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ABSTRACT

Different operating conditions can hinder the capability
of data-driven models to make predictions regarding the
components remaining life. In this paper, domain adap-
tation (DA) with deep learning is introduced as a poten-
tial method to align features from data collected under
dissimilar conditions. The work focuses on DA applied
to the classification of the remaining useful properties
for components in dissimilar boundary conditions. The
proposed approach was evaluated on three carbon fibre
reinforced polymer coupons with a notch. The dataset
was collected by sensing the damage state with guided
waves with a sequential alteration of the boundary condi-
tions during the experiment. The main application of this
work is thus the transferability of guided wave datasets
collected under different boundary conditions. An ex-
emplar case could be different structural components of
a wing.

Taking into consideration the pairwise correspondence of
few samples in both domains, a Neural Network (NN)
architecture called Feature Alignment Neural Network
(FANN) is introduced with a novel loss function. The
loss was inspired by multi-dimensional scaling (MDS)
and the overlap of pairwise corresponding points. To
simulate the unsupervised nature of the target domain,
only limited data points were used for the pairwise cor-
respondence objective. The FANN was used to learn
a new feature space used as input to a classifier. The
results show that the FANN can learn a robust overlap
function for both domains, and that when used in com-
bination with Adaptive Batch normalisation (AdaBn) in
the classifier, the model becomes capable of making re-
liable predictions in both domains.
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United States License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source
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1. INTRODUCTION

Damage due to fatigue affects the operational availability
of aircraft. Structural health monitoring (SHM) research
focuses on condition based maintenance (CBM) to pre-
dict the damage in real-time. The objective of CBM is,
thus, to replace parts only when truly necessary. The pro-
cedure has the potential to decrease the amount of main-
tenance checks and increase the operational availability,
thus, becoming more cost-efficient.

Aircraft however consist of hundreds of dissimilar struc-
tural components. When structural health monitoring
methods are implemented, it would require that all these
dissimilarities are taken into account. Current SHM re-
search, typically, takes advantage of a consistent lab setup
to run a series of experiments and develop a model (see
Figure 1). This, however, will inevitably lead to imple-
mentation issues when the same model is tested on struc-
tural components with dissimilar conditions. For this
reason, there is an urgency to start working on how cur-
rent lab results can be implemented in aircraft towards
monitoring the entire structure. One potential approach
to solve this problem is to have a single model which
can make predictions for dissimilar conditions (Gardner,
Liu, & Worden, 2020). The advantage of this approach
lies in the fact that it would not require a unique model to
be developed for all individual components. An emerg-
ing technology that can achieve such a singular model is
through domain adaptation (Kouw & Loog, 2018; M. Wang
& Deng, 2018; Q. Wang, Michau, & Fink, 2020). Do-
main adaptation has recently gained attention due to the
ability to solve problems on datasets originating from
different distributions (Ajakan, Germain, Larochelle, Lavi-
olette, & Marchand, 2014; X. Li, Zhang, Ding, & Sun,
2019; Bousmalis, Trigeorgis, Silberman, Krishnan, &
Erhan, 2016; Pan, Tsang, Kwok, & Yang, 2011).

As an example of the dissimilar conditions, different bound-
ary conditions are studied in this research. For a struc-
tural component, the boundary condition is the way the
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Figure 1. A typical lab setup for a CFRP fatigue tested
coupon (prognostics group, 2020). Such a component
could be used in e.g. a wing part

material is held at its extremities. A visualisation of both
clamped and traction free boundary conditions (BCs) is
presented in Figure 2. A model trained as such could
make diagnostics predictions regardless of which of the
two BCs it is held in. If effective, this approach could
limit the total number of models needed to monitor a full
aircraft and improve the transferability of the models.

Figure 2. An overview of the relevant boundary condi-
tions for the proposed experiment.

In this paper, guided waves, a prominent SHM technol-
ogy is used to make diagnostics models taking into ac-
count the different BCs. Guided wave technology uses a
series of sensors and actuators to send and receive lamb
wave signals (Mitra & Gopalakrishnan, 2016). The al-
teration of boundary conditions causes a domain shift,
hindering the diagnostics capability of current models.

The model itself is developed to monitor damage growth
for three carbon fibre reinforced polymer (CFRP) coupons
from the NASA prognostics repository with layup [02/904]S
(prognostics group, 2020). CFRPs have outstanding po-

tential to lower the weight of aircraft structures and have
superb material properties. The fatigue and degradation
phenomena of CFRPs is however highly unpredictable
(Eleftheroglou, Zarouchas, Loutas, Alderliesten, & Bene-
dictus, 2018). One key property which is well correlated
to the Remaining Useful Life (RUL) is the delamination
growth (Saxena et al., 2011). Predicting the area of the
delamination can give direct insight into the current re-
pair requirements. Given this reason, the model devel-
oped is trained to predict the delamination size.

