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ABSTRACT 

A mud motor is a positive displacement motor (PDM) that 

transform the hydraulic energy of the drilling fluids into 

mechanical energy and enables the drill bit to cut the rock and 

drill a well. Mud motor failure is a common and costly issue 

in drilling operations. A proper prediction of the failure as 

well as an estimation of the remaining useful life (RUL) are 

essential for timely downhole mud motor maintenance and 

drilling optimization. 

Until now, the oil and gas industry has lacked reliable 

procedures to monitor and maintain the health of mud motors, 

resulting in unnecessary maintenance and fleet management 

costs as well as unpredictable and costly drilling failures. 

This paper presents an industry-first prognostics and health 

management (PHM) solution, which estimates the health of 

the mud motor and tracks its RUL. The proposed PHM 

solution is suitable for real-time implementation and 

combines two different sterling algorithms.  

It enables the estimation of the mud motor health both at the 

system level for the entire mud motor (system level PHM 

model) and at the subcomponent level via tracking of power 

section RUL — the most critical component of the mud 

motor.  

The new solution for mud motor PHM was successfully 

verified and tested in the field. This PHM solution enables 

optimization of mud motor selection, drilling configuration, 

and maintenance operations by minimizing RUL 

uncertainties while facilitating rerun decisions and avoiding 

overmaintenance and premature retirements. 

1. INTRODUCTION  

Mud motor failure is a common and costly problem in drilling 

operations, which typically results in lower rate of 

penetration (ROP) and significant loss of time and money in 

the worst-case scenario. Until now, there were no field 

methods or procedures to estimate remaining useful life of 

mud motors in real time, and that is leading to unnecessary 

maintenance and repair costs (Ba, S. & Kolyshkin, A., 

US10139326B2). The proper predictions of mud motor 

failure and estimation of RUL is quite important for the 

optimization of the drilling process and the maximization of 

revenue for oil and gas service companies. In this paper, we 

would like to present an industry-first prognostics and health 

management solution, which estimates the health of the mud 

motor and tracks its RUL.  

The proposed PHM solution combines two different 

algorithms for reliable prediction of possible problems with 

mud motors. It enables the estimation of the mud motor 

health both on the system level with the entire mud motor 

(system level PHM model) and on the subcomponent level 

(power section PHM model)—the most critical component of 

the mud motor.  

The system level algorithm model leverages both surface and 

downhole drilling data as well as mud motor characteristic 

curves to compute the severity of mud motor degradation. A 

special mud motor degradation indicator is defined. The 

indicator is calculated to evaluate the degree of power section 

decay at each time recorded from thousands of field jobs. The 

trends of the degradation with respect to drilling time and 

drilling distance are extracted for each motor job.  

The power section PHM model uses downhole measurements 

to estimate the RUL of the elastomer—the life-limiting 

component inside the power section. It is based on a high-

fidelity model and uses a hybrid approach by combining a 

physics-based model of a power section and data-driven 

approaches with machine learning techniques. Machine 

learning methods were applied to derive a reduced order 

surrogate model (ROM) of power sections from the original 

physics-based models for real-time applications. This ROM 

outputs the estimation of performance and fatigue 

characteristics of the considered power section depending on 
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the considered drilling conditions such as differential 

pressure, downhole temperature, flow rate, and mud 

compatibility. As the result, the model analyzes accumulative 

risk of fatigue failure and produces real-time health 

information for the power section as a percentage of the 

remaining lifespan. 

In this paper, RUL estimation for mud motor power sections 

based on the combination of two independent proposed 

algorithms will be discussed. After starting with a quick 

overview of mud motors, the modelling approach for 

simulating power section behavior including reduce order 

model will be explored before exposing in detail each RUL 

estimation algorithm and synergic effect after their 

combination. In the last part of the paper, the validation 

scheme for all models will be revealed before the conclusion. 

