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ABSTRACT 

Faults in the critical components of a turbomachine usually 

result in unplanned outage, leading to huge loss of 

properties and life. Condition monitoring becomes a 

promising tool to provide automatic early alerting of 

potential damage in critical components thus ensuring the 

system safety and reliability while lowering its maintenance 

cost. This is still a challenging hot topic due to the data 

imperfection and multivariate correlation, as well as the 

variation of faults and components in different 

turbomachines. In this paper, a condition monitoring 

method based on similarity-based model is proposed to 

solve these problems in fault prediction of large turbine 

machinery. Bayesian wavelet multi-scale reconstruction is 

proposed to address the potential noise in the sensed 

multivariate time historical data. The advanced signal 

processing balances the over-denoising and under-denoising 

of raw multivariate signals. An optimized auto-associative 

kernel regression (OAKR) approach is developed to 

represent the healthy status of the turbomachine system and 

further predict its responses under unknown status. The 

residual error between the estimated and measured values of 

the OAKR model will become the larger when the turbine 

machinery has an early fault. The statistical method of 

moving window is used to detect the change of mean square 

error of residuals over the time. When the mean square error 

exceeds a preset threshold, a fault mark will be given.  A 

comparison study is conducted to demonstrate the 

effectiveness and feasibility of the proposed methodology 

by using the real-world data and events collected from a 

centrifugal compressor.  

Keywords: Bayesian wavelets, OAKR, turbomachine, fault 

prediction  

1. INTRODUCTION 

Faults in a large-scale turbomachine such as gas turbine, 

steam turbine, or compressor usually result in unplanned 

outage and even huge loss of properties and life in the fields 

of power generation, oil & gas, and petrochemistry 

industries. As the quick development of high-performance 

computing capacity and artificial intelligence (AI) 

algorithms in the past decade, real-time condition 

monitoring system (CMS) has become an increasingly 

important tool in improving the safety, reliability and 

performance of a turbomachine, while reducing its 

unplanned breakdown, and lowering its maintenance costs. 

In the past decades a wide spectrum of data-driven 

predictive analytics methods like time series forecasting, 

machine learning and artificial neural network models have 

been developed to predict faults in condition monitoring of a 

turbomachine (Caselitz 2015, Bennouna 2005, Zaher 2009). 

These methods are generally composed of two main steps, 

1) establishment of a high-fidelity predictive model to 

produce the system response and then 2) determination of a 

decision threshold to produce alarms when the system 

response is deviated too much from the actual measurement. 

Besides existing uncertainties in sensor data, both model 

establishment and threshold determination contain 

uncertainties, which would impact the fault prediction 

accuracy of a turbomachine to some degree. Therefore, it 

has become of key importance to accurately predict the fault 

for condition monitoring of a turbomachine considering 

various uncertainties.  

Recently the auto-associative kernel regression (AAKR) 

method has been developed as a similarity-based model 

(SBM) for condition monitoring and fault alerting in large-

scale turbomachines (Garvey 2007, Di Maio 2013, Fei 

2015, Sairam 2016, Yu 2017, Guo 2011, Brandsæter 2017, 

Qian 2018, Baraldi 2015). This approach utilizes 

multivariate historical data collected at normal conditions to 

establish a system identification model representing the 
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physical system at the healthy status. The yielded model is 

then used to predict multivariate responses of the system 

under unknown conditions. A health index calculated from 

the difference of predicted responses and actual 

measurements is employed to quantitively assess the status 

of the system. This approach has demonstrated its high 

accuracy, flexibility and generalization with a broad 

spectrum of applications in various types of equipment 

(Garvey 2007, Di Maio 2013, Fei 2015, Sairam 2016, Yu 

2017, Guo 2011, Brandsæter 2017, Qian 2018, Baraldi 

2015). It can be effectively applied not only for non-rotating 

equipment such as boiler in a coal plant (Yu 2017), and gear 

box in a wind turbine (Guo 2011), but also for rotating 

machines such as bearings in engine (Brandsæter 2017), and 

blades in compressor or steam turbines (Qian 2018).  