Based on the above points, the research question is for-
mulated as follows: “Can domain adaptation be used to
transfer data with dissimilar boundary conditions such
that the delamination can be predicted accurately for both
clamped and traction free data?”

The rest of this paper is structured as follows: Chapter 2
outlines how the dataset is acquired, Chapter 3 describes
the Damage Indicator extraction approach and the pro-
posed framework for this problem, Chapter 4 describes
the experimental results, Chapter 5 is a discussion on the
presented result and Chapter 6 contains concluding re-
marks.

2. DATA ACQUISITION

The three CFRP coupons with a notch have been sub-
jected to a tension-tension fatigue test with a frequency
of 5 Hz and stress ratio R ≈ 0.14 until failure1. Periodi-
cally, the fatigue test is interrupted to collect data. To do
so, a series of actuators emit signals which travel through
the material in the form of lamb waves (Chiachio, Chi-
achio, Saxena, & Goebel, 2013). Subsequently, a group
of sensors collect the signals. The change of the signal
as the fatigue test proceeds contains damage fingerprints
which can quantify damage growth. Each time data is
collected is referred to as an SHM cycle from here on-
ward2. In order to quantify the delamination area, four
signals have been selected as presented in Figure 3. Due
to the delamination starting at the notch, these signals
consistently travel through the delamination region. The
selected frequency for this experiment is 150 KHz. It is
the lowest frequency available and has been selected due
to its more pronounced sensitivity to large damage com-
pared to the higher frequency signals (Shoja, Berbyuk,
& Boström, 2018). Furthermore, as the test is paused,
an X-ray visualisation is made of the coupon. The X-ray
visualisations are used to develop ground truth labels of
the delamination area.

During the fatigue test interruptions, the boundary condi-

1This experiment can be performed with less coupons but the perfor-
mance might be impacted.

2An SHM cycle is not be confused with a fatigue cycle. A single SHM
cycle is typically performed after various fatigue cycles.
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tion of the coupon is sequentially altered. This is done by
altering the way the coupon is held during data acquisi-
tion. This process is performed for clamped and traction
free boundary conditions. As the boundary conditions
are altered, however, the damage due to fatigue remains
the same. The different boundary conditions will cause
the stress levels in the material to be different. Conse-
quently, the lamb wave propagation is also altered, caus-
ing small changes to the sensed signals. These altered
conditions will be used to setup the domain adaptation
task.

Figure 3. X-ray visualisation of coupon L1 S11 F .
The four arrows present the paths selected (prognostics
group, 2020).

3. METHOD

The proposed framework comprises five steps:

1. Damage Indicators (DIs) are extracted from a group
of selected signals.

2. The FANN architecture is trained to align the indi-
cators of dissimilar BC’s.

3. A classifier is trained with the aligned source fea-
tures (BC 1) and tested with the aligned target fea-
tures (BC 2).

4. To show the added value of the FANN alignment,
the result is compared to training the classifier on the

raw Damage Indicators without alignment. This task
will be referred to as the Baseline from here onward.
It will show whether the domain adaptation task is
solvable without any additional network design.

5. Adaptive Batch Normalisation (AdaBn) (Y. Li, Wang,
Shi, Liu, & Hou, 2019) is integrated in both devel-
oped methodologies.

A full overview of the proposed framework is presented
in Figure 4. The individual steps are elaborated in more
detail in the following Sections.

3.1. Damage Indicator extraction

A feature engineering approach is adopted in order to ex-
tract relevant information from the signals. Inspired by
(Xu, Yuan, Chen, & Ren, 2019), a vector of six Dam-
age Indicators is extracted. Damage Indicators compare
the signal of the damaged material to the original sig-
nal before any damage accumulation. It is a comparative
measure typically ranging from 0→ 1. The extracted in-
dicators are: cross-correlation, spatial phase difference,
spectrum loss, central spectrum loss, differential curve
energy and normalised correlation moment. They are a
combined selection of both frequency and time domain
indicators. A full list of the mathematical indicator ex-
traction algorithms is presented in Table 1. The indica-
tors are joined together into a single vector to serve as
damage fingerprints to predict the delamination.

3.2. Stage 1: Feature Alignment Neural Network

In this paper, a FANN architecture is proposed to adapt
features from two dissimilar boundary conditions: clamped
and traction free. The FANN has an input size of 6 units
and consists of 3 dense layers, each with 6 units. The in-
put of the FANN are the extracted indicators from the
clamped and traction free data. The architecture uses
weight sharing for both input vectors. The FANN learns
a new latent feature space which is subsequently used as
input to a classifier to predict the delamination.

