
Wavelet Scattering Network Based Bearing Fault Detection
Taoufik Bourgana1, Robert Brijder1, Ted Ooijevaar1, and Agusmian Partogi Ompusunggu1

1 Flanders Make vzw, CoreLab DecisionS, Leuven, 3001, Belgium
taoufik.bourgana@flandersmake.be

robert.brijder@flandersmake.be
ted.ooijevaar@flandersmake.be

agusmian.ompusunggu@flandersmake.be

ABSTRACT

This paper describes an algorithm for bearing fault detec-
tion using wavelet scattering networks (WSNs) as a pre-
processing step for feature space generation. WSNs are based
on the wavelet transform, where translation-invariant features
are computed that are locally stable to deformation, making
it particularly suitable for classification and clustering pur-
poses. The method is experimentally validated with data ac-
quired during 70 accelerated lifetime runs of bearings on 7
identical setups and compared to: (1) various statistical fea-
tures such as root mean square, kurtosis, crest factor, and
peak value, (2) a squared envelope spectrum method, (3) a
supervised learning method based on convolutional neural
networks. This comparison uses industrially relevant perfor-
mance metrics, taking into account accuracy (including the
classic AUC metric), data efficiency (to focus on the test-
rig/run invariance of defect-detection methods, which has
been the subject of very few research studies), and running
time.

1. INTRODUCTION

Rotating machines are ubiquitous across all industrial sectors
and they usually need to remain operational for an extended
period and in harsh environments, which causes degradation
and can eventually lead to failures in components. Bearings
are one the most critical components in rotating machines.
Bearing failures result in unplanned downtime and thus im-
pact production and maintenance costs. To reduce costs,
monitoring the condition of bearings, therefore, plays a vital
role in the maintenance programs of all rotating machinery. It
could allow to move from a traditional time-based preventive
maintenance program to a condition-based maintenance or
predictive maintenance strategy. An essential aspect in bear-
ing health monitoring are methodologies that compute and/or
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calculate condition indicators (features) from noisy vibration
signals acquired during early fault stages.

Various statistical features of vibration (or acoustic) data in
the time domain are described in literature for bearing fault
diagnosis (Freitas et al., 2016; Pichler et al., 2020), including
variance, root mean square, peak-to-peak, kurtosis, and log-
energy entropy. The bearing-fault related signal can be fur-
ther enhanced by applying signal processing techniques such
as cepstrum editing (Ompusunggu & Bartic, 2016; Peeters et
al., 2016), and minimum entropy deconvolution (Sawalhi et
al., 2007) in order to remove the effect of the transfer path
and to reconstruct the source signal of the bearing faults.

Physics-based features such as the envelope spectrum of vi-
bration data (Ompusunggu et al., 2019; Freitas et al., 2016;
Kim et al., 2020) have gained popularity amongst the bear-
ing health monitoring community given their robustness in
detecting bearing inner race faults, outer race faults, ball and
cage faults. The diagnostic information is contained primarily
in the repetition rate of the pulses arising from bearing fault
impacts. While spectral correlation is able to find a suitable
band for demodulation of the vibration signal to obtain the
envelope spectrum in general, it is shown in (Randall et al.,
2016) that in the case where the signal is impulsive, a method
based on kurtogram provides better results.

Other methods have been described in literature to compute
features for bearing fault diagnosis. For example, the discrete
wavelet transform has been applied in (Nishat Toma & Kim,
2020) to decompose an induction motor current signal into
several coefficients. The statistical features of these decom-
posed coefficients are subsequently the input to two ensemble
machine learning models, namely random forest and extreme
gradient boosting, where both classifiers showed promising
results to distinguish between healthy bearings, and bearings
with inner faults and outer faults. As another example, (Al-
Bugharbee & Trendafilova, 2015) used fitted auto-regressive
model coefficients as input features to a nearest neighbor ma-
chine learning algorithm, in order to classify four bearing
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fault conditions. Finally, convolutional neural networks have
been widely used for bearing fault classification. In partic-
ular, (Janssens et al., 2016) show that convolutional neural
networks can outperform various statistical features.