Unlike other parametric regression models in machine 

learning or nonparametric AI methods, the AAKR approach 

doesn’t require any prior knowledge on the system or 

component under investigation. It provides a generic 

flexible nonparametric system identification approach to 

fault prediction in different multivariate scenarios of a 

complicated physical system. However, this approach has 

three main drawbacks. First, it is highly sensitive to the 

uncertainties existing in the sensor data such that it may 

produce a number of false alarms and even missing events. 

Second, the band width parameter in the kernel function of 

AAKR needs to be tuned from historical sensor data. An 

improper selection of the band width would result in 

inaccurate fault prediction. Third and the last, the 

subjectivity and variation in the general threshold 

determination play a key role on fault prediction of large-

scale turbomachines. Recently some researchers have 

developed a hybrid model to partially address the above-

mentioned issues by combining signal processing 

techniques with the AAKR method (Di Maio 2013, Yu 

2017, Brandsæter 2017, Baraldi 2015). For instance, Di 

Maio (2013) employed the correlation analysis and generic 

algorithm to classify the signals and then applied AAKR for 

fault prediction using the classified signals. Yu (2017) 

averaged the prediction results obtained from multiple 

AAKR models to alleviate the effect of outcome variations 

on prediction accuracy. Brandsæter (2017) combined the k-

means clustering and AAKR estimation approaches to 

improve the computation efficiency of the model. (Baraldi 

2015) revised the weights of AAKR model to reduce the 

correlation of multiple variables. However, none of these 

has addressed its sensitivity to uncertainties in the data, 

modeling and thresholding.  

It should be noted that determination of an alarming 

threshold also plays a critical role on fault prediction 

accuracy of the AAKR approach. Several techniques such as 

sequential probability ratio test (SPRT) (Di Maio 2013, Fei 

2015, Qian 2018), likelihood ratio test (Sairam 2016), and 

empirical estimation (Guo 2011) are commonly used to 

determine the alarming threshold level. These methods are 

statistical methods, which take the statistical characteristics 

of the unit during normal operation as health indicators to 

monitor the unit operation status in real time.  

In this study a discrete wavelet packet transform is first 

employed to decompose a set of raw time series signals into 

multi-resolution approximations and details through wavelet 

functions in the time-frequency domain. The Bayesian 

hypothesis testing is then applied to judge whether any 

noise exists in each decomposed coefficient series. The 

adept combination of multiresolution wavelet analysis and 

probabilistic Bayesian assessment (Jiang 2007) is able to 

trade-off the under-denoising and over-denoising of the raw 

signals, which outperforms the traditional soft or hard 

thresholding approach in the wavelet fashion. Furthermore, 

this paper presents a reinforced OAKR method by 

integrating advanced signal processing, probabilistic 

principal component analysis, AAKR kernel parameter 

optimization and adaptive thresholding to address the 

aforementioned issues of the traditional method for 

turbomachine fault prediction.  

In the following sections, the data preprocessing of 

Bayesian wavelet denoising is introduced. The data 

preprocessing is employed to remove the potential noise 

from the raw data thus improving fault prediction accuracy. 

The simplex method is employed to adaptatively obtain the 

optimal band width of kernel function in the conventional 

AAKR, resulting in the OAKR model. A generic 

implementation procedure is developed to automate the 

application process of the proposed methodology for 

turbomachine fault prediction. The data and event collected 

from a real-world centrifugal compressor is used to 

demonstrate the effectiveness of the proposed Bayesian 

OAKR model. Finally, the conclusion is provided. 

2. BAYESIAN OAKR METHOD 

2.1. Bayesian multiresolution analysis thresholding 

Wavelet multiresolution analysis works like a mathematic 

microscope broadly used to exploit details in the time series 

signals (Jiang 2010, Qibing 2013). Unlike the traditional 

Fourier transform where only the frequency features are 

extracted from the signals, the wavelet analysis decomposes 

the raw signals into different levels of coefficients in both 

time and frequency domains through a series of wavelet 

functions. In particular the discrete wavelet packet 

transform (DWPT) simultaneously splits the obtained 

approximation and detail coefficients from one level to the 

next, thus decomposing the raw signals into multiresolution 

levels of details for subsequent analysis. 

In this paper, the wavelet packet decomposition is used to 

process the signal, and the signal whose wavelet coefficient 

is less than a certain threshold value is regarded as noise. 

