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ABSTRACT

In industry, the capture of symptoms and failure modes
during a fault event provides valuable information for
effectively improving the product quality. An ontology-based
semantic similarity system is employed enabling automatic
comparison of engineering data (in the form of design failure
mode effect analysis, DFMEA) with field repair data
collected during the product warranty period to discover new
symptoms and failure modes to augment the DFMEA.

The complexity of engineering data and the overwhelming
volume of field repair data makes the task of identifying new
symptoms and failure modes an impractical one from first
principles. While the engineering data is structured, technical
in nature, e.g. Seat Belt comfort per GMUTS, the field repair
data is unstructured consisting of different noises. Some
examples of noises observed in the field repair data include
abbreviations, inconsistent use of vocabulary (‘seat buckle is
damaged’ vs ‘buckle unlatching’), misspellings, etc. Not
surprisingly, text mining and semantic similarity are gaining
serious attention due to their ability to link heterogeneous
data sources and discover knowledge assets latent in text.

In our approach, initially the key constructs (e.g. components
(parts), symptoms, failure modes) from the data are annotated
by using the domain ontology. From these constructs pairs of
terms and pairs of tuples are constructed to compute term-to-
term and tuple-to-tuple semantic similarity respectively.
Finally, text-to-text semantic similarity is calculated by
combining term-to-term and tuple-to-tuple similarity scores.

The proposed method is implemented as a prototype tool and
its performance is validated by using real-life data from the
automobile domain. On average, our system has achieved the
F1 score of 0.78 and 0.75 in discovering synonym and new

symptoms respectively, whereas it achieved an F1 score of
0.72 and 0.68 in discovering synonym and new failure modes
respectively. On average, the fault detection and the fault
isolation rates improved from 0.51 to 0.86 and 0.50 to 0.92
respectively.

1. INTRODUCTION

Design failure mode and effect analysis (DFMEA) related to
complex systems (e.g. turbines, automotive, aerospace,
power plants) captures the critical engineering information
(Sutrisno & Lee, 2011). It includes information related to key
components, their fault free boundary conditions, functional
information, symptoms, and failure modes in the event of
fault, their severity, and frequency. Benedittini, Baines,
Lightfoot, and Greenough (2009) reports that the complex
architecture of modern vehicles typically involves several
sensors, software, and electrification. Abdallah, Feron,
Hellestrand, Koopman, and Wolf (2010) states that with such
rapid growth of technology and its inclusion in modern
vehicles leads to potential complicated faults due to inter-
system interactions and communications. Any deviation of a
complex system from its fault free state into a faulty state
requires an in-depth fault diagnosis to detect the root-causes.
Typically, the field repair data (henceforth verbatim) is
collected throughout the warranty period of vehicles. It
captures important component information observed during
the fault event along with symptoms and failure modes. To
improve the fault diagnostics and product quality, it is crucial
that the new symptoms and failure modes are discovered in
time by comparing field data with the engineering data.

The task of identifying new symptoms and failure modes
from the first principles is an impractical one primarily due
to the complexity of engineering data coupled with the
overwhelming volume of verbatim data. Typically, the
engineering data is structured in nature and it uses technical
vocabulary, e.g. “unstable electric contact”, “Seat Belt
comfort per GMUTS”, whereas the verbatim data captured in
free-flowing English and due to the lack of controlled
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vocabulary it is unstructured in nature. Generally, it gives rise
to vocabulary mismatches (‘seat buckle is damaged’ vs
‘buckle unlatching’) and different types of noises are
observed in the data, e.g. abbreviated text, misspellings,
inclusion of additional white space, run-on-words.

Not surprisingly, text mining (Hearst, 1999) is gaining
serious attention due to its ability to automate the process of
knowledge discovery by training a machine. The semantic
similarity on the other hand facilitates automatic comparison
and linking of high-volume, heterogeneous data sources. In
the past, Atamer (2004), Wirth, Kramer, and Peter (1996),
Price and Taylor (1997) have proposed different systems to
compare Failure Modes and Effect Analysis data and field
experience. Different systems were developed by Rajpathak,
Chougule, and Bandyopadhyay (2010) and Rajpathak (2013)
to analyze the warranty data to provide an early indication of
product abnormalities. However, limited efforts have been
invested to compare and relate field data with DFMEAs. In
Figure 1, we depict the scope of this work toward bridging
the gap in literature.