In most industrial applications, bearing fault detection meth-
ods ought to: (1) be data-efficient: one is faced, in many in-
dustrial settings, with a lack of training data, a lack of ground
truth and scarce information on machine design and opera-
tional conditions and (2) require relatively low running time
during inference, as these methods are in most cases deployed
in edge devices running on a battery. In light of these tech-
nological challenges, we apply wavelet scattering networks
to bearing fault detection (Ambika, Rajendrakumar, & Ram-
chand, 2019; Heydarzadeh & Mohammadi, 2017). This tech-
nique is based on the wavelet transform, where it computes
translation-invariant features that are locally stable to defor-
mation, making it particularly useful for classification and
clustering purposes. Moreover, we specifically focus on the
problem of test-rig/run invariance of defect detection mod-
els, which is an issue that has been the subject of very few
research studies.

The method is experimentally validated with data acquired
during 70 accelerated lifetime runs of bearings on 7 setups
of the Smart Maintenance Living Lab of Flanders Make
(Ooijevaar et al., 2019). Furthermore, the wavelet scatter-
ing network feature extraction method is compared to: (1)
various statistical features, (2) the squared envelope spec-
trum method, and (3) a detection method based on convo-
lutional neural networks (CNNs). This benchmark is done on
three industrially-relevant performance metrics, taking into
account accuracy (both a industrially-motivated weighted ac-
curacy metric and the classic AUC metric), data efficiency
(focusing on test-rig/run invariance of defect detection mod-
els), and running time.

2. METHODOLOGY

This section discusses the proposed methodology compris-
ing 1) the wavelet scattering networks for features genera-
tion, subsequently followed by 2) principal component analy-
sis (PCA) for dimensional reduction and 3) logistic regression
for health assessment and classification.

2.1. Wavelet scattering networks

One of the difficulties in vibration-based bearing-fault classi-
fication stems from considerable variability within the classes
themselves. For instance, bearing impact force variations dur-
ing operation, manufacturing variability of mechanical parts,
and changes in operating and environmental conditions can
induce various deformations and rigid translations, which can
influence amplitudes, phases, and frequencies of the data.

The wavelet scattering network (Bruna & Mallat, 2013) is a

feature-generation method based on the wavelet transform.
The obtained features are translation invariant and stable to
small deformation, which increases the discrimination be-
tween classes, while still being continuous and stable to small
variations. This has been extensively described in (Bruna
& Mallat, 2013) using image data from the MNIST dataset,
and can be summed up by the following Lipschitz continuity
equation:

‖S(Lτx)− S(x)‖ ≤ α‖x‖‖∇τ‖∞, (1)

where:

• S is the scattering wavelet operator,
• Lτx(u) = x(u−τ(u)) is the translation and deformation

operator,
• α is a constant, and
• ∇τ is the deformation gradient tensor whose norm mea-

sures the deformation amplitude.

When the deformation operator Lτ is only translating the in-
put x, i.e., x(u − c), where c is a constant, this means that
∇τ(u) = 0, yielding translation invariance of the wavelet
scattering transform. If the deformation operator Lτ is more
complex, Eq. (1) shows that the deformed signal and the sig-
nal itself have a scattering distance essentially proportional to
the deformation amplitude.

The use of the wavelet scattering transform has been de-
scribed in the literature on several use cases such as audio
classification (Andén & Mallat, 2011), where features have
been computed from audio data and classified using an affine
model selection using PCA. WSN features have also been ap-
plied in medical applications, where, e.g., (Liu et al., 2020)
used the extracted features from ECG signals to classify four
types of arrhythmia using neural networks trained on a re-
duced WSN feature space together with K-nearest-neighbors.
The quality of scattered feature information has also been
shown in (Wang et al., 2018), where it has been used as part of
an algorithm of synthetic aperture radar (SAR) for automatic
target recognition.

The basic building block of the WSN is Morlet wavelet. A
dictionary of Morlet wavelets, see Eq. (2), is obtained by scal-
ing and translating (with the operator Tτ ) a single band-pass
filter:

ψj,τ (x) = 2−2jψ(2−jTτx) (2)

At the zeroth order, a scaled Gaussian (Eq. (3)) is applied to
the modulus of the input signal. This results in the first co-
efficients (Eq. (4)); they can be seen as features representing
energy information of the signal.
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φ2J (x) = 2−2Jφ(2−Jx) (3)

S0,Jx = |x| ∗ φ2J (4)