After removing the noise, the inverse wavelet 
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transformation is carried out to reconstruct it to the time 

domain signal for subsequent fault identification. 

Given a time series with N points for a sensor variable in the 

turbomachine, 𝑥𝑖(𝑖 = 1,2, … , 𝑁) , the DWPT approach 

decomposes it into a set of scaling coefficients 𝑠𝑗(𝑘)  and 

wavelet coefficients 𝑤𝑗(𝑘)  simultaneously. Note that the 

parameter i represents the time point in this formulation. 

The time series can be expressed in the summation of 

discrete decomposition coefficients as follows: 

𝑥𝑖 = ∑∑[𝑠𝑗
𝑗∈𝑍𝑘∈𝑍

(𝑘)𝜑𝑗,𝑘(𝑖) + 𝑤𝑗(𝑘)𝜓𝑗,𝑘(𝑖)] (1) 

where j is the number of decomposition levels, k is the 

coefficient point, and 𝜑𝑗,𝑘(𝑖) and 𝜓𝑗,𝑘(𝑖) are the k-th scaling 

and wavelet functions at time point 𝑖 of the j-th level. Refer 

to Jiang (2007) for details of the DWPT decomposition. 

Assuming the signal 𝑥𝑖  is contaminated by the additive 

white Gaussian noise ε𝑖  with the mean of zero and the 

standard deviation of 𝜎2, i.e., ε𝑖  ~𝑁(0, 𝜎2). The time series 

𝑥𝑖 can be expressed as: 

𝑥𝑖 = 𝑔𝑖 + ε𝑖，  𝑖 = 1,2, … , 𝑁 (2) 

where the 𝑔𝑖 is noiseless time series. The item ε𝑖 is also split 

into a series of noise coefficients ε𝑗𝑘  together with the 

decomposition of signals 𝑥𝑖. For the sake of formulation, let 

𝑑𝑗𝑘  represent the j-th level and k-th coefficient of 𝑠𝑗(𝑘) or 

 𝑤𝑗(𝑘), given by 

𝑑𝑗𝑘 = �̂�𝑗𝑘 + 𝜎𝑗ε𝑗𝑘, 𝑗 = 𝑗0, … , 𝐽 − 1;    𝑘

= 0,1, … , 2𝑗 − 1 
(3) 

where the noise item ε𝑗𝑘~𝑁(0,1) is the independent random 

variable, �̂�𝑗𝑘  is the decomposition coefficient after 

denoising and 𝜎𝑗 is the standard deviation of 𝑑𝑗𝑘.  

Note that this paper does not focus on the characteristics of 

signals in a certain wavelet band, but removes the low 

energy noise signals in each frequency band according to 

the threshold value. In addition, considering that this paper 

is focused on the mechanical fault, it is mainly manifested 

as the overall persistent or periodic deviation from normal 

operation of response characteristics. Therefore, the actual 

fault characteristic signals will show higher wavelet energy. 

The signal with low wavelet energy is regarded as noise, 

which will not affect the actual fault diagnosis. 

Equation (3) can be expressed as the conditional probability 

distribution given by  

  𝑑𝑗𝑘|�̂�𝑗𝑘 , 𝜎𝑗
2 ∼ 𝑁(�̂�𝑗𝑘 , 𝜎𝑗

2)     (4) 

Bayes is introduced here because it can deal with the 

uncertainty of the data (Fenton 2011), but Bayes requires 

prior information, and we usually don't have any prior 

information about noise. 

Assuming a random binary variable 𝛾𝑗𝑘  with the Bernouli 

distribution 𝜋𝑗, we have  

 𝑃(𝛾𝑗𝑘 = 1) = 1 − 𝑃(𝛾𝑗𝑘 = 0) = 𝜋𝑗      (5) 

where 𝜋𝑗  is usually chosen as 0.5 (Jiang 2007). Thus, an 

uninformative prior on the coefficient is given as 

�̂�𝑗𝑘|𝛾𝑗𝑘 ∼ 𝑁(0, 𝛾𝑗𝑘𝜏𝑗
2)       (6) 

According to Bayes theorem, the posterior distribution of 

�̂�𝑗𝑘 can be obtained as follows (Jiang 2007)  