Figure 1. Scope of the ontology-based semantic-similarity
framework.

Our ontology based semantic similarity model first identifies
components (parts), symptoms, and failure modes mentioned
in the verbatim and engineering data. During the fault event,
additional indicators like the error codes and scanned values
of operating parameters are also collected. In this work, a
dependency is established between either a single or multiple
failure modes1 , say f1, f2, …, fi with a single or multiple
symptoms, say s1, s2, …, sj to generate meaningful constructs.
These constructs are then used to construct pairs of terms and
pairs of tuples (i.e. pairs of multi-term phrases) that are used
to calculate term-to-term and tuple-to-tuple semantic
similarity respectively. Finally, the term-to-term and tuple-
to-tuple semantic similarity scores are combined to calculate

1 Failure mode: The term failure mode is generally used to indicate the root-
causes associated with the faults observed particularly in the engineering

text-to-text semantic similarity to discover new symptoms or
failure modes from the verbatim data. In specific we make
the following contributions – 1. A principled approach is
proposed to compare industrial scale heterogeneous data,
which overcomes the existing limitation of having to rely on
the first principles; 2. Our hierarchical semantic similarity
model successfully handles multi-term phrases, which helps
us to overcome the key limitation of relying on single term
phrases for computing semantic similarity. We successfully
combine bottom-up term-to-term and tuple-to-tuple scores to
perform a robust and realistic comparison between two data
sources via text-to-text semantic similarity; and 3. In
literature, e.g. Atamer (2004) the relationship between failure
modes is identified only using those failure modes that are
anticipated at a design stage. Since our approach discovers
synonymous as well as new symptoms and failure modes, it
enhances the relationship between symptoms and failure
modes.

The relevant literature is reviewed in the next section. In
section 3, we first introduce our domain knowledge model in
terms of the domain ontology. Then, we discuss in detail how
the collocates are identified from the DFMEA and verbatim
data. These collocates are used as the candidates to compute
semantic similarity between any two documents. Next, our
hierarchical semantic similarity model is discussed in detail.
In Section 4, we discuss the experiments and finally in section
5 we conclude our paper by reiterating the key contributions.

2. STATE-OF-THE-ART

The work in DFMEA can be broadly divided into two areas
(Sutrisno & Lee, 2011): 1. Automation and modification of
DFMEA construction and 2. Enhancement of DFMEA using
model failure phenomenon and its combination with other
quality tools. The work related to DFMEA automation and
modification is the most relevant to our proposal. Zhang and
Guogi (2013) proposed different MATLAB/Simulink models
to process DFMEAs along with the nominal system behavior.
It combines digital components (software and hardware) with
the mechanical models, i.e. the environment in which the
system runs. This model is augmented with the fault models
for the digital and mechanical systems to create the Extended
System Model. Papadopoulous, Parker, and Grante (2004)
proposed a tool for the automatic synthesis of FMEAs. It
builds upon their earlier work of synthesizing the fault trees
in which the FMEAs are built from engineering diagrams and
they are augmented with the component failures. The overall
effectiveness of DFMEA is studied by Carlson (2012) and
four broad factors are identified for the successful application
of FMEA. One specific factor reports that a critical mistake
in failing to make FMEAs an effective tool is a “disconnect
between FMEA and field lessons (failure modes) learned.”
Although, a need to discover new failure modes is pointed

systems. However, in our work we do not necessarily restrict ourselves to a
specific set of systems while using the notion of a failure mode.
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out, no indication is given about how such discovery can be
made. Tso, Tai, Chau, and Alkalai (2005) have reported their
experience in developing a design-for-safety workbench, risk
assessment and management environment (RAME) for
microelectronic avionics systems. RAME consists of a test-
reporting/failure-tracking system and it is an off-the-shelf
data mining tool, a knowledge base, and a fault model that
permits systematic learning from the prior projects to
automate FMEA. Finally, Atamar (2004) reports a case study
for a turbofan engine that illustrates how the case-based
reasoning is used to assess an overlap of FMEA symptoms
with its counterpart in a case base.