At the first order, the input signal is filtered with Morlet
wavelets (ψj,τ )j,τ and then high frequencies are eliminated
by the convolution with the scaled Gaussian φ2J . This results
in the first-order coefficients, see Eq. (5):

S1,Jx = |x ∗ ψj1,τ1 | ∗ φ2J (5)

The high frequencies that were eliminated in the first order
are recovered in the second order (Eq. (6)) using wavelets
at a finer scale. This is done by convolutions of the filtered
signals |x ∗ ψj1,τ1 | with wavelets at scales 2j2 < 2J . Their
modulus is scaled afterwards with the Gaussian filter. The
resulting coefficients are called scattered coefficients as they
are computed from the interference of the input signal x with
two wavelets.

S2,Jx = ||x ∗ ψj1,τ1 | ∗ ψj2,τ2 | ∗ φ2J (6)

Higher-order scattered coefficients are computed in a similar
fashion. In this way, scattering wavelet transform “spreads”
the energy of the signal x across the scattering coefficients of
each order. This energy decays quickly as the order increases.
In fact, it is shown in (Bruna & Mallat, 2011) that 98% of
the energy of scattered coefficients is carried by the zeroth,
first, and second orders. Therefore, throughout the rest of the
paper, we limit ourselves to these orders.

The final scattering matrix concatenates scattering coeffi-
cients of all orders to represent the features of the input signal,
see Eq. (7):

Sfinalx = {Sm,J}m∈{0,1,2} (7)

The structure of wavelet scattering networks is similar to that
of convolutional neural networks, but with different proper-
ties:

• The filters used to extract frequency information are not
learned but are predefined Morlet wavelets.

• The modulus operator can be interpreted as a pooling
function in the context of convolutional networks as it
recombines real and imaginary parts of the coefficients.

• The scaled Gaussian averaging filter φ2J is also a pooling
operator as it down-samples the input signal.

In the rest of the paper, the aggregated wavelet scattering
transform features will need to be compressed before using

them as input to traditional machine learning algorithms. This
will be substantiated in Sections 2.2 and 2.3.

2.2. PCA

In order to avoid the dimensionality curse when classifying
the generated data from the wavelet scattering transform, the
latter is projected onto an orthonormal basis of lower dimen-
sion. This basis is found using principal component analysis
(PCA).

The principal components are computed using the singu-
lar value decomposition of the aggregated wavelet scattering
transform data matrix XWSN (see Eq. (8)). The matrix V is
used to map the data from the original feature space to the
reduced one.

XWSN = UΣV∗, (8)

where:

• U are the orthonormal left singular vectors,
• Σ is the diagonal singular values matrix, and
• V are the orthonormal right singular vectors.

2.3. Logistic Regression

In general, feature values are not necessarily restricted be-
tween 0 and 1, which does not allow a direct justification on
the health of a Component Under Test (CUT). Despite reflect-
ing the actual condition of a CUT, principal features extracted
from measurement data cannot be directly used to assess the
health of the CUT unless the relative distances to the corre-
sponding values which represent the end of life of the CUT
(i.e., thresholds) are known. To this end, the feature values
evolving from a healthy to failure state need to be transformed
to health indices.

In this paper, we use logistic regression to transform fea-
ture values into health indicator values. As will be shown
later, logistic regression can be seen as a process with a two-
fold objective: (i) fusing multiple features (independent vari-
ables) into a single value, the health index, and (ii) restricting
the health index between 0 and 1, with 0 considered healthy
and 1 faulty. As discussed in (Lemeshow & Hosmer, 2000;
Kleinbaum et al., 2002), logistic regression is an appropri-
ate technique for dichotomous problems, where the predicted
variable (in this case the health index) must be greater than
or equal to zero and less than or equal to one. Unlike lin-
ear regression which is inappropriate for dichotomous prob-
lems (Lemeshow & Hosmer, 2000; Kleinbaum et al., 2002),
in logistic regression, only data representing healthy and fail-
ure states are required to estimate the regression coefficients.
Thus, a logistic-regression technique is suitable for problems
with limited history data (Ompusunggu et al., 2012).