�̄�𝑗𝑘|𝛾𝑗𝑘 , 𝑑𝑗𝑘 , 𝜎𝑗
2 ∼ 𝑁 (𝛾𝑗𝑘

𝜏𝑗
2

𝜎𝑗
2+𝜏𝑗

2 𝑑𝑗𝑘 , 𝛾𝑗𝑘

𝜎𝑗
2𝜏𝑗

2

𝜎𝑗
2+𝜏𝑗

2)     (7) 

Based on Eq. (7), the posterior likelihood ratio of γjk = 0 

and γjk = 1, i.e., so-called Bayes factor, is calculated by 

𝜂𝑗𝑘 =
1−𝜋𝑗

𝜋𝑗

(𝜎𝑗
2+𝜏𝑗

2)

1
2

𝜎𝑗
2 𝑒𝑥𝑝 (−

𝜏𝑗
2𝑑2

𝑗𝑘

2𝜎𝑗
2(𝜎𝑗

2+𝜏𝑗
2)

)       (8) 

Refer to Jiang (2007) for details of the derivative of Eq. (8). 

For each 𝑑𝑗𝑘, the Bayes factor 𝜂𝑗𝑘 is calculated to evaluate 

whether 𝑑𝑗𝑘  equals to zero or not. The value 𝜂𝑗𝑘 >1 is in 

support of 𝑑𝑗𝑘 =0. Otherwise, we have 𝑑𝑗𝑘 = �̂�𝑗𝑘 . The 

denoised coefficients are then used to reconstruct a clean 

time series �̂�𝑖 from Eq. (1) for subsequent analysis. 

2.2. Optimized AAKR Approach 

Auto-Associative Kernel Regression (AAKR) approach is a 

kind of similarity-based nonparametric modeling technique, 

which estimates the system response based on the similarity 

between measurement and memory vectors (Garvey 2007, 

Guo 2011). In comparison to other nonparametric 

approaches such as neural network, this method can be 

trained easily with the historical measurement, independent 

of the fault modes and equipment types, therefore, it 

provides a generic multivariate system identification 

approach for condition monitoring and fault prediction of 

industrial equipment. 

In this study, the data obtained after denoising was used to 

train AAKR. The memory vector for the model training is 

stored in a matrix 𝐘, in which Y𝑖,𝑗  is the i vector of the j 

variable, and Y𝑗 corresponds to the variable �̂�𝑖 obtained after 

denoising as described in the previous section. For the 𝑛𝑚-

th memory vector, the matrix 𝐘 can be expressed as 

𝐘 =

[
 
 
 

Y1,1 Y1,2

Y2,1 Y2,2

⋯ Y1,𝑝

⋯ Y2,𝑝

⋮ ⋮
   Y𝑛𝑚,1 Y𝑛𝑚,2

⋱ ⋮
⋯ Y𝑛𝑚,𝑝]

 
 
 

      (9) 

The 1 × 𝑝  monitoring response vector 𝐲  of the 

turbomachine is expressed as 
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𝐲 = [y1 y2 ⋯ y𝑝]    (10) 

The model prediction can be obtained by averaging each 

memory vector in the matrix 𝐘𝒏𝒎,𝒑  whose weights are 

estimated by using the healthy data. This paper proposes the 

optimized AAKR approach (so-called OAKR) by consisting 

of the following four steps.  

First, calculate the commonly used Eurlean distance 

between the monitoring vector 𝐲 and each memory vector 𝐲𝑖 

to produce a 𝑛𝑚 × 1 distance vector d, given by  

𝑑𝑖(𝐘𝑖 , 𝐲) = √(∆Y𝑖,1)
2
+ (∆Y𝑖,2)

2
+ ⋯+ (∆Y𝑖,𝑝)

2
    (11) 

Second, obtain the 𝑛𝑚 × 1 weight vector w through fitting 

the Gaussian kernel function as follows 

𝐰 = 𝐾ℎ(𝐝) =
1

√2𝜋ℎ2
𝑒

−𝒅2

ℎ2⁄
     (12) 

where the parameter h is the band width of the kernel 

function, which determines the smoothing level of the 

function. A smaller h can display more details in the data 

but fails to yield smooth tail of the function, while a larger h 

can produce relatively smoother transaction but lose details 

in the system identification, resulting in more false alarms in 

the condition monitoring of turbomachines. Therefore, the 

selection of the band width h plays a critical role on the fault 

prediction accuracy in condition monitoring of industrial 

equipment. 

