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ABSTRACT

Prognostics for condition-based maintenance does not only
consist of prognostic algorithms but also involves steps such
as data pre-processing, feature extraction, and dimensional-
ity reduction, all of which contribute to the quality of the re-
maining useful life estimation. This process requires a lot
of expertise and technical knowledge, which for many ap-
plication systems is neither feasible nor affordable. In this
paper, therefore, we present a generic framework with the ca-
pability to automatically choose the optimal settings for prog-
nostics, given a specific data set. The framework consists of
three phases. In the first one, a set of prognostic algorithms is
selected by the user and according hyper parameter settings
are found. In the second, a genetic algorithm optimizes the
choice of methodologies together with hyper parameter set-
tings for the feature extraction, dimensionality reduction, and
prognostic algorithm selection. In the third phase, the identi-
fied settings define the prognostic setup, which in turn is used
to train the model for remaining useful life estimation. This
framework is then applied to a simulated aircraft engine data
set. The aim is to find out if the framework provides the re-
quired adaptivity and furthermore if it allows to draw conclu-
sions about the prognosability of the input data set. The first
results show that the so obtained remaining useful life esti-
mates are comparable to the values obtained using established
prognostic algorithms on the same data set. Furthermore, the
generic prognostic framework proves to be adaptive. In fur-
ther consequence, such a generic framework offers a way to
adjust a prognostic framework to different system data sets.

Marie Bieber et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

1. INTRODUCTION

Over the last few years the field of data-driven prognostics has
undergone a big growth in terms of both algorithms and appli-
cation areas. In many cases the development of a prognostic
framework starts with a specific data set to which feature en-
gineering methods and prognostic algorithms are tailored, ul-
timately resulting in increasingly better remaining useful life
estimates. This process however not only requires a lot of ex-
pertise and technical knowledge, but also it often translates
to years of research conducted. In case of an application sys-
tem, such as an aircraft, which consists of many subsystems,
this is neither feasible nor affordable. What would be desir-
able is a generic framework incorporating the steps needed
for prognostics, including data pre-processing, feature engi-
neering and the selection of a prognostic algorithm, that au-
tomatically chooses the optimal settings, given a specific data
set.

Prior studies of such frameworks have yielded promising re-
sults. An autonomous diagnostics and prognostics framework
is suggested by (Baruah, Chinnam, & Filev, 2006) that con-
sists of several steps, including the data pre-processing, clus-
tering to distinguish operating conditions and finally the diag-
nostics and prognostics steps are performed. However, some
parameters, including the number of observations for initial-
isation and optimization of cluster adaption rates, have to be
set manually and it can be tricky to tune the algorithm in an
optimal way. To account for this, (Voisin, Levrat, Cocheteux,
& Iung, 2010) provide a generic prognostic framework that
can be instantiated to various applications. However, their
approach is very formal and no specific machine learning al-
gorithms are used in this framework. Again, this is a limi-
tation, as it is up to the user to define proper techniques. To
overcome this problem, (An, Kim, & Choi, 2015) provide
guidelines to help with the selection of appropriate prognos-
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tic algorithms depending on the application. Another way to
address this is by using ensembles of machine learning ap-
proaches that combine multiple prognostic algorithms with
an accuracy-based weighted-sum formulation (Hu, Youn, &
Wang, 2010).

Still, a problem remains, namely the fact that the above pre-
sented solutions address the automatic selection of prognostic
algorithms but not the steps needed before, such as feature ex-
traction and dimensionality reduction. Therefore, the authors
in (Trinh & Kwon, 2020) suggest a prognostics method based
on an ensemble of Genetic algorithms that includes most of
the steps, from feature engineering until the Remaining useful
life (RUL) estimation. With this it provides a generic frame-
work for prognostics. The authors of the paper validated their
framework by applying it to three commonly used and avail-
able data sets and comparing its performance to other exist-
ing approaches. What we ask now is: Is the framework truly
adaptive to various kinds of input data and does it adjust to
those? And if so, can we go further and use the framework to
make implications on the input data? Or put in other words:
Does the framework provide the capability to impose criteria
to the prognosability of a system? In this paper, we therefore
apply a generic prognostic framework to a benchmark data
set and test it in terms of adaptivity. From there we try to
use the framework to loop back to the systems input data and
make implications about the prognosability of those systems.