In literature, the term semantic similarity is interchangeably
used with semantic relatedness. While the former one assigns
a metric to the terms that are members of two text data and it
calculates their content similarity, the latter one handles the
notions of antonym and meronymy (e.g. the part-of relation).
The resultant metric provides a number between 0 and 1,
where 0 denotes no similarity between two text data and 1
denotes identical text data. Several techniques have been
proposed in the literature to identify semantic similarity and
they can be broadly classified into the following categories –
Deerwester, Dumais, Furnas, Landauer, and Harshman
(1990) proposed latent semantic indexing (LSI), point-wise
mutual information (Turney, 2001), second-order co-
occurrence pointwise mutual information (Islam & Inkpen
2008), corpus based semantic representation (Grefenstette,
1994), (Lund & Curt 1996), (Landauer & Susan 1997),
(Schütze, 1997), Griffiths, Steyvers, and Tenenbaum (2007),
(Padó & Lapata 2007), (Lenci, 2008), (Turney & Pantel,
2010), and ontology-structure based measures (Rada et al.,
1989) (Wu & Palmer, 1994) (Leacock & Chodorow, 1998)
(Bullinaria & Levy, 2007). The LSI model (Deerwester et al.,
1990) analyzes relationships between different documents by
using the terms contained in them. A term-document matrix
is constructed in which the rows represent words and the
columns represent number of documents in which the words
appear. The singular value decomposition is used to reduce
the dimensionality and the cosine similarity between two
vectors is calculated to determine how close two words are
with each other on the scale of 0-1. In the point-wise mutual
information (PMI) model (Turney, 2001), the notion of co-
occurrence between the phrases reported in two text data, say
problem and choicei are used to calculate their co-occurrence
probability. The statistically independent phrase probability
is given as = ( & ℎ ), while the dependent ones
is calculated as, ( & )

( ) ( )
. Grefenstette, (1994),

(Lund & Curt, 1996), (Landauer & Susan, 1997), (Schütze,
1997) and (Padó & Lapata, 2007) proposes models in which
the semantic similarity between two phrases is determined in
terms of the attributional similarity. Medin, Goldstone, and
Gentner (1990) proposed the relational similarity. Islam and
Inkpen (2008) proposed a new corpus-based model, referred
to as the Second Order Co-occurrence PMI (SOC-PMI) to
calculate the semantic similarity between two target words,

say W1 and W2. In SOC-PMI model, a context window is
used to collect the co-occurring words with W1 and W2 and
the common words are retained. The frequency of common
words is calculated. Finally, the PMI of common words is
aggregated to calculate relative semantic similarity score.

Several corpus-based semantic similarity models are
proposed in the literature, e.g. Griffiths, Steyvers, and
Tenenbaum (2007), (Padó & Lapata, 2007), (Lenci, 2008),
and (Turney & Pantel, 2010). In a corpus-based semantic
similarity model, the meaning of linguistic expressions is
characterized in term of the distributional properties. It is
referred to as the Distributional Semantic Model (DSM). The
DSM model relies on a variation of the distributional
hypothesis (Miller & Charles 1991) to calculate semantic
similarity. It makes use of the attributional and relational
similarity (Turney, 2001) along with unstructured DSM and
structured DSM. In unstructured DSM, the distributional data
is represented by the unstructured co-occurring relations
between an element and a context. The lexical collocates
within a certain distance from a word are collected. The
structured DSM collects the co-occurrence statistics in the
form of corpus-based triples and the context is said to be
linked to a word if a lexico-syntactic relationship exists
among them. However, as shown by Lenci (2008) the use of
co-occurrence statistics without using a domain model leads
to an incompatible semantic space problem. In other words,
the constructs even when not related to each other are shown
to be similar with each other simply based on the common
underlying distribution. In Rada, Mili, Bicknell, and Blettner
(1989), the ‘Distance’ metric is proposed to compute the
average minimum path length over all pair wise combinations
of concepts between two sub-concepts. In Wu and Palmer
(1994), a semantic similarity between two concepts, say C1
and C2 is calculated by using WordNet (Miller 1995). In
Leacock and Chodorow (1998), the similarity between two
concepts is measured based on the shortest path between two
concepts in a ‘is-a’ hierarchy of a taxonomy. In Bullinaria
and Levy (2007), a semantic similarity model makes use of
the co-occurrence statistics between two words, say W1 and
W2 and a word window of a specific size is used to collect
the co-occurring context information.