2. MUD MOTORS AND THEIR APPLICATIONS  

A mud motor is one of the key parts of downhole assembly 

that is placed in the drilling assembly to provide additional 

power to the bit while drilling as its power downhole output 

is still unmatched. It is used to transform the hydraulic energy 

of the drilling fluid into mechanical energy on the rotation 

shaft. Such motors are widely used for directional drilling and 

performance drilling applications. 

A typical mud motor consists of multiple subassemblies 

consisting of a power section, a transmission, a bearing 

section, a bent housing, a drive shaft, and top subs 

(Tiraspolsky, 1985) The power section (PS) assembly is the 

most complex element where the transformation of hydraulic 

power into mechanical power occurs. It has two main parts—

a rotor and a stator. The rotor is a moving part and is 

habitually made of steel, and the stator is typically a metal 

tube with rubber bonded inside. A typical design and parts of 

a power section can be seen in Figure 1.  

 

Figure 1: Mud Motor power section. 

 

When evaluating the performance of a motor power section, 

it is in general necessary to refer to power curves. These 

power curves indicate rpm (rotation per minute) and torque 

output of the mud motor depending on the flow rate and 

differential pressure during operation. Power curves are a 

very important source of information for drilling engineers or 

directional drillers since they determine the motor usability 

and operating envelop. Figure 2 depicts typical power curves 

for different types of power sections. They show how the mud 

motor converts hydraulic power giving by flow rate and 

differential pressure to mechanical energy in terms of rotation 

speed and torque output.  

 

Figure 2: Power curves for different mud motor power 

sections. 

 

Another important characteristic for mud motor power 

sections is the durability. It is often directly linked to fatigue 

curves. These curves enable understanding of how long the 

considered power section can be loaded before the elastomer 

inside the stator starts failing. Fatigue life depends on many 

parameters and it can be quite different depending on 

particular power sections, the operating environment or 

drilling conditions. Figure 3 depicts typical fatigue curves for 

different types of power sections. 

According to statistics, the failure of power sections is the 

main cause of mud motor failures in more than 50% of all 

cases (BA, S. et al., 2016). Schlumberger internal statistics 

show that the other two main reasons for motor failure are 

transmission failure (~ 20% of all cases) and housing failure. 

The power section failures are most often caused by a failure 

of the elastomer (rubber) inside the stator, which is exposed 

to corrosive drilling fluid and must withstand considerable 

cyclic mechanical loads from the rotor and the pressure of the 

drilling fluid. Repetitive elastomer deformation is 

responsible for the growth of fatigue cracks and hysteresis 

heating, which ultimately can lead to elastomer chunking. 

Figure 4 depicts the typical damage of rubber inside PS stator 

due to fatigue. 

Such damages to power sections in the fields are often 

resulting from overloading of the mud motor while drilling. 

The consequences of the damage can be very costly in that it 

significantly affects the efficiency of drilling and 

subsequently the cost of the well construction. 
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Figure 3: Fatigue curves (fatigue life vs. differential 

pressure) for different mud motor power sections with 

different rubbers. 

 

 

Figure 4: Example of the failed elastomer inside power 

section stator due to fatigue. 

 

The main factors affecting power section fatigue life are the 

mechanical design, the elastomer type, the type of drilling 

fluid, and the drilling conditions and environment (mud flow 

rate, downhole temperature, differential pressure). (BA, et 

al., 2016) 

3. MODELING APPROACH AND ROM FOR POWER SECTION 

The relationship between motor fatigue life and operating 

conditions can be derived through modeling. In reality, the 

modelling of mud motors is not an easy task. It includes 

complex kinematics motion, fluid-structure interaction, 

geometrical, and material nonlinearity. Thus, full scale 

models require multiphysics simulations, involving 

viscoelasticity, hyperelasticity and fluid hydrodynamics (Ba 

et al., 2016) and consequently demand many computations 

resources. 

Meanwhile, for health monitoring tools, the modeling results 

must be available instantly, i.e., in a very short time for real-

time applications. Thus, it was necessary to develop a much 

faster reduced order model. A reduced order model (ROM) is 

a simplification of a high-fidelity dynamical model that 

preserves essential behavior and dominant effects with a 

satisfactory accuracy while reducing computational 

resources of time and storage. 