The remainder of this paper is organized as follows. Section
2 introduces the generic prognostic framework. In section
3, the for the case study selected underlying data set is de-
scribed. Section 4 contains the results of the case study which
are discussed in section 5. Finally, in section 6, we conclude
by highlighting the most important findings and limitations
and providing possible directions for further research.

2. GENERIC PROGNOSTIC FRAMEWORK

We define a generic prognostic framework to be a tool that
contains modelling techniques covering the sequential steps
of a data-driven prognostics approach and, given a data set,
selects the best techniques to be used for each case. This
means that in addition to incorporating different methodolo-
gies, the framework includes a selection step in which the in
terms of prognostic error best set of techniques is chosen.

The idea of the generic prognostic framework as presented in
this paper, is to provide for an approach capable of identify-
ing a suiting prognostic model given related system data and
a way to assess system data in terms of prognosability. This
means that we do not make the assumption that according
system data contains enough information to obtain a valu-
able prognostic model. It could indeed be the case that the
generic prognostic framework fails to find a model of suffi-
cient quality. This would mean that the system is not ’prog-
nosable’ given the available data set and the set of method-

Figure 1. Generic prognostic framework (GPF)

ologies tested by the framework. Even though the ’prognos-
ability’ of the data set is therefore not a requirement for our
framework, we still make some assumptions:

• The system is operated until failure.
• According system data is available from the begin of op-

erations until the failure.
• The remaining useful life (RUL) of the system is known

at any time of operations.

There are multiple steps that have to be implemented in a
prognostics framework, including the data-preprocessing, fol-
lowed by feature extraction, leading to dimensionality reduc-
tion of features, before the actual prognostics algorithm that
performs the remaining useful life prediction on the data set
is executed. Therefore, a generic prognostic framework does
not only need to provide the flexibility of choosing the ‘best’
prognostic algorithm, but also it has to incorporate the pre-
vious steps. Note, that we distinguish prognostic algorithms
from prognostic models, in the way that when using the term
’prognostic algorithm’ we refer to a certain selected tech-
nique used to do prognostics, e.g. Random forest (rf) or neu-
ral networks, and by ’prognostic model’ we mean the derived
predictor (by means of the prognostic algorithm and feature
engineering methodologies) that takes system data as an input
and outputs the RUL estimate.

Before we introduce the framework, we define the Mean squared
error (MSE). At time T it is given as

MSE(T ) =
1

T

T∑

i=1

(RULi − ˆRULi)
2, (1)

withRULi the true RUL value and ˆRULi the predicted RUL
value at timestep i.

The objective is to select the in terms of MSE optimal method-
ology with the optimal hyper parameter settings for each step
in the prognostic framework. We implement this in three ba-
sic steps summed up in Figure 1.

- First, a system is selected and according data is collected.
Then, the hyper parameters for prognostic algorithms are
selected by grid search.

- The next step and the heart of this study is solving the op-
timization problem that can be formulated as: Given a set
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of feature extraction and dimensionality reduction tech-
niques and their according hyper parameters, find the, in
terms of MSE, optimal set of those given a prognostic
algorithm. A detailed explanation of the set of feature
extraction and dimensionality reduction methodologies
is given in section 2.2.

- Finally, the settings are used to build the prognostic model
to output the RUL estimate. The framework as suggested
in this paper can be used in two ways: Either it can pro-
vide a quick assessment of the prognosability of the input
data or it can be used to perform an automatic selection
of feature engineering settings once the prognostic algo-
rithm itself has been selected.