3. ONTOLOGY-BASED SEMANTIC SIMILARITY MODEL

Figure 2 shows different components involved in our model.
In our model, the key constructs, such as components (parts),
symptoms, and failure modes are identified from the DFMEA
and the verbatim data. As it can be seen in figure 2, the
domain ontology is used to identify the key constructs
reported in the data. Next, we compute criticality of each key
construct in terms of term frequency inverse document
frequency (tf*idf) (Spärck Jones, 1972). The constructs
above a specific threshold values are then used to first
calculate term-to-term and tuple-to-tuple semantic similarity
scores. The text-to-text semantic similarity combines the
results of term-to-term and tuple-to-tuple. Finally, the rules
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are derived to determine whether the symptoms or failure
modes are synonym to each other, or it is a new knowledge.

In the next section, we will discuss the domain ontology and
its internal structure.

Figure 2. The different components involved in the ontology-based semantic similarity model.

3.1. Domain ontology as a knowledge model

The domain ontology consists of three key elements,
DFMEAonto = (Ci, Ci_subconcept, Ici), where Ci represents a finite
set of classes, Ci_subconcept represents sub-classes of Ci
commonly observed in our domain, and Ici represents the
class instances extracted from the data to populate Ci and
Ci_subconcept. Our ontology does not make subscription to any
specific automotive applications and, therefore, as discussed
by Fausto, Maurizio, and Ilya (2007) it is a descriptive
lightweight ontology.

The Ci consists of the following classes: (Componenti,
Symptomj, Failure Modek) ∈Ci. The class Componenti is used
to formalize a set of engineering artifacts in our domain, e.g.
transmission, clutch, fuelTank. Any deviation of a system
from its normal operating state is considered as a faulty state.
The engineering faults are acquired in terms of the symptoms
and they are formalized by using the class Symptomj. The
failure modes represent the root causes of the observed
symptoms and they are are formalized by using the class
Failure Modek.

More specific domain knowledge is formalized in terms of
the class-subclass hierarchy, Cisubconcept. The classes at the top-
level in a class hierarchy are more generic, whereas the ones
further down in a hierarchy are more specific in nature. For
example, the class Symptomj is further specialized into two
subclasses - faultCodeSymptom and textSymptom. The
former class is used to formalize fault or diagnostic trouble
codes (e.g. P0100) observed during fault, whereas the latter
one is used to formalize the text symptoms reported by the
customers, e.g. ‘rattling noise’, ‘vehicle hard start’.

Finally, the instances   acquired from the data are used to
instantiate the specific classes. For example, the concept
Symptomj can be instantiated with the literal observations,
such as ‘vehicleRunsRough’, ‘windowNotRollingUp’,
‘P0100’ and so on. These instances are used to identify key
constructs reported in the data and they are used to compute
the term-to-term, tuple-to-tuple, and text-to-text semantic
similarity scores.

3.2. Identification of collocates from the DFMEA data

The class instances (cf. Section 3.1) are used to tag the
phrases in DFMEAs. However, the term identification is a
non-trivial exercise mainly due to the vocabulary mismatch.
In many cases, at a surface level the phrases in DFMEA, say
PhraseDFMEA and the class instances, say Phraseinstance may
share very few or no terms with each other, e.g. ‘not
workingDFMEA’ and ‘intermittent openinstance’, but they refer to
the same fault. In literature, different approaches are
proposed to handle the vocabulary mismatch problem, e.g.
Shekarpour, Marx, Auer, and Sheth (2017) uses the
stemming approach, the morphology approach (Krovetz,
1993), LSI (Deerwester et al., 1990), the translation model
(Berger & Lafferty, 1999), and the query expansion
(Lavrekno & Croft, 2001).