The properties that the generated latent space must sat-
isfy are twofold. Firstly, it must overlap the data points
from both domains that were measured at the same fa-
tigue level. Secondly, it must maintain the relationship
between damaged and undamaged data. To do so, the
inter-point distance of the learned latent features must
remain the same for each domain. Thus the FANN is
trained with two losses LP and Lmds.
The first loss, LP , minimises the distance of the pairwise
corresponding vectors in the clamped and traction free
domains:

LP =
1

|S|
∑

i∈S,j∈T
(Xi −Xj)

2
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Table 1. Damage indicators used for extraction from the selected signals. The baseline and the damaged signals are
presented by B and D respectively, b(tn) and d(tn) present the magnitude of B and D signal at a specified time tn
and w presents the frequency spectrum of the signal.

Damage Indicator mathematical extraction algorithm

Cross correlation DI = 1−
√

[
∫ t2
t1
B(t)D(t)dt]

2

∫ t2
t1
B2(t)dt

∫ t2
t1
D2(t)dt

Spatial phase difference DI =
∫ t2
t1
(D̃(t)− αB(t))2 dt, D̃(t) = D(t)√∫ t2

t1
D2(t)dt

, α =
∫ t2
t1
D(t)B(t)dt

∫ t2
t1
B2(t)dt

Spectrum loss DI =

∫ ωN
ω1
|B(ω)−D(ω)|dω

∫ aN
a′ |B(ω)|dω

Central spectrum loss DI = a(ω)−b(ω)
a(ω) , a(ω) = max(B(ω)), b(ω) = max(D(ω))

Differential curve energy DI =
∑N
n=2[b(tn)−b(tn−1)]

2

∑N
n=2[B(tn)−B(tn−1)]

2 , b(n) = B(n)−D(n)

Normalized Correlation Moment
DI =

∫ τ=t2
τ=t1

τk|rHH(τ)|dτ−
∫ τ=t2
τ=t1

τk|rHD(τ)|dτ
∫ τ=t2
τ=t1

τk|rHH(τ)|dτ , rHD(τ) =

∫ +∞
−∞ B(t)D(t− τ)dt, rHH(τ) =

∫ +∞
−∞ B(t)B(t− τ)dt

where S is the source domain and T is the target domain.

The second component in the loss function is inspired
by the concept of multidimensional scaling (Michau &
Fink, 2021):

Lmds =
∑

S

1

|S|
∑

(i,j)∈S
‖‖Xi−Xj ‖2 − η̂S‖Fi−Fj ‖2‖2 ,

(1)
where

∀S ∈
{

Source

}
, η̂S = Argminη̃S Lmds (η̃S)

(2)
This loss function compares the Euclidian distance of
vectors in both, the input DI space and the latent fea-
ture space. The objective is to ensure that these distances
remain the same given the scaling factor η̂S . In other
words, the objective is to keep the inter-point distance
of the input space and latent space proportional. Conse-
quently, the relationship between damaged and undam-
aged data is kept.

Bringing together both loss functions, the loss of the FANN
is presented as follows:

LFANN = Lp + Lmds (3)

The FANN architecture is trained with an Adam opti-
miser with the learning rate l = 1e−4, β1 = 0.9 &
β2 = 0.999. It consists of Dense layers as follows:{
6, 6, 6

}
. The batch size is 100, and the model is trained

for 600 epochs which is found to converge the objective
function. These parameters were determined through a

grid search.

3.3. FANN Data Selection Methodology

The developed model must be able to monitor the degra-
dation trajectory of unique components from as early in
their lifetime as possible. In such cases, data only from
the early life of the target can be used for the training
(Michau, 2019). In doing so, a semi-supervised simula-
tion scenario is provided. Thereby, the complete run-to-
failure training phase can be performed in e.g. a lab-
oratory test setting, and the results can be transferred
to an in-aircraft structural component. In order to de-
sign a model in agreement with this objective, the pair-
wise correspondence loss is only optimised with pairs
before substantial damage accumulation. By only align-
ing these points, the individual component fatigue state
can be monitored as it develops from an early stage. This
constraint is effectively implemented by aligning the points
of the first 10 cycles only.

An overview of the FANN architecture is presented in
Figure 4 as Stage 1. In the figure, it can be observed that
the MDS loss is only applied to the source domain. This
is selected to align the study with existing cases where,
typically, full knowledge of the source domain is avail-
able.