In the following subsections we present the grid search ap-
proach used to select the prognostic algorithms, in Section
2.1, the genetic algorithm used to optimize the feature en-
gineering settings together with the prognostic algorithm, in
Section 2.2, and the prognostic model that is the output of the
framework in Section 2.3.

2.1. Grid search to tune prognostic algorithms

The first step in the proposed GPF is to select the prognos-
tic algorithms. In this paper, we choose four different ma-
chine learning methodologies, a rf regression, a Multilayer
perceptron (MLP), a Support vector machine (SVM) and a
k-Nearest neighbors (kNN) regression. The four selected al-
gorithms are well-established and offer potential advantages
in terms of interpretability and explainability, which is neces-
sary to understand systems retrospectively and prospectively
(F. R. Ward & Habli, 2020). This may assist in the adoption
of these algorithms for a variety of applications, potentially
even covering safety-critical components. They thereby also
provide the possibility to establish first baseline models for a
quick prognostic assessment.

For the chosen algorithm on a validation set, a grid search
is performed, to find the optimal hyper parameter settings.
Since the aim of the grid search in this case is to establish
quick baseline models that can consequently be used as in
input in the following step of the framework, we only search
a limited set of parameters. The according hyper parameters
and their possible settings explored during the grid search are
given in Table 1. The so found settings are the ones then used
in the genetic algorithm that is presented in the next section.

2.2. Genetic Algorithm

We treat the problem of finding the optimal feature engineer-
ing settings as an optimization problem: The objective func-
tion is to minimize the MSE (Equation 1) of the fixed prog-
nostic algorithm on the data set transformed by the selected
feature engineering settings. To solve the optimization prob-
lem, we use a genetic algorithm (GA). These algorithms are
based on the concepts of natural selection and genetics (Holland,

Table 1. The hyper parameters and combination of settings
explored during the grid search for each of the four prognostic
algorithms.

Prognostic
algorithm

Hyper pa-
rameter

Description Possible
settings

rf

n estimators number of trees {200, 800,
1400}

bootstrap indicating if boot-
strap samples are
used to build the
tree

{True,
False}

max depth maximum depth
of the tree

{10, 100,
None}

max fea-
tures

maximum num-
ber of features to
consider when
looking for the
best split

{’auto’,
’sqrt’}

min sam-
ples leaf

minimum num-
ber of samples
required to be at
a leaf node

{1, 2, 4}

min sam-
ples split

minimum num-
ber of samples
required to split
an internal node

{2, 5, 10}

kNN n neighbors number of neigh-
bors

{3, 5, 7, 9,
11, 19}

MLP

hidden
layer sizes

number of neu-
rons in the ith
hidden layer

{(50, 50),
(100, 50)}

activation activation func-
tion for hidden
layer

{’tahnh’,
’relu}

alpha learning rate {0.0001,
0.001,
0.05}

learning
rate

schedule for
weight updates

{’constant’,
’adap-
tive’}

SVM C learning rate {0.001,
0.01, 0.1,
10}

gamma kernel coefficient {0.001,
0.01, 0.1,
1}
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Figure 2. Example of chromosomes of an individual in the
GA

1992). The steps, as in Algorithm 1, are as follows:

- A population is initialized, composed by a set of individ-
uals (i.e., solutions to the optimization problem).

- The best fitted individuals are selected based on a fitness
metric which represents the objective.

- In a following step, the selected individuals undergo a
cross-over and mutation process to produce new children
for a new generation of individuals.

- This process is repeated over a number of generations
until the algorithm converges or a stopping criterion is
achieved.