We develop a context-based query expansion probability
model to handle the vocabulary mismatch problem. Different
steps involved in our model are discussed below:

Step 1. PhraseDFMEA and Phraseinstance are treated as the
queries, say Qi and a common set of documents ( ), say C
related to each query Qj are identified such that PhraseDFMEA

∧ Phraseinstance ∈Qj as shown in Eq. (1) and (2).
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∶= { ∈ ∶ ( , )} (1)
= ∩ (2)

Step 2. Next, the terms co-occurring with PhraseDFMEA and
Phraseinstance in  are collected. The notion of co-occurrence
is established by applying a word window of five terms
(determined empirically) on the either side of PhraseDFMEA
and Phraseinstance in a data in which they are reported. The co-
occurring terms, TermDFMEA and Terminstance within a specific
word window are collected.
Step 3. In the event of fault, a dominant set of failure modes,
fi are captured from the verbatim data. Along with the context
information collected in Step 2, the fi are used as a
complimentary context information. Next, the probability P(fi
| TermDFMEA) and P(fi | Terminstance) is estimated from the
aggregate data to determine their similarity with each other.
For the sake of brevity, we only show the calculations of P(fi
| TermDFMEA) and the calculations of P(fi | Terminstance) can be
realized on the same lines.

( | ) = ( | )       (3)

         = ( )
( ) (4)

= ( | ) ( ) (5)

The tagged terms make up our context, say  and we make
Naïve Bayes assumption that these terms are independent of
each other, which gives us Eq. (6).
( | ) = = ({ | }| )

                         = ∏ ( | )∈ (6)

The ( | ) and ( ) in Eq. (5) is calculated by
using Eq. (7).

( | ) = ( , )
( )  and ( ) = ,

(7)
where,

( , )  = number of co-occurrences of
 with ;

( , )  = number of co-occurrences of
 out of the scope and do not co-occur with

;
( ) = number of co-occurrences of the

terms  out of the scope with respect to the
 counted in the aggregate data.

In cases where the estimated probabilities, P(fi | TermDFMEA)
and P(fi | Terminstance) are greater than 0.92, such TermDFMEA
and Terminstance are considered to be similar to each other,
represented as CollocateDFMEA.

3.3. Identification of collocates from the verbatim data

To identify the relevant collocates from the verbatim data, we
use CollocateDFMEA (cf. Section 3.2) and they are used to
cluster the verbatim data:

Step 1. Let, Vi = (v1, v2, v3, …, vj) represent a set of verbatim
data and CollocatesDFMEA represents a set of terms identified
from DFMEA.
Step 2. Each verbatim, say vk is represented in terms of the
finite number of phrases, vk = (Phrase1, Phrase2, …, Phrasen)
and each document is represented in terms of their frequency
over the aggregate verbatim data, represented by rvk = (fPhrase1,
fPhrase2, …, fPhrasen). To reduce the data dimensionality, we only
use rvk to cluster the data. The verbatim data is clustered by
using hierarchical agglomerative clustering (Kaufman &
Rousseuw, 2005) into a set of clusters, (CPhrase1, CPhrase2,
CPhrase3, …, CPhrasen) ∈ C. To cluster the data, the Phrasek ∈
rvk are sorted based on their frequency and in each iteration a
repair verbatim with a mention of Phrasek is assigned to its
own cluster. A phrase that is assigned to a cluster is removed
from the sorted list. Next, the average pairwise proximity of
all the pairs from CPhrasek and CPhrasem is calculated by using
the average linkage (Kaufman & Rousseuw, 2005) by using
Eq. 8. The two most similar clusters say CPhrasek and CPhrasem
are merged and the distance between remaining clusters is
updated.

, =

∗
∑ ∑ ,        (8)

where,
∈ and ∈ ;

, is the distance between objects ∈ ;
∈ from and ;

and are the repair verbatim assigned
to and respectively.

Step 3. Next, from each cluster the instances of symptoms
and failure modes are tagged by using the domain ontology,
represented as CollocateVerbatim.

Now, we have the collocates that are identified from
DFMEA, CollocateDFMEA and verbatim, CollocateVerbatim. In
the next section, we discuss how these collocates are used to
calculate the semantic similarity.