To achieve the required ROM, two steps were undertaken. 

At first, instead of the full-scale model, a simplified physical 

model of mud motor power sections was used, which is still 

capable of predicting its performance and reliability 

depending on the design and operating conditions. This 

model is substantially faster than the full-scale 3D model and 

can derive simulation results within a few minutes to a few 

hours, depending on the complexity of the input conditions 

(Kolyshkin, 2021). 

Secondly, a database (using machine learning approach) was 

constructed on precomputed results augmented with a simple 

extrapolation to get scenarios which were not included in the 

database. That way instead of running the physical model 

each time and waiting minutes or hours to get results, the user 

would get results in milliseconds. 

Regarding the physical model, two major simplifications 

were made:  

• a set of 2D simulations is conjugated to represent 

dynamic behavior of stator elastomer; 

• drilling fluid dynamics are reduced to a cavity network, 

which is connected through gaps, and there is no 

mechanical interaction between the fluid and the 

elastomer. 

The first assumption is based on the periodicity of power 

section geometry and the fact that due to the rotor motion 

inside stator, each stator cross section is dynamically equal to 

another. Assuming small rotor and stator deformation in 

addition to the periodicity (Figure 5), the full power section 

geometry could be reduced to just one pitch length. 

 

Figure 5: Power section geometry periodicity. 

 

Moreover, within a pitch, each 2D cross section is identical 

as well. While the moving rotor is taking all possible 
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positions inside the stator (Figure 6), all cross sections 

undergo the same deformation cycle, but shifted in time. The 

shift in time is proportional to the distance between them and 

the motion frequency. 

 

 

Figure 6: Relative rotor position in different cross sections.  

 

Furthermore, the stators and rotors of mud motor power 

sections are normally designed to have identical lobes. So, 

each lobe of multilobe stator undergoes exactly the same 

deformation cycle as any other as well. We can effectively 

use this feature to increase the time resolution of the 

deformation cycle. 

Thus, the model treats the power section as if the geometry, 

the displacements, the deformation, and the forces follow the 

same cycle for every lobe in all cross sections. Assuming that 

the deformation in the direction of the power section axis is 

substantially smaller than in the perpendicular directions, 

which is confirmed by 3D modeling, we can perform 2D 

modeling for several orientations of the rotor and stator, then 

derive full deformation cycle and use it to reconstruct 3D 

geometry. This approach is anticipated to be very relevant in 

the middle of the power section, however, it may result in 

some potentially higher deviations at both ends.  

The physical model takes as input: power section geometry, 

elastomer properties, interference fit, downhole temperature, 

flow rate. The simulation results include pressure, torque, 

rpm, elastomer fatigue life in hours, bonding stress or 

debonding energy, maximum elastomer temperature due to 

hysteresis heating, and certain others. 

For example, Figure 2 depicts the simulation results for 

performance curves, which link together flow rate, 

differential pressure, rotation speed, and torque. This type of 

data is important as inadequate motor performance not only 

compromises the drilling speed and wellbore quality, but may 

cause the failures for various BHA components, even not 

directly related to mud motors. 

On a higher level of abstraction, the physical model could be 

considered as an operator transforming the n-dimensional 

vector X, containing n input parameters, to m-dimensional 

vector Y of output results: 

 𝑓: 𝑋 → 𝑌 (1) 

The operator 𝑓  involves non-linear FEA and, thus, it has 

relatively high computation cost. Replacing it with a reduced 

order model by using machine learning on the simulated 

results (Bataineh & Marler, 2017) yields to much faster 

computation time. A general scheme for the development of 

the motor engine using machine learning approach is 

presented in Figure 7; a supervised learning technique is 

used. 

 

Figure 7: Motor engine scheme. 

 

The physical model reduction enables performing required 

simulation for variety of operating conditions and design 

factors for a comprehensive portfolio of mud motors. The 

simulation results are used to train the machine learning 

algorithm, which now provides very short computation time 

and thus, opens the door for real-time health monitoring that 

will be discussed next. 