Algorithm 1: Genetic Algorithm
start;
t← 0;
initialize population P (t);
evaluate fitness of each individual in P (t);
while termination condition not fulfilled do

t← t+ 1;
s1, s2 ← select individuals from P (t);
x1, x2 ← create offspring by crossover operation on
s1, s2;
x̂1, x̂2 ← mutate x1, x2;
evaluate fitness of x̂1, x̂2 if fitness of x̂1, x̂2 higher

than least fittest individuals in P (t) then
replace least fittest individuals with x̂1, x̂2;

else
pass;

end
end

In our approach, we consider an individual as a possible set of
methodologies and according hyper parameters of the prog-
nostic framework. The fitness of each individual is given by
the MSE at time T (Equation 1) resulting from the prognos-
tics performed with the individuals settings on the underlying
data set.

Each individual in the GA consists of a set of chromosomes,
each representing a chosen methodology or hyper parame-
ter setting. In the GA proposed, the individuals consist of
seven chromosomes (Figure 2). Three of those correspond to
choices of methodologies of the feature extraction and dimen-
sionality reduction, and the others represent hyper parameters

choices. With the settings as given in Figure 2, the solution
space of the optimization problem corresponds to 691 200
possible solutions that are part of the solution space.

In the following subsections we give an overview of the mul-
tiple techniques considered by the GA for the feature extrac-
tion, feature section, and prognostic algorithm.

2.2.1. Feature extraction

Feature extraction is performed to obtain useful information
from raw signals (Jardine, Lin, & Banjevic, 2006). Since the
scope of this analysis are RUL estimation models for me-
chanical or electrical systems with run-to-failure data, it is
assumed that underlying signals come in the form of time-
series data. The simplest way to handle time series data is
by calculating characteristic features as descriptive statistics
from the data themselves. Of the existing methodologies, we
chose to include three commonly used techniques for time
series data in the framework, namely Simple moving aver-
age (SMA), Central moving average (CMA) and Exponential
moving average (EMA). Assume that ft is the value of fea-
ture f at time t and n is the considered time window size.
Then the SMA is the average of values over the past points,
given by

SMA(ft) =
ft−n+1 + · · ·+ ft−1 + ft

n
. (2)

The CMA is the average of the values around the time point
t, i.e.

CMA(ft) =
ft−n

2
+ · · ·+ ft−1 + ft + ft+1 · · ·+ ft+n

2

n
. (3)

And the EMA is recursively calculated by

EMA(ft) =

{
ft if t = 1,
(1−α)·ft+α·(1−αt−1)·EMA(ft−1)

1−αt ift > 1,
(4)

where α = e−1/n, with n the total number of time steps. The
according hyper parameter settings in all three cases is the
time window size n, which in the algorithm is represented by
the variable ’SMA_n’.

2.2.2. Feature selection

Feature selection is identifying features that help finding faults
in the monitored systems (Kothamasu, Huang, & Verduin,
2009). Often this is achieved through dimensionality reduc-
tion techniques which generate a new lower-dimensional fea-
ture space while retaining information of the original fea-
tures. In the framework, we included a sample of such tech-
niques, namely Principal component analysis (PCA), trun-
cated singular value decomposition (tSVD), Feature agglo-
maration (FAG), Gaussian random projection (GRP) and Sparse
random projection (SRP). PCA is a widely used technique
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making use of the singular value decomposition of the data
to project it to a lower dimensional space. Truncated singu-
lar value decomposition is very similar to PCA it only differs
in the way it treats the data matrix (Halko, Martinsson, , &
Tropp, 2011). FAG uses Ward hierarchical clustering, group-
ing nFAG features that are similar into clusters (J. H. Ward,
1963). Random projections are yet another way of reducing
a features space dimensionality (Dasgupta, 2000). In GRPs
this is achieved by means of a randomly generated matrix
for which components are drawn from a Gaussian, with n
the number of dimensions retained. SPRs differ from GRPs
only by using a sparsely populated random matrix speeding
up computations significantly (Li, 2007).

2.2.3. Prognostic algorithms

Finally, the according prognostic algorithm needs to be cho-
sen and applied to the by the previous steps transformed data.
The underlying set of algorithms with according hyper pa-
rameters consists of a rf regression, a MLP, a SVM and a
kNN regression for which the hyper parameters were found
during the grid search step as presented in section 2.1.