Let us consider a simple logistic function P (F ) defined as:
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P (F) = h =
1

1 + e−g(F) =
eg(F)

1 + eg(F) , (9)

where F = {F1, F2, . . . , FL} denotes a set of L extracted
features, h denotes the health index of an event (i.e. healthy or
failure) given a set of features F and g(F) is the logit function
which is mathematically expressed as:

g(F) = g = log
(

P (F)
1− P (F)

)
=

L∑

i=0

βiFi, (10)

where F0 = 1, βi denotes the logistic model parameters to
be identified, and g denotes the logarithm of the “odds-of-
success”. In a more compact way, Eq. (10) can be rewritten
as:

g = βTF, (11)

with
β = [β0 β1 β2 · · · βL]

T

and
F = [1 F1 F2 · · · FL]

T,

where the superscript T denotes a transpose operation.

Note that the logistic function expressed in Eq. (9) can be
seen as a kind of probability function (cumulative distribu-
tion function) because it ranges between 0 (healthy) and 1
(failure). In addition to this, the logit function expressed in
Eq. (11) constitutes a linear combination of features extracted
from measurement data F1, F2, . . . , FL. This implies that
the logarithm of the odds-of-success g preserves the nature
of features to be extracted from measurement signals.

Here, the main objective of the logistic regression is to iden-
tify the L+1 parameters of β in Eq. (11) such that the logistic
model is readily implementable for the health assessment of a
CUT. In this context, the parameter identification is normally
performed using the maximum-likelihood estimator, which
entails finding the set of parameters for which the probability
of the observed data is maximal (Czepiel, n.d.). This is done
off-line, where two sets of features, Fhealthy and Ffailure rep-
resenting healthy and failure states, respectively, are used as
training data.

3. EXPERIMENTAL VALIDATION

In this section, the wavelet scattering transform is used to ex-
tract features from acquired data and a comparison is made
to other methods, namely statistical features, the squared en-
velope spectrum as well as a convolutional neural network
based-approach. This benchmark will focus on three indus-
trially relevant performance metrics taking into account accu-
racy, data efficiency, and running time.

Figure 1. One of the seven test rigs.

3.1. Datasets

The Smart Maintenance Living Lab (Ooijevaar et al., 2019)
consists of seven identical drive train sub-systems represent-
ing a fleet of machines, on which accelerated life time tests
of bearings have been performed. During these tests reliable
datasets of degrading bearings have been acquired.

One of these seven identical experimental rigs is depicted in
Figure 1. It comprises of a single shaft with the test bear-
ing that is supported on each side by a support bearing. A
hydraulic cylinder applies a radial load of F = 9 kN to the
bearing. The bearing is lubricated by an internal oil bath. The
set-up is driven by a motor at a rotation speed of 2000 rpm.
The accelerometer and load and speed sensors are mounted
on the experimental set-up. The acquisition of the data is
done through an industrial Beckhoff platform. Seventy runs
have overall been gathered: per rig seven runs to end of life
(defined as a peak to peak of 20 g) starting with a small initial
indent with the average diameter of 400 micron on the bear-
ing inner race, and three healthy bearing runs. The average
length of a run is several hours. Vibration data is acquired at
a sampling frequency of Fs = 50 kHz.

3.2. Results

After applying the scattering transform on the input signals
from the dataset (by slicing the datapoints into 1s segments),
a principal component analysis (PCA) has been applied to the
resulting features to reduce the dimension of the space, while
preserving as much variability between the data points as pos-
sible. Figure 2 illustrates the distribution of the datasets in a
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Figure 2. Distribution of wavelet scattering network features
along the first two principal components.

two-dimensional space obtained by PCA. It shows a separa-
tion between the two classes, i.e., datasets of the faulty and
healthy state. From Figure 2 we observe the following:

• Some healthy data points are very close (distance-wise)
in the reduced feature space to the faulty datapoints.
After investigating these datapoints, it has been ob-
served that they all belong to the same run of a bearing
test. These datapoints exhibit anomalies relative to other
healthy datasets especially in terms of amplitude (the rea-
son for this is not clear and has not been investigated
further yet). However, during performance evaluation in
this paper, all data points were accounted for.

• Clustering of data points within each class can be clearly
seen in Figure 2, within the same class; bearing signal
coming from the same run/dataset exhibit higher similar-
ities than data points coming from two different runs.

• Two clusters form within each class. This behavior has
not been further examined yet.

