e3 452.2 298.7 271.3 925.7 

B24 2.9e3 144.6 140.2 149.3 124.6 145.3 150.1 

B25 3.7e3 296.1 161.0 383.1 775.1 164.9 139.1 

B31 2.4e3 2.3e3 2.2e3 2.3e3 2.4e3 2.4e3 2.4e3 

B32 2.5e3 1.9e3 1.5e3 1.7e3 1.3e3 1.6e3 2.2e3 

B33 4.4e3 2.3e3 3.1e3 3.0e3 3.4e3 3.3e3 2.5e3 

B34 3.3e3 3.1e3 3.2e3 2.8e3 3.4E3 3.4e3 2.9e3 

B35 2.8e3 188.4 187.9 216.3 189.0 185.4 183.4 
 

 

Table 6. ‘𝐸𝑟𝑟’ comparison corresponding to Table 4 
 

 EKF UKF EnKF PF APF RBPF 

B11 0.7 0.7 0.6 0.9 0.9 0.7 

B12 0.2 1.0 1.0 1.0 -0.7 1.0 

B13 -0.4 -0.1 -0.5 -0.5 -0.5 -0.2 

B14 -0.9 -1.0 1.0 -1.0 1.0 -1.0 

B15 0.7 0.7 0 0.9 0 0.6 

B21 -0.9 -0.9 -0.5 0.2 0.2 -0.9 

B22 0.3 -0.1 0.1 1.0 -0.4 0.2 

B23 0.7 1.0 8.1e-2 0.1 0.1 1.0 

B24 -1.0 0.9 0.9 1.0 1.0 0.9 

B25 0.4 0.4 0.6 1.0 0.8 0.3 

B31 3.0e-2 -0.6 -1.0 -0.5 -0.8 -0.5 

B32 -0.3 -0.3 7.9e-2 0.5 0.4 0.9 

B33 -1.0 -0.9 -0.9 -1.0 -1.0 -0.9 

B34 2.3e-2 0.7 0.6 1.0 1.0 0.7 

B35 -0.3 0.6 0.8 -1.0 -1.0 0.6 

 

In order to quantify the overestimation or the underestimation 

of the estimated RUL, the magnitude of error (‘ 𝐸𝑟 ’) 

(Botchkarev 2018), measuring the point distance between the 

real RUL (rRUL) and the predicted RUL (pRUL), is adopted. 

 

𝐸𝑟(𝑖) = 𝑎𝑅𝑈𝐿(𝑖) − 𝑝𝑅𝑈𝐿(𝑖)  (1) 

 

∆(𝑖) = {

1, 𝑖𝑓 𝐸𝑟(𝑖) > 0

−1, 𝑖𝑓 𝐸𝑟(𝑖) < 0

0, 𝑖𝑓 𝐸𝑟(𝑖) = 0

   (2) 

 

𝐸𝑟𝑟 =
∑ ∆(𝑖)𝐿
𝑖=1

𝐿
   (3) 

 

The performance of ‘𝐸𝑟’ at time index 𝑖 is given in equation 

(1). As shown in equation (2), if ‘𝐸𝑟’ is positive, ∆ is equal 

to 1. On the contrary, ∆ is -1 if the RUL is overestimated. In 

case the RUL is perfectly estimated, ∆ equals 0. To evaluate 

the overall performance of overestimation or underestimation 

for the whole estimation period, the criterion is further 

formulated as equation (3). If the overestimation occurs for 

the whole time indexes (𝑖 = 1,… , 𝐿), ‘𝐸𝑟𝑟’ is equal to -1. 

Yet, ‘𝐸𝑟𝑟’ is equal to 1 if the RUL of all time indexes are 
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underestimated. However, if the curve of the predicted RUL 

coincides with the actual RUL, ‘𝐸𝑟𝑟’ is equal to 0. 
 