2.2.4. Genetic algorithm parameters

The previous paragraphs gave an overview over the form of
an individual of the GA. Of course, also for the GA hyper
parameters need to be set. The termination condition is cho-
sen as the maximal number of generations. The probability
with which an individual is mutated is set to 0.1, the prob-
ability for cross-over to 0.5 and the population size to 20 as
presented in (Trinh & Kwon, 2020). With this, we are ready
to run the GA and apply it to system data to find the ’optimal’
settings of feature engineering methodologies and according
hyper parameters. Now the next step is to use those settings
to build the prognostic model.

2.3. Prognostic model

The output of the GA is the ’best individual’, i.e. the set
of methodologies and hyper parameter settings that lead to
the best performance on the data set in terms of MSE. This
individual is now used to build a prognostic model. As an
input this model takes a new data set of according system
data and it outputs the RUL estimation.

3. CASE STUDY: SIMULATED AIRCRAFT ENGINE DATA
SET

The data set we chose for this study is the Commercial Mod-
ular Aero-Propulsion System Simulation (C-MAPSS) data. It
consists of four data sets, each containing simulated run-to-
failure data for turbofan engines (Frederick, DeCastro, & Litt,
2007) (Saxena, Goebel, Simon, & Eklund, 2008). The data
sets differ mainly in the number of fault modes (’modes’) and
operating conditions (’conditions’) as listed in Table 2. Each

engine is considered to be from a fleet of engines of the same
type and each time series, also often referred to as trajectory,
is from a single unit. The engines are operated until failure,
i.e. the time series capture the operations of each unit until
it fails. In the test set, the time series ends at some point be-
fore the failure and the objective is to estimate the RUL, or
in other words the number of remaining operational cycles
before failure. There are 21 sensor measurements and each
row in the data contains the measurements corresponding to
operations during one time cycle for a certain unit. Seven of
those sensors are not used in the analysis, since they do not
change over time and therefore do not show any trend.

Table 2. Characteristics of the four turbofan engine data sets,
note that the difference between the four data sets lies within
the number of fault modes (’modes’) and operating condi-
tions (’conditions’)

Data set #modes #conditions #Train units #Test units
#1 1 1 100 100
#2 1 6 260 259
#3 2 1 100 100
#4 2 6 249 248

In order to train the prognostic models we require a labelled
data set, i.e. we assume that the RUL is known at any time.
In the C-MAPSS data set the units are operated until failure.
Over the course of many studies performed on this data set it
was found that instead of setting the RUL simply to the time
to failure, a better performance is achieved when making the
assumption that degradation will only start after the unit has
been operated for a time. Therefore, the RUL is calculated
using the piece-wise linear function that represents a constant
RUL until 130 time cycles before failure, when the RUL is
the linear function (i.e. time to failure) (Heimes, 2008).

4. RESULTS

The aim of this study is to find out if the generic prognostic
framework presented has the capability to adaptively adjust to
different kinds of input data. Furthermore, we are interested
in understanding the implications that can be made from the
resulting prognostic models performance on the prognosabil-
ity of the input data. In this section, we therefore perform two
steps to answer the research questions. First, in Section 4.1
we establish a baseline and get a first insight into the GPF’s
dynamics by applying the framework to data set FD001. Sec-
ond, in Section 4.2 a sensitivity analysis is performed on the
input data to understand how adaptive the algorithm is and the
implications of the results on the prognosability of the input
data.
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Table 3. Hyper parameter settings for the four prognostic al-
gorithms on data set FD001

Prognostic
algorithm

hyper parameter Chosen setting

random
forest

bootstrap true
min_samples_leaf 1
min_samples_split 2
n_estimators 100

k Nearest
neighbors

leaf_size 30
metric ’minkowski’
n_neigbors 19
p 2
weights ’uniform’

Support
vector
machine

C 10
epsilon 0.1
kernel ’rbf’

Multilayer
perceptron

activation ’relu’
alpha 0.05
hidden_layer_sizes (50,50)

Figure 3. MSE (of 10 runs) for the prognostic frameworks
found by the GA running for 50 generations on data set
FD001.