4. PROGNOSTIC MODELS  

The proposed PHM solution combines two different 

algorithms for reliable prediction of mud motor problems. It 

enables the estimation of motor health, both at the system 

level and at the subcomponent level. The description of these 

two PHM models and their synergistic effect for a reliable 

PHM solution are described below.  

4.1. Subcomponent PHM model 

As mentioned in section 2, the failure of power sections is the 

main reason of mud motor failures. Hence, power sections 

can be considered as the most critical subcomponent. So, the 

subcomponent PHM model is mainly focus on the model of 

the PHM model of the power section. This model enables 

estimating the RUL of power sections taking into account real 

field drilling data with significant variations in downhole 

conditions over time. 

Fatigue characteristic of power section depends on the power 

section design and drilling conditions (flow rate, differential 

pressure, and operating temperature). Temperature is the 

most significant factor affecting fatigue life—the operating 

time of power section drops sharply with increasing 
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temperature. For example, the fatigue life estimation for a 

power section operating at room temperature for a certain 

differential pressure and flow rate could be around 500 hours. 

And the same estimation for the same fixed value of 

differential pressure and flow rate could drop to merely 10 

hours as the temperature rises to 300 degF, which is not 

uncommon when drilling a wellbore. From a practical point 

of view, drilling conditions change quite often, which means 

that a small timestep is needed for properly accumulating the 

fatigue life consumption. Thus, the ROM is vital for health 

monitoring. 

The schematic diagram of the health monitoring approach 

can be found in Figure 8. The input parameters are power 

section characteristics, mud properties, and the drilling 

conditions mentioned above in the form of RT channels. At 

each timestep, all this information is used to estimate the 

consumed fatigue life. 

 

Figure 8: Scheme of prognostic algorithm for power section. 

 

By understanding at each timestep the consumed fatigue life, 

one can easily integrate them to compute the remaining useful 

life (RUL). With the RUL available in real time, it is now 

possible to adjust the operating parameters depending on 

whether the power section is underutilized or overloaded. 

This enables a proper adjustment plan of operating conditions 

as depicted in Figure 9. 

 

Figure 9: Managing mud motor power section performance 

and fatigue life by adjusting operation conditions.  

 

Overall, current PHM workflow for power sections results in 

a performance boost as one can adjust the power output on 

the mud motor in real time and get the maximum possible 

ROP with informed decisions regarding the remaining useful 

life of the motor.  

4.2. System level PHM model 

As discussed in section 2, the rotational speed output of a 

mud motor is governed by the power curves. Figure 10 shows 

an example of a power curve of a power section taken from a 

specification sheet of a mud motor. Inside the specification 

sheets, curves are plotted for different rubber types, fits, 

temperatures, and flow rates. These curves are often 

generated from a mud motor dyno test or modeling of the 

power section as in Figure 2.  

The rpm value on the power curve denotes the designed 

rotational speed of the power section under certain 

operational conditions. Under a given pumping flow rate and 

operating differential pressure, the mud motor should work at 

the designed rotational speed (red curve in Figure 10), which 

is referred as the nominal rpm, 𝜔. Meanwhile, the actual mud 

motor output rotation speed, 𝜔∗ may have some discrepancy 

∆𝜔 compared to the nominal rpm. 

 

Figure 10: Power curve and definition of mud motor 

degradation indicator.  

 

Due to the degradation of the mud motor, the actual mud 

motor rpm decreases, causing the difference to grow larger as 

the usage of the mud motor increases. Therefore, a mud 

motor degradation indicator 𝑅  is defined as follows to 

quantify how much the mud motor has degraded. 