A supervised model can then be trained on the compressed
feature space to classify datasets of the faulty and healthy
state. The number of PCA components to be kept is a tun-
ing parameter during the training and testing of the classifier.
Two PCA components are used in Figure 2 for illustration
purposes only, as it has been observed after tuning that seven
PCA components is most suitable for classification.

The confusion matrix (describing the true/false posi-
tives/negatives) of the linear classifier obtained from using
logistic regression (Kleinbaum et al., 2002) on the feature
values of the 70 datasets is shown in Figure 3. The classifier
model is trained randomly on a subset of the datasets (a frac-

Figure 3. Confusion matrix of a classifier (logistic regres-
sion) trained on wavelet scattering network features (using a
random split of 10% training data and 90% test data).

tion of data points are taken from each of the 70 datasets avail-
able). Seven principle components are used. It can be seen
that the model is able to successfully separate the two classes
in a linear fashion. The fact that the training-testing split was
done randomly dramatically increases the probability of hav-
ing a perfect score, because the model will be seeing data
points coming from different runs. In general and as can be
seen from Figure 2, if only a few setups/runs are considered
during the training, then the model will find the optimized
separation while ignoring all the dataset coming from other,
not considered runs/setups, and hence it will result in a worse
score. The reason for this is, within the same class, there are
generally more similarities between datapoints coming from
the same accelerated life time test/run than datapoints coming
from different tests/runs, this can be due to the way the test rig
is commissioned for a certain run i.e. mechanical part assem-
bly variations such as shaft misalignment and bearing preload
variations. This challenge is further examined in Section 4.3
and a metric related to data efficiency will be introduced to
evaluate test rig/machine invariance.

4. BENCHMARKING

4.1. Penalized accuracy metric

The penalized accuracy metric considered in this paper is the
following:

Accpenalized = 1− (200 · FPR + FNR), (12)

where FPR is the false positive rate and FNR is the false nega-
tive rate. The rationale behind this formula is that even though
a false negative is considered about 5 times more severe (this
factor is obtained from feedback from industry), in indus-
trial applications, we can expect about three orders of mag-
nitude more measurements of healthy datapoints, leading to
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a weighting factor of 1000/5 = 200 for FPR. Consequently,
minimizing the false positive rate is imperative.

Note that perfect classification (i.e., FPR = FNR = 0)
corresponds to accuracy one, while with no skill it is pos-
sible to obtain accuracy zero by classifying every datapoint
as healthy. Note however that accuracy can be negative.
Accuracy is computed on models trained using a leave-
one-dataset-out cross validation procedure, i.e., one dataset
is tested against a model that is trained on the remaining
datasets.

4.2. Area under the ROC curve

We also consider in this paper a normalized (in contrast with
the one mentioned in Section 4.1) accuracy metric classically
used to assess the performance of binary classifiers: the Area
Under the ROC (Receiver Operating Characteristic (Fawcett,
2006)) Curve (AUC). We refer to (Fawcett, 2006) for a de-
tailed discussion of the ROC curve and the AUC.

The AUC metric is chosen because, on the one hand, it is a
normalized value to assess the performance of binary classi-
fiers, and, on the other hand, it is a threshold-invariant metric
that summarizes the trade-off between the true positive rate
and false positive rate.

4.3. Data efficiency metric

In order to insure a robust diagnosis of bearing faults, it is
important for defect detection models to be setup invariant.
Moreover, in industry, often few datasets are available and in
particular few faulty datasets. Therefore, it is important for
defect detection models to perform well with little training
data. In order to quantify this, we present in this section a
novel metric.

Given a certain model, the data efficiency is evaluated in the
following manner using a matrix, see Figure 4:

• Each value in this data efficiency matrix is computed by
randomly selecting fixed numbers of healthy and faulty
datasets on which the model is trained, and the model is
then tested on the other datasets. This is iterated 50 times
to cover multiple combinations.

• The accuracy values in the data efficiency metric are
computed according to Eq. (12).

• In Figure 4, the maximum number of faulty datasets
is purposely chosen less than the maximum number of
healthy datasets to mimic industrial settings, where most
often more healthy datasets are available than faulty
datasets.