3.4. Semantic similarity model to discover new
symptoms and failure modes

In our model, the semantic similarity between CollocateDFMEA
and CollocateVerbatim is computed to discover new symptoms
and failure modes. Initially, we start with the word-based
semantic similarity model (Mihalcea, Corley, and
Strapparava, 2006), which is shown in Eq. (9).

, =
∑ , ∈

∑ ( ) ∈
+

∑ ( , ) ∈

∑ ( ) ∈
   (9)

where,
, is the maximum similarity between a

word from Ti, i.e.  ∈  with all the relevant words
from Tj. For example, while comparing two failure
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modes a phrase from one failure mode is compared
with all the phrases from other failure mode;

( ) is the inverse document frequency of a specific
word, .

In (Mihalcea et al., 2006), the text-to-text semantic similarity
is calculated between such two text phrases as the ones
consists of single words. However, such model provides
limiting results in our problem area and we extend Mihalcea
et al. (2006) model to handle the text phrases also consisting
of multiple word (also referred to as the ‘collocates’).

The term-to-term, tuple-to-tuple, and text-to-text semantic
similarity model is discussed in the next section.

3.4.1. Term-to-term, tuple-to-tuple, and text-to-text
similarity model

Step 1. Instead of selecting all the collocates identified from
DFMEA and verbatim data, we compute the tf*idf of the
collocates, CollocateDFMEA and CollocateVerbatim. The ones
with their frequency above 0.89 (determined empirically) are
used for the semantic similarity comparison.
Step 2. Next, we collect the context information associated
with the collocates from the corpus of verbatim. A word
window of five unigrams is applied to collect the context
information for CollocateDFMEA and CollocateVerbatim. For
each critical DFMEA collocate (e.g. “window not opening”)
the relevant components (parts), symptoms, and failure
modes are collected from the corpus. From the collected
context information, as shown follows the ordered set of tuple
pairs are constructed: (CollocateDFMEA Componenti),
(CollocateDFMEA Symptomj), and (CollocateDFMEA

FailureModek) ∈ Tuplem.
Step 3. By using the same process described in Steps 1 and
2, we also construct the ordered set of tuple pairs for
CollocateVerbatim: (CollocateVerbatim Componentp),
(CollocateVerbatim Symptomq), and (CollocateVerbatim

FailureModer) ∈ Tuplen.
Step 4. Having constructed two context matrices Tuplem and
Tuplen, first we compute a term-to-term semantic similarity
by using the terms that are member of these matrices by using
Eq. (10).

, = 1 + ,
( ).

  (10)

where,
hits(termi) and hits(termj) as well as hits(termi, termj)2

represents the number of times termi and termj and the
binary tuple(termi, termj) appear in the corpus.

Next, a tuple-to-tuple semantic similarity is calculated and
this time instead of using the terms, our model utilizes the

2 It is important to remember that while computing ( , ) and
( , )  we populate these functions with (componenti,

tuples from Tuplem and Tuplen to compute their similarity by
using Eq. (11).

, = 1 + &
( ).

 (11)

where,
hits(Tuplei) and hits(Tuplej) represents the frequency
of occurrence of the tuples in the corpus, whereas the
hits(Tuplei & Tuplej) represents the number of times
both Tuplei and Tuplej occurs in the documents in a
corpus.

Finally, the term-to-term and tuple-to-tuple semantic
similarity scores are combined to produce an aggregate text-
to-text semantic similarity score (Eq. 12) between the
DFMEA collocates, ColDFMEA and the verbatim collocates,
ColVerbatim.

( , )

=
1
2
∑ ( , ). ( )∈

∑ ( )∈
 +

∑ ( , ). ( )∈

∑ ( )∈
(12)

The maxsim(Tuplem, CollocateDFMEA) function in Eq. (12) is
calculated by using Eq. (13) and the calculation of
maxsim(Tuplen, CollocateVerbatim) can be realized on the same
lines.