 𝑅 ≜
𝜔 − 𝜔∗

𝜔
 (2) 

Where the nominal rpm 𝜔 can be inferred from mud motor 

power curves (extracted from the power section sub-

component model) and the data acquired from the surface 

which includes flow rate and differential pressure. The actual 

mud motor output rpm 𝜔∗ can be measured from downhole 

sensor instrumented in or below the mud motor, which is 

typically on the bit, rotary steerable tool, or MWD tool 

(Sugiura, J. et al., 2019, Sugiura, J. et al., 2021).  
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An example of the degradation indicator calculation from an 

actual field job is shown in Figure 11. At the beginning of the 

run, the actual mud motor output rpm was very close to the 

nominal rpm value, and the degradation indicator was very 

close to zero, indicating the mud motor was in a fresh 

condition. As the drilling progressed, the actual mud motor 

rpm started to diverge from the nominal mud motor rpm, 

which caused the increase of degradation indicator. 

Moreover, a linear regression on the degradation indicator 

can also be performed to evaluate the change rate of the 

degradation indicator. The change rate of the degradation is 

also a useful performance indicator when comparing across 

different field jobs, which enables ranking different mud 

motor types, bits, and operation parameters. 

 

Figure 11: Mud motor nominal rpm, actual rpm and 

degradation indicator.  

 

This model leverages the mud motor modeling, surface data, 

and downhole measurement together to evaluate the 

performance and health condition of the mud motor at a 

system level. With the degradation indicator, the model 

captures not only the wear on the power section, but also 

other factors, such as the bearing wears and leakages, which 

could have an impact on the mud motor rotational speed 

output. (Li, F., et al., 2019, Zhang, Z., et al., 2020) 

4.3. Combination of the system level and subcomponent-

level PHM models 

The subcomponent level (power section) PHM model 

provides an accurate estimation of the elastomer health 

within the power section, which is the most critical and life-

limiting component. This model enables estimating the RUL 

of elastomer over time. The RUL shows the serviceability of 

the elastomer and indicates the need to replace the power 

section before any physical damage to the elastomer itself. 

Thus, this subcomponent-level prediction complements the 

system-level PHM model, which mainly focus on damages 

that are apparent and have physical effects inside the mud 

motor. 

At the same time, the downhole mud motor may have other 

reasons for failure. These can be problems with the 

transmission, housing, and bearing section, as well as 

problems with the elastomer inside the power section due to 

reasons other than fatigue (high vibration, abrasion). 

According to some statistics, such problems are the cause of 

approximately 40% of all downhole mud motor failures. The 

subcomponent power section PHM does not cover these 

causes, but the system-level PHM can detect those problems. 

The combination of two different models enables covering 

almost 100% of all cases of mud motor failure and helps to 

avoid critical failures, as they provide accurate information 

about the state of the downhole mud motor over time. 

5. VALIDATION  

Both models were properly tested on a large volume of field 

data and very good correlation was observed between 

predictions and real mud motor failures. A more detailed 

description of the validation results is provided below. 

5.1. Sub-component PHM model 

The subcomponent (power section) PHM model was 

validated both experimentally and also in the field. We 

validated accuracy of the modeling results used in this PHM 

model as well as fidelity of the PHM predictions for mud 

motor power sections.  

Firstly, the high-fidelity modelling approach was validated 

experimentally using a specially designed experimental set-

up. This equipment involved taking measurement of over 100 

different signals, including pressure at many different 

locations inside the power section, temperature measurement 

outside the stator and inside the rubber, torque, flow rate, 

rpm, lateral displacements at both end of the rotor, shock and 

vibration at the clamped areas of the stator. More information 

on the validation process and other details can be found in 

(BA, et al., 2016). 

 

Figure 12: Cumulative remaining useful life curves from 

ROM (black line) compared with high-fidelity model (red 

line). 

 

Secondly, the motor engine ROM needed to be validated 

against the high-fidelity FE model. Figure 12 depicts the 

comparative fatigue life curves between the FE simulation 

and the motor engine ROM: Fatigue life output from the FE 

approach shown in red, motor engine ROM fatigue life output 

shown in black. The matching between the two is seamless. 