4.1. Generic prognostic framework applied to C-MAPSS
data set FD001

First, the GPF is applied to the C-MAPSS data set FD001.
This is done for two reasons, namely to validate that the per-
formance reached by the framework is indeed the same or
higher than the performance reached of each of the single
prognostic algorithms on each data set and to establish a base-
line on this data set.

As a first step, a grid search is performed on the data set to
find the hyper parameter settings for the four prognostic al-
gorithms resulting in the settings listed in Table 3. Next, the
GA is run for 50 generations and as indicated in section 2.2
with a population size of 20. Due to the instabilities of some
of the techniques, the GA is run 10 times on the data set. This
yields the prognostic settings given in Table 4. Those settings
are used to build a prognostic model to estimate RUL. The
according MSEs are also contained in Table 4 and shown in
Figure 3.

When having a closer look at the selected methodologies in

Table 4. Settings and MSE (of 10 runs) for the prognostic
frameworks found by the GA running for 50 generations on
data set FD001.

Run MSE feature
extrac-
tion

Dim
reduction

Prognostic
algorithm

1 1140 None GRP
(n=4)

MLP

2 798 CMA (n
=9)

FAG
(n=4)

SVM

3 710 EMA
(n=5)

GRP
(n=7)

SVM

4 674 CMA
(n=9)

GRP
(n=7)

SVM

5 679 CMA
(n=4)

SRP (n=9) SVM

6 700 SMA
(n=4)

None SVM

7 776 SMA
(n=9)

None SVM

8 736 SMA
(n=5)

None SVM

9 666 CMA
(n=5)

FAG
(n=2)

SVM

10 916 CMA
(n=6)

PCA
(var=0.97)

SVM

Table 4, note that the biggest differences lie in the chosen di-
mensionality reduction technique. The prognostic framework
is in 9 out of 10 cases set to SVM and in the 10th case to
MLP. The feature extraction technique is in most cases set to
CMA, with different time window sizes. In three cases, SMA
is the preferred choice. However, the trend towards a dimen-
sionality reduction technique is not so clear: In three cases no
dimensionality reduction is done, in three cases GRP is cho-
sen, in two cases the preferred methodology is FAG and in the
remaining cases it is set to SRP and PCA. The statistical prop-
erties of the according MSEs are visualized in Figure 3. They
are mostly in a range of 650 to 800, with the exception of two
outliers. The overall best performing prognostic framework
settings of the ten runs performed on the original data set as
presented in Table 4 are those found in run number 9. The
feature extraction technique is set to CMA, with nCMA = 5,
FAG is selected for dimensionality reduction with nFAG = 2
and SVM is the chosen prognostic algorithm. In further anal-
ysis, those are used as the benchmark settings on the data set
FD001.

Now, we use this established framework to compare the GPF
to the models obtained using the four underlying algorithms.
Also in this case, ten runs are performed to even out some of
the algorithms’ stochastic properties. The results are given in
Table 5 and visualized in Figure 4. They indicate that indeed
the SVM, which the prognostic framework chose as the pre-
ferred prognostic algorithm, is the best performing method
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Figure 4. Comparison of the MSE (for ten runs) by the GPF
obtained prognostic model to existing prognostic algorithms
on data set FD001.

Table 5. Results (MSE on test and train set obtained after
ten runs) of the by the GPF obtained prognostic model and
existing prognostic algorithms on data set FD001.