Third, obtain the optimal band width through automatically 

minimizing the mean squared error of the model prediction 

using a set of new health data and Nelder-Mead 

optimization algorithm, thus reduce the possibility of false 

alarms of equipment condition monitoring, as described in 

next section. 

Forth and the last, estimate the response �̂�  by using the 

weights matrix w and the monitoring vector 𝐲𝑖, as follows 

�̂� =
∑ (𝑤𝑖𝐘𝑖)

𝑛𝑚
𝑖=1

∑ 𝑤𝑖
𝑛𝑚
𝑖=1

        (13) 

It is observed from the OAKR formulation that this SBM 

approach is related to the measured data only, independent 

of the fault and equipment under monitoring. As a result, 

this approach provides a generic powerful tool for condition 

monitoring of the industrial equipment. During the model 

establishment the health data representing as many scenarios 

as possible are usually used to make the model robust.  

2.3. Nelder-Mead Optimization 

In this study, the AAKR method is improved by 

automatically selecting the optimal band width to minimize 

the model prediction error. The Nelder-Mead (NM) simplex 

algorithm is proposed to achieve this purpose due to its 

simplicity and effectiveness for online implementation 

(Lagarias 1998, Liao 2015). The NM algorithm is one of the 

heuristic optimization methods proposed by Nelder and 

Mead (1965), which does not require any mathematical 

derivative of the objective function but very effective in 

dealing with nonlinear and multi-dimensional problems 

(Liao 2015). The algorithm doesn’t require derivative 

calculation but a few function values at each iteration, 

which makes it computationally very efficient and 

applicable for online implementation. It generally converges 

in a few iterations. Therefore, it is especially popular for the 

optimization problem where the derivative of an objective 

function is hardly obtained explicitly.  

According to Lagarias et al. (1998), the NM algorithms 

requires the predefined coefficients for four operations: 

reflection (𝜌), expansion (𝜒), contraction (𝛾) and shrinking 

(𝛼). In this study the commonly used values 𝜌 = 1, 𝜒=2, 

and 𝛾 = 𝛼 = 0.5 are taken, and five steps in one iteration is 

described below for illustration of the NM simplex 

algorithm.  

Step 1 Order: determine the order of the objective function 

f(h) for the band width h in vertices n+1 of the simplex 

algorithm, such that 

𝑓(ℎ1) ≤ 𝑓(ℎ2) ≤ ⋯ ≤ 𝑓(ℎ𝑛+1)     (14) 

where ℎ𝑛+1 represents the simplex value for next iteration, n 

is the number of simplexes, and f(h) is the mean square error 

(MSE) between the prediction output and measurement 

data, calculated by 

𝑓(ℎ) =
1

𝑁

1

𝑀
∑ ∑ (𝑦𝑚

𝑀
𝑚=1 −𝑁

𝑛=1 �̂�𝑚(ℎ))2       (15) 

where N is the number of samples, M is the number of 

model variables, and 𝑦𝑚  and �̂�𝑚  are the measurement data 

and model output of the m-th variable, respectively.  

Step 2 Reflection: obtain the reflection value ℎ𝑟 by 

 ℎ𝑟 = (1 + 𝜌)ℎ̅ − ℎ𝑛+1      (16) 

where ℎ̅ =
1

𝐾
∑ ℎ𝑖

𝐾
𝑖=1  is the mean of the K best points. If 

𝑓(ℎ1) ≤ 𝑓(ℎ𝑟) < 𝑓(ℎ𝑛) , then obtain the optimal band 

width ℎ𝑜𝑝𝑡 = ℎ𝑟  and terminate the iteration. Otherwise, go 

to next step. 

Step 3 Expansion: obtain the expansion value ℎ𝑒 if 𝑓(ℎ𝑟) <
𝑓(ℎ1), by 

ℎ𝑒 = ℎ̅ + 𝜒(ℎ𝑟 − ℎ̅)      (17) 

If 𝑓(ℎ𝑒) < 𝑓(ℎ𝑟) then obtain the optimal band width ℎ𝑜𝑝𝑡 =

ℎ𝑒 and terminate the iteration. Otherwise, update the value 

ℎ𝑛𝑒𝑤 = ℎ𝑟 and go to next step. 