The entire power section PHM workflow has been evaluated 

on a variety of field data from various locations around the 

world. It has been tested on both legacy data and during 

recent field trials. During the field test PHM performs well 

after analyzing over 300 different runs with a total pumping 
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volume of more than 13,500 hours in a fleet of more than 100 

different stators in different locations with different drilling 

conditions, considering a variety of temperature and drilling 

parameters.  

During the field tests, several fatigue-related field failures 

were experienced. For each of them, postrun data processing 

using the subcomponent PHM model was matching the 

observed life duration very well. Typical results of processed 

data for the cases with high probability of the mud motor 

failure due to elastomer fatigue can be found in Figure 13. 

a 

 

b 

 

Figure 13: RUL curves for the field drilling cases with 

failed elastomer due to fatigue. 

 

Figure 13a shows a case where the RUL at the end of drilling 

was approximately 7%, indicating a very high probability of 

elastomer fatigue failure. These results completely coincide 

with the results of visual inspection of the stator after 

operation—some elastomer cracks and minor chunking were 

found.  Later analysis indicated that the wellbore temperature 

was higher than expected. 

Figure 13b shows another case with RUL of 20% at the end 

of drilling job that also indicates a high likelihood of 

elastomer failure. This result is consistent with a postjob 

inspection of the stator, which shows significant elastomer 

chunking. Investigation of this case has shown that the power 

section was incorrectly selected for this well with challenging 

drilling conditions.   

A typical RUL curve for a drilling case where the power 

section had a high RUL value at the end of the job is shown 

in Figure 14. In this case there was approximately 88% RUL 

after the drilling job, and this result was consistent with the 

visual inspection of the power section, which didn't show any 

elastomer damage inside the stator. 

 

Figure 14: RUL curve for the field case with a power 

section without any problem after drilling job.  

 

The accuracy of the model allowed the field test locations to 

build trust on the model and to start following more closely 

the modelling predictions. As the consequence, locations 

were exceeding the nominal standard fixed usage hours limit 

when the remaining useful life given by the PHM is high (low 

risk of failure due to fatigue), reducing the cost of the service 

delivery. And, on the other hand, to avoid a premature failure 

due to fatigue when the remaining useful life reach a critical 

(high chance of failure) level before the nominal usage hours 

limit in the location, they would refrain from extending the 

usage 

At the end, there was a projected yearly savings of 25% on 

maintenance cost at the same time as a failure rate reduction 

by 10%, which was quite an achievement. 

5.2. System level PHM model 

The system level PHM model has been applied to a large 

number of field jobs and correlates well with the performance 

as well as the mud motor incidents captured in the field. A 

couple of field cases are discussed in more details and they 

demonstrate how the system-level PHM model can be helpful 

to identify potential field issues related to mud motor.   

The first case is a motorized push-the-bit type RSS in the 

BHA. The mud motor power section was used to drive the 

RSS as well as deliver additional torque to the drill bit. The 

drilling run consisted about 3,000 ft drilled. The drilling was 

stopped due to a crack-induced washout at a location below 

the mud motor. The incident report also stated the mud motor 

experienced stalls during the run. After the motor was 

retrieved above the surface, the bit box was loose and could 

be rotated freely. This was a clear indication of damages 

occurred inside the mud motor. Figure 15 showed the 

nominal mud motor rpm against the actual measured mud 

motor rpm along with the degradation indicator that were 

generated by the system-level PHM model in the post job 

analysis. The results show that the mud motor started drilling 

under expected performance, also that the degradation of the 
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mud motor accelerated with drilling time. At the end of the 

job, the mud motor had degraded about 40% of its designed 

capability. The weakening of the mud motor might have 

contributed to the crack-induced washout to the other 

component.   

 

Figure 15: First case showing a drilling run of a motorized 

push-the-bit RSS.  