Prognostic model MSE
(mean)

MSE
(min)

MSE
(max)

GPF 786 671 949
rf 2186 1850 2527

kNN 2378 2056 2819
MLP 1109 988 1186
SVM 860 725 1092

among the four prognostic algorithms used in this paper. It
seems to be the case that the prognostic algorithm that achieves
the best performance on the data set FD001 is the SVM. There-
fore, for the following analysis, the prognsotic algorithm will
be fixed to ’SVM’. This means that we slightly change the
setup of the GA and fix the prognostic algorithm. This allows
for a targeted sensitivity analysis on data characteristics and
their influence on prognostics results.

4.2. Data sensitivity analysis

In this subsection, we performed a data sensitivity analysis
to help us to answer the central research question addressed
in this paper, namely if the framework can be used to assess
input data in terms of prognosability. Additionally, the re-
sults can give us insight into how adaptive the framework is
to different types of data sets. Essentially, we test this by ad-
dressing two questions, reflected in two tested scenarios:

1. How does the GPF adapt to having less data to train on?

2. How does the GPF behave if we use input data sets of
different qualities?

Two corresponding scenarios are tested: To address Question

Table 6. Settings and MSE (mean, min and max over ten
runs) for the prognostic framework found by the GA running
for 50 generations with different data set sizes.

#
units

data
set
size

feature
ex-
trac-
tion

dim
reduc-
tion

MSE
(mean)

MSE
(min)

MSE
(max)

20 4168 EMA
(n=6)

SRP
(n=6)

1124.1 682 3283

40 7826 EMA
(n=5)

SRP
(n=4)

1181.2 678 3750

60 11942 SMA
(n=7)

GRP
(n=8)

1118.9 699 2856

80 16138 SMA
(n=9)

GRP
(n=4)

851.9 685 1904

100 20631 CMA
(n=6)

FAG
(n=2)

947.2 677 1985

1 in Scenario 1 the data set size on which the prognostic mod-
els are trained is varied. Question 2 is addressed in Scenario
2, where we change the number of features used in the analy-
sis.

4.2.1. Scenario 1: Varied training data set size

In this section we investigate how the framework adapts to
various sizes of input data. Again, we perform this analy-
sis on C-MAPSS dataset FD001, on which we already estab-
lished a baseline in the previous section 4.1. As highlighted
in section 3 the data set contains 100 trajectories in the train
set, each representing data corresponding to the entire life of a
unit. In the following, we refer to those trajectories as ’units’.
In this scenario we vary the number of units contained in the
train data set from 20 to 100 with steps of 20, resulting in
five data sets of different sizes. The GA framework is im-
plemented to run for 50 generations on each of those with a
population size of 20. The resulting settings for the prognos-
tic framework are given for each data set size in Table 6 as
well as the MSE (for ten runs) of the so obtained prognostic
models that can also be seen in Figure 5.

It is remarkable and becomes visible in Figure 5 that the set-
tings found by the GPF for each of the data set sizes are very
similar and so are the performances of the resulting models in
terms of the mean MSE. Still, the worst performing models
reach in case of using 20 units an MSE of 3283, while the
MSE in worst case is 1985 when using all units in the train
data set.

4.2.2. Scenario 2: Change in the number of features

To test the effect of input data of different qualitify, we run
scenario 2. Since the C-MAPSS data set is widely used and
many studies have already been performed on it, there ex-
ists quite a deep understanding of the underlying data and
especially the features contained in it. As mentioned in sec-
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Figure 5. MSE (mean over ten runs) for the prognostic frame-
works found by the GA running for 50 generations for differ-
ent train data set sizes.