Step 4 Contraction: if 𝑓(ℎ𝑛) ≤ 𝑓(ℎ𝑟) < 𝑓(ℎ𝑛+1)  then 

obtain the contraction value ℎ𝑐 by 

ℎ𝑐 = ℎ̅ + 𝛾(ℎ𝑟 − ℎ̅)     (18) 
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If 𝑓(ℎ𝑐) < 𝑓(ℎ𝑟) then obtain the optimal band width ℎ𝑜𝑝𝑡 =

ℎ𝑐  and terminate the iteration. Otherwise, if 𝑓(ℎ𝑟) ≥
𝑓(ℎ𝑛+1) then obtain the contraction value ℎ𝑐 by 

ℎ𝑐 = ℎ̅ + 𝛾(ℎ𝑛+1 − ℎ̅)     (19) 

If 𝑓(ℎ𝑐) < 𝑓(ℎ𝑛+1)  then obtain the optimal band width 

ℎ𝑜𝑝𝑡 = ℎ𝑐 and terminate the iteration. Otherwise, go to next 

step. 

Step 5 Shrinkage: if 𝑓(ℎ𝑛𝑒𝑤) ≥ 𝑓(ℎ𝑛+1)  then update the 

vertices by 

𝑣𝑖 = ℎ1 + 𝛼(ℎ𝑖 − ℎ1), 𝑖 = 2,… , 𝑛 + 1       (20) 

The vertices of the simplex at the next iteration consist of 

𝑥1, 𝑣2, 𝑣3, … , 𝑣𝑛+1 , and repeat Steps 1 to 5 until find the 

optimal band width. Usually, it takes just fewer than 10 

iterations to obtain the optimal value. 

2.4. Model Performance Indicator 

2.4.1. Mean Square Error  

The MSE value obtained by Eq. (15) is employed in this 

study to quantitively evaluate the model validity and system 

healthy status. In the model training, the MSE value 

approaching to zero indicates a well-trained model. The 

trained model is used to predict the response of the system 

or component under unknown conditions. When the 

obtained MSE value exceeds a preset threshold, an alarm is 

yielded to alert the large deviation between the 

measurement data and the model prediction. In this study 

the alerting threshold is determined by using the model 

prediction under the healthy status. 

2.4.2.  R-square Metric 

The R-square is defined as follows 

R-square = 
𝑆𝑆𝑅

𝑆𝑆𝑇
      (21) 

where 𝑆𝑆𝑅 = ∑ (�̂�𝑚 −𝑀
𝑚=1 𝑦)2  and  𝑆𝑆𝑇 = ∑ (𝑦𝑚 −𝑀

𝑚=1 𝑦)2 , 

 𝑦 is the mean value of the prediction data. The R-square is 

used to evaluate the performance of the model fitting. A 

value approaching one indicates a well-fitting model. 

2.4.3. Denoising Performance Index 

The performance of the denoising signal is evaluated 

quantitatively by the signal-to-noise ratio (SNR) and root 

mean squared error (RMSE) metrics. The SNR metric is 

calculated by the ratio of the summation of the squared 

signal to that of the squared noise, and then converted into 

decibels (dB) via taking the logarithm at the basis of 10, 

given by  

SNR = 10log10 {
∑ [𝑥𝑖]

2𝑁
𝑖=1

∑ [�̂�𝑖 − 𝑥𝑖]
2𝑁

𝑖=1

} (22) 

The smaller SNR value indicates the more noise in the raw 

signals. The RMSE metric indicates the difference between 

the raw signal and denoised ones, expressed by 

R𝑀𝑆𝐸 = √
1

𝑁
∑ (�̂�𝑖 −𝑁

𝑖=1 𝑥𝑖)
2 (23) 

The larger RMSE value indicates the more noise in the raw 

signals. 

2.4.4. Receiver Operating Characteristic (ROC) curve 

and Area Under the Curve (AUC) 

ROC curve is an index to evaluate generalization 

performance of classification models in machine learning 

field. The horizontal axis of ROC curve is the rate of false 

positive samples, while the vertical axis is the rate of true 

positive samples. The area under the ROC curve, or AUC, is 

usually used to compare the generalization performance of 

the two classification models. The larger the AUC, the 

better the generalization performance of the model. In this 

paper, the ROC curve is used to compare the prediction 

performance of models under different working conditions. 