( , ) =
, ; ∈     (13)

Step 5. The text-to-text semantic similarity score between
ColDFMEA and ColVerbatim is used to create a rule: IF the
semantic similarity score between the symptoms or the
failure modes in ColDFMEA and ColVerbatim is greater than 0.89
THEN they are similar to each other (i.e. synonyms), ELSE
IF the semantic similarity score is less than 0.89, but greater
than or equal to 0.65 THEN they are related to each other,
ELSE IF the semantic similarity score is less than 0.65
THEN they are not related to each other. The symptoms and
failure modes that are not covered in the DFMEA data are
reviewed by the subject matter expert (SME) and they are
included in DFMEA.

4. EXPERIMENTS

The proposed approach has been implemented in a prototype
tool. For our experiment, we selected the DFMEAs and the
verbatim data associated with the following three systems:
seatbelt, power window switches, and air induction system.

4.1. Evaluation of collocate identification method

In this experiment, we evaluated performance of the collocate
identification method (cf. Sections 3.2 and 3.3). To conduct
this experiment, we randomly selected 3830 data points

componentj), (symptomi, symptomj), and (failure modei, failure modej) that
are member of Tuplem and Tuplen to compute their similarity.
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related to three systems, seatbelt (system A), 3000 data points
related to power window switches (system B), and 1313 data
points related to the air induction system (system C). To
avoid an inexact and biased comparison, the experimental
data obeyed identical and independent distribution. The
collocate identification algorithm was applied to identify
candidate collocates and the final set of collocates discovered
by our algorithm were presented to the SMEs for their manual
certification. The results inspected by the SMEs were used to
calculate Precision, Recall, and F1-score and they are shown
in Figure 3.

Figure 3. The result of collocate identification algorithm.

The recall rate in all the three systems were comparatively
lower as compared to the precision rate. In other words, while
the algorithm identified a smaller number of collocates from
the data, it showed a high precision rate (i.e. low false
positive rate) within newly discovered collocates. Having a
high precision rate was one of the key requirements from the
tool users because all newly discovered collocates were used
in semantic similarity calculations. And ultimately the similar
ones were used to augment DFMEAs and it was necessary to
ensure that the collocates used for augmenting DFMEA were
accurate. Moreover, the data generation mechanism was not
in our control since the data was collected from different
sources and it was captured by the different stakeholders.
Given these multiple constraints, the average precision of
0.79, the recall of 0.7, and the F1-score of 0.74 was
satisfactory in our business.

4.2. Evaluation of semantic similarity model

Here, we describe performance evaluation of the semantic
similarity model discussed in Section 3.4 as it was used to
discover new symptoms and failure modes from the verbatim
data. The verbatim data was pre-processed to get rid of the
special characters, additional white spaces, and run-on-
words. The collocates were identified from the processed data
by using the algorithms discussed in Sections 3.2 and 3.3.
Again, to avoid an inexact and biased comparison the data
followed identical and independent distribution. All the
collocates identified from the DFMEA and verbatim data
were used to computed text-to-text similarity. The results
achieved by our model were presented to the SMEs for their

evaluation. By using the results inspected by the SMEs the
precision, recall, and F1-scores were calculated by using the
equations (14), (15), and (16) respectively.

= ( ) (14)

= ( ) (15)

− = ( ∗ )
( ) (16)

where,
True positives = the correct symptoms and failure
modes correctly identified by the model.
False positives = the correct symptoms and failure
modes incorrectly rejected by the model.
True negatives = the incorrect symptoms and failure
modes correctly rejected by the model.
False negatives = the incorrect symptoms and failure
modes not rejected by the model.

The results of this experiment are summarized in Table 1.

Table 1. The semantic similarity experiment results for all
the three systems.

Figure 4 shows the new and synonymous symptoms and
failure modes discovered by our model from the data related
to all the three systems.

System
Precision New

Symptoms

Precision
Synonym

Symptoms

Precision New
Failure Modes

Precision Synonym
Failure Modes

Seat Belt 0.83 0.79 0.89 0.67
Power Window Switches 0.87 0.92 0.76 0.82
Air Induction System 0.71 0.82 0.67 0.73

System Recall New
Symptoms

Recall Synonym
Symptoms

Recall New
Failure Modes

Recall Synonym
Failure Modes

Seat Belt 0.66 0.72 0.74 0.67
Power Window Switches 0.62 0.74 0.65 0.6
Air Induction System 0.89 0.72 0.63 0.65

System F1 New
Symptoms

F1 Synonym
Symptoms

F1 New Failure
Modes

F1 Synonym Failure
Modes

Seat Belt 0.74 0.75 0.81 0.67
Power Window Switches 0.72 0.82 0.70 0.69
Air Induction System 0.79 0.77 0.65 0.69
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Figure 4. New and synonym symptoms and failure modes
discovered by the semantic similarity model.