 

The second case is also a motorized RSS BHA. The run lasted 

around 5,500 ft and was terminated due to mud motor 

dysfunction. The failure report stated that the mud motor was 

found to have no power output before the drilling was 

stopped. Figure 16 showed the processed results from the 

system-level PHM model. As shown from the degradation 

indicator, the mud motor had completely lost its capability to 

deliver power to the drill bit, which matched precisely the 

field observation. More interestingly, it was noticed that the 

degradation indicator had a clear change in the growth trend 

after drilling about 4,500 ft. When reviewing the recorded 

drilling data, it was found that extreme drilling parameters 

were applied at that time aiming to drill faster. The extreme 

loading accelerated the degradation of the mud motor until it 

entirely lost its capability. If the combination of the 

subcomponent level PHM model and the system-level PHM 

model was implemented in real time, the sharp decrease in 

fatigue combined with the degradation indicator would have 

raised a flag to change the drilling parameters; the complete 

destruction of the mud motor might have been avoided by the 

alert from the combined PHM solution. 

 

Figure 16: Second case showing a drilling run with 

significant mud motor degradation. 

 

With lower degradation rate, the motor can survive longer 

time and drill longer distance. Figure 17 presents statistics of 

motor drilling distance versus degradation rate from over 500 

jobs. It shows that, statistically, a motor with lower 

degradation rate has a better chance to reach a deeper depth.  

 

 

Figure 17. Average drilled depth vs. degradation rate. 

5.3. Combined PHM solution  

The joint work of the two PHM algorithms was tested using 

field data. As expected, the results showed a high reliability 

in predicting the possible failure of the motor, both due to the 

fatigue failure of the elastomer inside power section stator, 

and due to other reasons not related to such type of fatigue. 

Figure 18 depicts a typical example where the power section 

PHM algorithm shows a low RUL at the end of the drilling 

operation (RUL = 6.9 % – top plot). After observing of such 

low RUL, the power section stator was sent to the shop for 

relining repair (replacement of the elastomer inside stator) in 

accordance with maintenance criteria. Postjob inspection 

revealed fatigue-related elastomer microdamage that could 

lead to the power section failure during further operation. At 

the same time system level PHM model didn't show any 

critical levels of mud motor degradation (degradation rate 

~0.11 % / 100 ft – bottom plot). This is a bright example 

where the first model detects the motor issue, but second 

model doesn't.     

 

Figure 18. Comparison of the FE simulation results and the 

motor engine output. 
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Figure 19 depicts another example where system level PHM 

model shows a high level of mud motor degradation 

(degradation rate ~0.8 % / 100 ft – bottom plot), but power 

section PHM model does not give any inkling about problems 

(RUL = 63% at the end of the work – top plot). In this case, 

the mud motor lost differential pressure and the drive shaft 

was broken, so failure was not related to the elastomer 

fatigue.  

 

Figure 19. Comparison of the FE simulation results and the 

motor engine output. 

6. CONCLUSION 

An innovative mud motor PHM solution based on accurate 

PHM models has been exposed here. This PHM solution 

combines two different PHM models for reliable prediction 

of possible problems with mud motors. It enables the 

estimation of the mud motor health both on the system level 

with the entire mud motor and on the subcomponent level 

(power section PHM model). 

The system level PHM is centered around a mud motor 

degradation indicator. Based on the study of large datasets, 

good correlation was observed between the mud motor 

degradation indicator and mud motor failures. 

The subcomponent level PHM is grounded on a RUL 

prediction of the elastomer inside the power section which is 

the most failed component. The subcomponent PHM model 

was also successfully verified and tested in the field. 

Comparison of the predicted mud motor fatigue life with the 

actual observed postjob conditions and job failures 

demonstrated good results of the developed models.  

The combined PHM solution enables the optimization of mud 

motor selection, drilling configuration, and maintenance 

operations by minimizing RUL uncertainties while 

facilitating rerun decisions and avoiding overmaintenance 

and premature retirements. The whole solution is currently 

being integrated into a drilling platform including the 

maintenance system, the well construction planning, and the 

execution. It maximizes the equipment usage with increased 

drilling performance without sacrificing reliability and 

enables optimal fleet management of the drilling process for 

both revenue maximization and sustainability. 
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