Table 7. ‘𝐸𝑟𝑟’ comparison of proposed switching MME 
 

 CKF EKF UKF EnKF PF APF RBPF 

B11 -0.5 0.7 0.7 0.6 0.8 0.8 0.98 

B12 -0.6 0.9 0.9 0.9 0.9 0.96 0.99 

B13 3.8e-2 -0.8 -0.7 -0.7 -0.8 -0.8 -0.9 

B14 -0.6 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 

B15 0 0.7 0.7 0.1 0.4 0.2 0.4 

B21 -0.8 -0.4 -0.2 -0.8 -0.8 -0.6 0.3 

B22 -0.3 -0.3 -0.03 0.09 -0.2 -0.3 0.3 

B23 -0.6 0.2 -0.4 -0.3 -0.7 -0.6 -0.8 

B24 0.1 -1.0 -1.0 -0.3 -1.0 -1.0 -0.3 

B25 -0.3 0.8 1.0 0.8 1.0 0.9 0.6 

B31 -0.8 -0.9 -0.8 -0.9 -0.9 -1.0 -1.0 

B32 -0.8 -0.5 -0.4 -0.3 -0.1 0 -0.5 

B33 -0.8 -0.9 -0.9 -0.8 -0.9 -0.9 -0.8 

B34 -0.8 -0.9 -1.0 -0.8 -1.0 -1.0 -0.7 

B35 0.3 -0.2 0.2 0.11 0.7 0.7 0.7 

 

The ‘𝐸𝑟𝑟’ of equation (3), corresponding to the estimator and 

the model in Table 4 and 5, is compared respectively in Table 

6 and 7. In Table 6, it can be seen that the ‘𝐸𝑟𝑟’ of B11 

remains positive for all estimators and indicated models of 

the Table 4, which means that the overall RUL has not been 

overestimated for the whole estimation period. The high 

value (0.9) of PF and APF represents that most estimated 

RUL values are underestimated compared to the actual RUL. 

Analyzing all bearings of Table 6, a similar phenomenon 

appears for B12, B15, B22, B23, B25, B34 and B35, whereas 

the negative ‘𝐸𝑟𝑟’ of the other bearings signify that there are 

more overestimated than underestimated RULs. With respect 

to the proposed MME, the ‘𝐸𝑟𝑟’ of each bearing is compared 

in Table 7. It is clear to notice that the ‘𝐸𝑟𝑟’ of the CKF 

present negative value for almost each bearing. Thus, the 

estimated RULs by CKF deliver not only the large RMSE (as 

shown in Table 5), but also the issue of the overestimation (as 

Table 7). Yet, most algorithms of the B11, B12, B15, B25 

and B35 present positive ‘ 𝐸𝑟𝑟 ’. Besides, the ‘ 𝐸𝑟𝑟 ’, 

corresponding to the minimal RMSE in Table 4 and 5, is 

highlighted in Table 6 and 7. The 1 and -1 of ‘𝐸𝑟𝑟’ exhibits 

that the RUL is underestimated or overestimated for all time 

indexes, respectively. It should be also addressed that the 

‘𝐸𝑟𝑟’ with 0 in Table 6 and 7 do not stand for the perfect 

RUL estimation, but the large estimation error. In such a 

situation, the minimal ‘𝐸𝑟𝑟 ’ is caused in the aggregation 

phase, when the positive errors and negative errors cancel 

each other (Botchkarev 2018). However, combined with 

RMSE (as shown in Table 4 and 5), the falsely high accuracy 

by ‘𝐸𝑟𝑟’ can be recognized. In the face of drawbacks of 

RMSE, which evaluates only the overall estimation error, 

ignores the issue of the overestimation or underestimation, 

the deployed ‘𝐸𝑟𝑟’ helps to characterize this phenomenon. 

5. CONCLUSION 

In this paper, z multi-model based prognostics methodology 

is proposed and investigated on fifteen bearings. Firstly, by 

comparing a library of HIs (statistical indicators, entropy 

indicators and sparsity indicators), the quasi-arithmetic 

means achieve better trendability and prognosability than 

classical HIs. Secondly, a library of statistical models, 

including the state of the art exponential models and also the 

proposed mixture type of polynomial model and exponential 

model, are systematically investigated on each estimator. 

Through the comparison, the mixture type models and the 

Ensemble Kalman Filter perform well for the single model 

strategy, thus they can be potentially used for bearings’ 

prognostics in the future. Thirdly, considering the drawbacks 

of the classic Switching Kalman Filter, applied only using 

three constant state space models, several versions of multi-

model estimation are proposed and merge a library of 

nonlinear statistical models together. Although the proposed 

Multi-Model based prognostics only provides an 

intermediate performance, having not surpassed the best 

RUL estimation provided by the single model estimation, 

obtained from a particular model of the library, it can be 

mentioned that the proposed multi-model strategy supplies a 

solution for the challenge of model selection. 
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