Finally, the newly discovered symptoms and failure modes
were used in the testability and diagnosability metrics, such
as fault detection and fault isolation. In both the metrices, we
evaluated the fault detection and isolation rate before and
after employing our proposed approach.

The fault detection (PD) is the percent of faults detected by
the new symptoms by observing new failure modes of a
system. It was used to determine the fault coverage and assess
undetected faults to determine acceptability. The PD is
computed by using Eq. (17).

= [∑ ] (17)
where, Di = 1 if the fault i is detectable, the detection event Di
= 1, Di has at least one non-zero element and m been number
of associations between symptoms and failure modes. Figure
5 shows the comparative analysis of the fault detection rate.
On average, the fault detection rate before employing our
model was 51.6%, which improved significantly to 86.6%
after employing our model. The low fault detection rate
before using our proposed approach was due to the two key
reasons: the use of inconsistent vocabulary and data
incompleteness, which limited new knowledge discovery
from the industrial scale data.

Figure 5. Improvement in the fault detection rate before and
after using new symptoms and failure modes discovered by

the proposed model.

The fault isolation (FI) is the probability that newly
discovered symptoms uniquely isolate system faults for the
new failure modes discovered to be associated with a system.
The percent fault isolation is computed as the percent of total
faults that can be uniquely isolated using Eq. (18) for
unweighted case.

= [∑ ] (18)
where, ISOi = 1 if fault i is uniquely isolatable, 0 otherwise.

Figure 6 shows the improvement in the fault isolation rate
after using newly discovered symptoms and failure modes by
our model. In case of air induction system, the fault isolation
rate was relatively lower, i.e. 88.79%. The closer analysis of
the verbatim data related to air induction system revealed that
not all the tests conducted by the field technicians were
recorded in the verbatim database. Some of the test results

were non-textual in nature and they were not included in this
experiment. As a result, our algorithm only had a partial
exposure to all the tests conducted in the field.

Figure 6. Improvement in the fault isolation rate before and
after using new symptoms and failure modes discovered by

the proposed model.

5. CONCLUSION

In this paper, a novel approach is proposed to automatically
compare two heterogeneous unstructured text data sources,
such as the DFMEA and field verbatim data to discover new
symptoms and failure modes for in-time augmentation of
DFMEAs. There is a limited effort in the existing state-of-
the-art to automatically augment DFMEAs and our proposed
model bridges this gap by making successful and practical
proposal. In our approach, initially a domain ontology is used
to identify key collocates from the DFMEA and verbatim
data. While identifying the key collocates, we successfully
tackle the vocabulary mismatch problem related to the two
heterogenous data sources. In our hierarchical sematic
similarity model, initially term-to-term and tuple-to-tuple
semantic similarities are calculated. Our model handles
multi-term phrases while calculating tuple-to-tuple semantic
similarity. The two semantic similarity scores are uniquely
combined to calculate final text-to-text semantic similarity.
The performance of the prototype tool is validated by using
three real-life systems – seatbelt, power window switch, and
air induction. Our model yield 0.79, 0.7, and 0.74 precision,
recall, and F1-score respectively. More importantly, the new
symptoms and failure modes are discovered from all the three
systems, i.e. seatbelt (57 symptoms and 45 failure modes),
power window switch (134 symptoms and 41 failure modes),
and air induction system (37 symptoms and 36 failure modes)
using the proposed model. These new constructs are used to
compute the fault detection and fault isolation rates. On
average, the fault detection rate improved from 51.6% to
86.6%, whereas on an average the fault isolation rate
improved from 50.0% to 92.3% after using newly discovered
symptoms and failure modes. In summary, ours is a practical
approach that can be used for the in-time augmentation of the
DFMEA data to improve product quality.
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