The horizontal axis represents the ratio of true alarms and 

the vertical axis represents the ratio of false alarms.  

2.5. Fault alarming strategy 

A rolling window strategy is employed to automatically 

judge whether the turbomachine has fault or not by 

evaluating the MSE between the model output and the 

actual measured values. Based on the data resolution, the 

rolling window size may be taken to be one minute, one 

hour or one day. When the MSE value keeps changing in 

five continuous windows and exceeding the preset 

threshold, the turbomachine is judged to be anomaly with 

fault, thus yielding an alarm. In this study the threshold of 

k√𝑀𝑆𝐸 obtained from the healthy status is used in the fault 

detection, where K was determined by experience. In this 

paper, K =1.3 was taken as the threshold value. 

3. ILLUSTRATIVE EXAMPLES 

The data and events with broken impellers in a real-world 

large centrifugal compressor are employed in this example 

to illustrate the effectiveness and feasibility of the proposed 

methodology.  

3.1. Data 

The data used in this example is collected from a centrifugal 

compressor in a petrochemistry factory. The impellers were 

broken due to the wheel damage resulting from the broken 

filtering net on March 7, 2019. The operating data from 

December 28th, 2018 to April 1st, 2019 are used in this 

example to demonstrate the effectiveness of the proposed 

methodology.  
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Figure 1 shows the rotating speed of the compressor over 

the time, which indicates a varying speed of the machine 

with the maximum speed up to 6000RPM, producing the 

high-frequency time series data. Note that in this study the 

data prior to March 7, 2019 is considered to represent the 

healthy or nearly healthy conditions of the machine. The 

sensed time series data of 14 vibration variables are used in 

this study.  

 

 
Figure 1 Speed time series 

 

 

 

Figure 2 One frequency feature series plot: a) raw data, and 

b) denoised one 

3.2. Data preprocessing 

For demonstration purpose, 77 feature features obtained 

from 7 sensors in the compressor are used in the data 

preprocessing. The upward and downward data fill methods 

are used to process the missing values or infinite values in 

the feature data. The feature data for all variables are 

normalized to eliminate the amplitude effect of various 

variables. 

3.3. Bayesian wavelet thresholding 

The Bayesian wavelet packet denoising approach described 

previously is employed to remove the noise in each feature 

data. By a trial-and-error approach the three level DWPT 

decomposition with Daubechies 8 (Db8) mother wavelet or 

filters is enough to remove the noise from the signals. As an 

example, Figure 2 shows the raw time series (Fig. 2a) and 

the denoised one (Fig. 2b) for one frequency feature. It is 

clearly observed that the denoised series looks smoother 

than the raw one. The SNR value of 20db is obtained from 

Eq. (22), while the RMSE of 0.1 is obtained from Eq. (23), 

indicating a clean series with little noise. 

Table 1. Feature data used for OAKR modeling and alarm 

prediction 

 

 Period 
Data 

points 
MSE R-square 

Training 
2018/12/28

-2019/2/1 
850 0.022 0.977 

Optimizati

on 

2019/2/1-

2019/2/8 
183 0.806 0.263 

Testing 
2019/2/8-

2019/2/15 
183 2.106 0.105 

Prediction 
2019/2/15-

2019/4/1 
1226 1.902 0.103 
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Figure 3 The relation curve between kernel bandwidth 

and MSE 

3.4. OAKR model establishment and validation 

The obtained Variables after denoising are used to establish 

the OAKR model, as summarized in Table 1. The three-

month feature data at one-hour interval is divided into four 

groups: model training, band width optimization, model 

testing and prediction. The 850 training feature data sets are 

used to obtain the memory matrix, while the 183 data sets 

are used to optimize the band width in the kernel density 

function of the OAKR model by using the simplex method 

described previously. The optimal band width was obtained 

through 22 simplex iterations. Figure 3 shows the MSE 

curve versus the band width with the optimal value of ℎ𝑜𝑝𝑡 

= 1.744 and the minimum MSE of 𝑓(ℎ𝑜𝑝𝑡)= 0.8, obtained 

by Eq. (15).  