3.4. Stage 2: Classification

Even though damage growth is continuous, it was de-
cided not to define the task as a regression problem but
rather as a classification problem with 5 classes. By set-
ting up the problem as a classification task, robust main-
tenance decisions can be made as the classes only present
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Figure 4. Visualisation of the full framework. The gradients are not propagated between the two stages.

coarse changes in the continuous damage growth. The
training samples were distributed equally into 5 classes.
The number of classes is selected based on expert advice
such that the damage can be calculated precisely while
not being too sensitive to noise (Ewald, Groves, & Bene-
dictus, 2019). In doing so, an aircraft operator could se-
lect its maintenance requirements as e.g. level 2 and can
monitor the damage after each flight cycle until the spec-
ified level is reached.

As mentioned in the previous Section, the learnt latent
feature space of the FANN is of the same size as the in-
put DI space. To make the delamination prediction, the
learnt latent features are used as input to a classifier neu-
ral network (NN).

The classification NN is designed with 24 inputs. These
inputs correspond to the appended features of all four
selected signals at a single time step. The architecture
is designed through a grid search approach. The net-
work architecture consists of Dense layers as follows:{
24, 24, 24, 5

}
. Leaky Relu activation is used with α =

0.2 in the first three layers. The final layer used a Soft-
max activation and a Categorical Cross Entropy loss func-
tion. All layers used the “He initialisation” (He, 2014).
Lastly, an Adam optimiser is used with the initial learn-
ing rate l = 0.001.

The entire framework, including both the FANN and the
classifier is presented in Figure 4.

3.5. Adaptive Batch Normalisation

Adaptive batch normalisation is inspired by batch nor-
malisation. Batch normalisation (BN) layers are used to
mitigate the side effects of a covariate shift. To do so,
a BN normalises a feature space xi of dimension k as
follows:

x̃i =
xi − E [x·i]√
Var [x·i] + ξ

yi = γix̃i + βi

(4)

Where i ∈
{
1...k

}
, γi and βi are trainable parameters,

yi is the output and ξ presents a small value for numer-
ical stability. By using BN, the input of a subsequent
layer is normalised and the distribution of values remains
unchanged. AdaBn assumes that the distribution differ-
ences of individual layers causes the performance de-
crease on the target domain. It uses the same mechanism
as BN but fine-tunes the statistical parameters using data
of the target domain.

4. EXPERIMENTAL RESULTS

The alignment of the FANN for both boundary condi-
tions must be analysed. To do so, input features of both
domains are passed through the FANN. A principal com-
ponent analysis (PCA) is used to visualise the latent space.
The first two principal components (PCs) of the aligned
latent feature space are presented in Figure 5. The colour
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coding presents the current SHM cycle. It can be noted
that the domains of both visualisations are very similar.
Individually, a handful of outliers can be seen, but con-
sidering that the full dataset consists of over 20000 vec-
tors for each BC, the domain adaptation appears to be
achieved well. The next step in the validation process is
to make delamination predictions.

To compare the delamination prediction results, the de-
veloped methodology is compared to three other approaches.
The first approach, as described earlier, uses the classifier
on the raw Damage Indicators and is called the Baseline.
The second approach uses the raw Damage Indicators
& Baseline classifier with the addition of the Adaptive
Batch Normalisation (AdaBn) layers and is inspired by
(Y. Li et al., 2019). The AdaBn layer is most effective
when applied to the first two layers of the Baseline archi-
tecture. Next, the learnt latent features from the FANN
were tested as inputs to the same classifier. Lastly, the
learned features were used as inputs to the classifier with
the addition of Adaptive Batch Normalisation.

The delamination growth is a continuous process3. As a
result, the impact an inaccurate prediction has is propor-
tional to how far off it is from the correct class. To give
an example, if a delamination of class 5 (corresponding
to the largest area), is misclassified as a delamination
of class 1, its impact on operational potential is much
stronger than if it is classified into class 4. For this rea-
son, an additional error metric is designed to take into
account the magnitude of inaccurate predictions. The
desired behaviour is compared to the confusion matrix
where optimally, all values are as close as possible to the
principal diagonal. For this reason, the novel metric is
named confusion deviation. The metric scales quadrat-
ically based on how far away from the principle diago-
nal the prediction is in the confusion matrix. Mathemat-
ically, the new metric is determined as follows:

Conf. dev. =

m∑

i=0

m∑

j=0

C ◦A (5)

Where Ai,j = (i− j)2, C presents the confusion matrix,
◦ presents the element-wise product and m presents the
number of classes to be classified.