The data efficiency metric is defined as the “volume under
the surface” of the data efficiency matrix, where we ignore
negative accuracy values (since accuracy zero can already be

Figure 4. Data efficiency performance matrix for a classifica-
tion algorithm.

accomplished by replacing it by a no-skill algorithm). More
precisely,

Data efficiency =
1

|F | · |H|
∑

f∈F

∑

h∈H
max(Accf,h, 0), (13)

where F is the set of numbers of faulty datasets (the row in-
dices of the matrix of Figure 4) and H is the set of numbers
of healthy datasets (the column indices of the matrix of Fig-
ure 4). In other words, data efficiency is the mean of the
entries of the matrix obtained from Acc by replacing every
negative entry by zero.

4.4. Comparison

In this section, five bearing fault features are compared to the
wavelet scattering network algorithm. All computations were
done on a laptop with an Intel Core i7-9850H CPU and 16
GB of RAM memory running Windows 10.

• Statistical features:
– RMS: Root mean square (Eq. (14)) is the result after

point-wise squaring, followed by taking the mean,
followed by applying the root function. RMS is a
measure for the amount of power dissipation.

RMS(x) =

√√√√ 1

n

n∑

k=1

x2k, (14)

where n is the length of x.
– Peak: Peak is the highest value among the samples
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Figure 5. 1D CNN architecture

of the vibration signal (Eq. (15)).

Peak(x) = max(x) (15)

– Kurtosis: Comparing the signal kurtosis to 3 gives
a measure on the non-Gaussian nature of the signal.

• Physics-based features:
– Squared envelope spectrum: the algorithm used in

this paper is presented in (Freitas et al., 2016; Om-
pusunggu et al., 2019).

• AI-based features:
– Applying a one-dimensional convolutional neural

network (1D CNN) to the raw input: The network
topology is given in Figure 5 and is similar to the
network topology used in (Eren, Ince, & Kiranyaz,
2019) (in particular, the networks operate on raw
vibration data and consist of three 1D convolutional
layers with subsampling followed by dense layers).
The first convolutional layer comprises of 3 filters
that map the input into three vectors of length 4954,
the second convolutional layer comprises of 3 filters
that maps its input to three vectors of length 494, the
third convolutional layer comprises of 1 filter that
maps its input to one vector of length 48, the fourth
layer consists of a dense layer that maps its input
to one vector of length 5, then a classification layer
that aims to differentiate between healthy and faulty
states. The network topology and the used learning
rate (of 10−4) and momentum (of 0.9) of stochastic
gradient descend have been manually optimized for
accuracy.

Table 1 shows a comparison between different methods. It is
clear that the logistic regression trained with the wavelet scat-
tering network features along with the 1D CNN outperforms
the other methods in terms of penalized accuracy and area un-
der the ROC curve. However it can be shown that the running
time of the wavelet scattering feature computation is one or-
der of magnitude higher than the physics-based model, and
two order of magnitudes higher than the CNN-based model,

Table 1. Benchmark of various features according to the pe-
nalized accuracy, data efficiency, and running time metrics,
respectively.

Method Acc. AUC Data eff. Running time (ms)
RMS 0.197 0.51 0.0036 0.074
Peak 0.182 0.47 0.019 0.022
Kurtosis 0.409 0.59 0.0525 1.3
SES 0.434 0.64 0.1942 17.0
CNN 0.593 0.97 0.0094 3.0
WSN 0.65 0.99 0.2336 600

the latter is not practically an issue for most industrial appli-
cations as the features do not have to be computed continu-
ously, but can be computed every other period of time (for
example, every second or every minute). Nevertheless, the
wavelet scattering feature method seems to represent the in-
put signals in the feature space well as its data efficiency value
is relatively high.

5. CONCLUSION

This paper aims to show the performance and quality of
wavelet scattering networks features for bearing defect detec-
tion compared to other methods: statistical features, namely,
root mean square, peak, and kurtosis, physics-based features,
namely the squared envelope spectrum, and a CNN-based
fault detection method. The comparison was made using
three metrics: (1) a penalized accuracy, where the goal is to
minimize as much as possible false alarms while still being
able to accurately detect defects, (2) data efficiency, in order
to provide a metric to evaluate the machine/setup invariance
of detection models, and (3) running time of detection mod-
els. It has been shown that the wavelet scattering networks
features offers the highest accuracy and data efficiency rela-
tive to the other methods, but requires more time to compute.
An important topic for future work is to compare the meth-
ods against datasets acquired using more involved drive trains
(e.g., with gears) and under varying operating conditions.
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