The obtained model is tested by a set of new data and then 

used to perform prediction. The MSE of 2.106 and the 

thresholding coefficient of 1.3 are obtained from the testing 

data. The threshold used for fault prediction is 1.3√𝑀𝑆𝐸 = 

1.89. 

3.5. Model prediction 

The trained model is used to predict the system response for 

the data from Feb 15, 2019 to Apr 1st, 2019 as shown in 

Table 1. The raw data is preprocessed and cleansed by the 

Bayesian DWPT thresholding approach. The trained OAKR 

model is then used to estimate the response of the system. 

As an illustrative example, Figure 4 shows the comparison 

of the raw variable and the model prediction (Fig. 4a), and 

the averaged MSE of the difference values of all variables 

and their prediction (Fig. 4b).  

It is observed from the predicted variable in Fig. 4a that the 

deviation between the true variable and the prediction result 

after the event on Mar 7th is significant, while the slight 

fluctuation is observed on the difference prior to the event. 

The same observation is made from the averaged MSE trend 

in Fig. 4b. Based on the threshold of 1.89 obtained 

previously, the first alarm would be triggered on Feb 20th to 

alert this event in advance of 15 days, then multiple alarms 

would be observed after the event of Mar 7th, that is, the 

MSE points exceeding the threshold (dash line in Fig. 4b).  

 
Figure 4 Model prediction result: a) comparison of 

prediction and raw variable, and b) averaged MSE trend of 

all results  
 

3.6. Importance of denoising  

In order to compare the influence of the denoising module 

on the accuracy of fault prediction, the undenoised data are 

used in this section to carry out training, testing and 

prediction of the OAKR model. Other parameters in the 

modeling process remain the same as the above OAKR 

model using the denoising module. Figure 5 shows the 

averaged MSE of the difference values of all variables and 

their prediction. 

It can be observed that, compared with the prediction results 

of the denoised model, the MSE trend of the prediction 

results of the non-denoised model is not very obvious at the 

early stage of the fault, but only increases significantly 

when the fault occurs. Fig. 6a and Fig. 6b respectively show 

the ROC curve and AUC value of the MSE prediction 

results of the de-noising model (AUC=0.95) and the non-de-
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noising model (AUC=0.92). According to the calculation 

results of AUC, the denoised model has better fault 

prediction performance. The use of denoising data in the 

OAKR model can better identify early failure trends. 

 

Figure 5 OAKR model prediction results:Averaged MSE 

and alarming (No denoising ) 

 

(a) ROC curve of denoising 

 

(b) ROC curve without denoising 

Figure 6 The results of ROC and AUC 

4. CONCLUDING REMARKS 

This paper presents a novel enhanced probabilistic 

similarity-based modeling (SBM) methodology for 

turbomachine fault prediction by seamlessly integrating 

advanced signal processing techniques with the optimized 

auto-associative kernel regression (OAKR) approach. The 

Bayesian discreate wavelet packets thresholding is 

employed as an advanced time-frequency decomposition 

approach to cleanse the raw signals by combining the 

Bayesian hypothesis testing and multiresolution wavelet 

analysis, thus effectively avoiding under-denoising due to 

the multiscale signal decomposition and over-denoising due 

to unbiased judgment on the decomposition coefficients. 

Instead of manual modification of the band width parameter 

in the conventional auto-associative kernel regression 

method, Nelder-Mead simplex algorithm is developed to 

automatically optimize the key parameter in the model, thus 

significantly improving the model prediction accuracy and 

efficiency. The alarming threshold is determined adaptively 

by a rolling window of the difference between the prediction 

outputs and the actual values. A generalized procedure is 

developed to automate the application of the proposed 

methodology for turbomachine fault prediction under data 

uncertainties. The effectiveness and feasibility of the 

proposed probabilistic SBM methodology and procedure is 

demonstrated with the data and event collected from a real-

world large centrifugal compressor.  

In future research the OAKR model will be investigated 

with other types of turbomachines such as gas turbines and 

steam turbines to illustrate its generalization. A probabilistic 

alarming strategy would be developed to automate the 

confidence of the fault prediction for turbomachines under 

multiple scenarios. 
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