The results of the experiments are presented as two one-
to-one domain adaptation tasks. In the first task, the al-
gorithms were trained with clamped data as the source
and tested with traction free as the target. In the second
task, the order is reversed. Due to the small volume of
labelled data, the task is ran 10 times and the mean and
standard deviation of all results are reported. The results

3see the Discussion section for a more elaborate statement as to why a
regression setup was not used.

of these experiments are reported in Tables 2 & 3.

The results show that using the Baseline leads to a testing
accuracy of approximately 76%. Adaptive Batch Nor-
malisation has a positive effect on both domain adap-
tation tasks, but its improvement is limited by approxi-
mately 5%. Using the feature space learned by the FANN
to train and test the classifier leads to a substantial accu-
racy drop of approximately 55% compared to the Base-
line. The drop is explained by the unrestricted optimi-
sation process of the FANN architecture. Since the only
requirements used were the overlap of the pairwise cor-
respondent points and the preservation of the inter-point
distance, the loss is minimised when the latent space
shrinks. Since the classification architecture is not al-
tered in any way, this leads to a significant drop in ac-
curacy. To solve this issue, the aligned features were
used in combination with AdaBn in the classifier. This
novel approach brings a further improvement of approx-
imately 5% accuracy increase compared to the approach
with AdaBn alone. Furthermore, the confusion deviation
metric reaches a clear minimum in this setup. Thus, con-
firming the improvements for monitoring the structural
health.

5. DISCUSSION

There are small differences in the solution quality of the
two tasks. Observable is that training on traction free
leads to slightly better mean results. This is likely due to
the fact that the traction free domain is more stable and
thus easier to train on. Further research is required to
validate this statement.

Additionally, it is envisioned that the domain adaptation
task must be reformulated as a regression problem in fu-
ture work. This is because damage growth is continu-
ous. It was however found to be challenging to setup due
to the large absence of literature on domain adaptation
for regression problems. The benefit of the classification
setup is the applicability of the novel performance metric
as well as the lower sensitivity to noise.

6. CONCLUSION

This paper proposes a framework based on domain adap-
tation for structural health monitoring to predict delam-
inations with dissimilar boundary conditions. The con-
tribution of this work is the novel domain adaptation ap-
plication for guided wave as well as the introduction of
the FANN. The dataset was acquired by sequentially al-
tering boundary conditions throughout the experiment.
Thus, this work provides initial insights into the potential
ways forward and presents potential challenges of apply-
ing domain adaptations to these datasets.
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Table 2. Domain adaptation prediction results for clamped to traction free. The results of the FANN with the addition
of AdaBn gives an improvement of nearly 10% over the baseline.

Clamped→ Traction free source target

accuracy (%) confusion deviation accuracy (%) confusion deviation

Baseline 93.2 ± 1.6 5.5 ± 1.5 75.9 ± 2.4 20.5 ± 2.5

AdaBn 94.7 ± 1.3 4.0 ± 1.0 78.3 ± 1.2 18 ± 1.0

FANN + Baseline 21.1 ± 0.4 105.2 ± 17.4 20.98 ± 0.4 105.7 ± 16.6

FANN + AdaBn 93 ± 1.5 4.9 ± 1.0 84.50 ± 3.8 13 ± 4.0

Table 3. Domain adaptation prediction results for traction free to clamped. The results of the FANN with the addition
of AdaBn gives an improvement of nearly 10% over the baseline.

traction free→ clamped source target

accuracy (%) confusion deviation accuracy (%) confusion deviation

Baseline 93.4 ± 0.6 5.5 ± 0.5 76.0 ± 5.3 21.0 ± 7.0

AdaBn 91.6 ± 1.2 7.0 ± 1.0 80.6± 3.3 16.0 ± 2.0

FANN + Baseline 22.4 ± 3.8 113.1 ± 20.2 22.14 ± 4.1 112.5 ± 2.1

FANN + AdaBn 91.8 ± 2.8 5.9 ± 2.1 85.71 ± 2.8 11.2 ± 2.2
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Figure 5. The left visualisation presents Clamped data and the right visualisation the Traction free data. The colour
coding presents the current SHM cycle (A single SHM cycle consists of using the actuators and sensors to collect data
and is typically done after various fatigue cycles). The pairwise correspondence loss was only trained with the first
10 fatigue cycles corresponding to SHM cycles 0 − 4. The first two PCs of the aligned latent features are presented.
These latent features are developed by passing the original Damage Indicators through the FANN. Both visualisations
have aligned significantly in both shape and colour.

The results show that the developed methodology, which
takes into consideration limited knowledge of the pair-
wise correspondence of both domains, and full knowl-
edge of the source domain, improves the result of the
domain adaptation classification task by at least 5% over
the approach with AdaBn alone.
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