Figure 6. MSE for the prognostic framework found by the
GA running for 50 generations for different qualities of input
data.

tion 3, there are 21 features, corresponding to sensor read-
ings and 7 of those are not considered in this study because
they are constant, leaving us with 14 features correspond-
ing to sensors 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20, 21. It
has been found that of those seven sensors, namely sensors
7, 8, 9, 12, 16, 17 and 20 are the most valuable ones for RUL
estimations (Wang, Yu, Siegel, & Lee, 2008). Based on their
findings, we choose three sets of features as follows:

a In setup a, we the subset of most relevant features, i.e.
including sensors 7, 8, 9, 12, 16, 17 and 20.

b In setup b, we perform the analysis using a subset of fea-
tures, including a few of the relevant sensors and a few
of those with low to no prognostic value, i.e. sensors
7, 8, 9, 2, 3 and 13.

c Setup c consists of a subset of sensors of little to no pre-
dictive value, namely sensors 2, 3, 11, 13, 14 and 15.

In all setups the GA is run for 50 generations, with a popula-
tion size of 20. Again, we compare the results of ten runs to
captures instabilities in techniques. The settings found by the
GPF for the three sets of features are given in Table 7. The

Table 7. Settings for the prognostic framework found by the
GA running for 50 generations with different data set quali-
ties.

setup features in
data set

feature
ex-
trac-
tion

dim
reduc-
tion

MSE

a 7, 8, 9, 12, 16,
17, 20

None FAG
(n=3)

1103

b 7, 8, 9, 2, 3,
13

SMA
(n=6)

PCA
(var =
0.93)

1188

c 2, 3, 11, 13,
14, 15

CMA
(n=6)

None 842

baseline all CMA
(n=6)

FAG
(n=2)

675

MSE found by the prognostic models build using the given
settings can also be found in the table as well as in Figure
6. The baseline scenario over all has the best performance.
However, it is followed by setup c, in which no dimension-
ality reduction technique is used and which is the setup with
the lowest input data quality. Setup a performs slightly bet-
ter than setup b, but overall all the thereby found prognostic
models perform in a similar range in terms of MSE.

To get more insight into the dynamics behind the results,
we have a closer look at the features selected during the di-
mensionality reduction. For the benchmark GPF the cho-
sen dimensionality reduction technique is a FAG with two
clusters (Table 4). The features contained in the first clus-
ter are sensors 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20, 21 and
the feature contained in the second cluster is sensor 16. In
setup a, i.e. when running the GA framework on the best
set of features, the chosen dimensionality reduction technique
again turns out to be FAG with the number of clusters set to
nFAG = 3. In this case, the features in the first agglomeration
are sensor 9 and 16, the ones in the second cluster are sensors
7, 12 and 20 and sensors 8 and 17 are in the third cluster. In
case of using a set of mixed features (setup b), PCA with the
variance retained set to 0.93 is used as dimensionality reduc-
tion technique. The features selected in this case are sensor
9 and 7. For setup c when using a subset of sensors of little
to no predictive value, the GA framework finds that the best
performance is reached when no dimensionality reduction is
performed at all.

5. DISCUSSION

The aim of this paper, is two fold: First, it provides an assess-
ment of the presented generic prognostic framework in terms
of adaptivity. Second, we intend to find out how the frame-
work can be used to identify if input data sets have the po-
tential to be used for prognostics or if the size of the training
data set e.g. is too limited to perform prognostics using those
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data sets. In Section 5.1, we discuss the results obtained in
Section 4 and how they contribute to answering our research
questions. All the questions that remain or arise from the re-
sults are addressed in Section 5.2 as are the limitations of our
study and opportunities for further research.

5.1. Discussion of the results of the case study

In Section 4.1, by applying the GPF to the C-MAPSS data
set FD001, some dynamics of the framework became clear.
Some of those are also important for the more interesting re-
sults of section 4.2, therefore we will address them first.

In light of the obtained results, the most important property
of the GPF to consider is its stability (Table 4). While over
the ten runs the GPF gave quite consistent choices in terms
of feature extraction and prognostic algorithm methodology,
the same is not true for the chosen dimensionality reduction
techniques. For the MSE as it becomes clear when looking
at Figure 3, the results are mostly stable in a range of 650 to
800. Only in two runs the performance of the GPF dropped,
namely run 1 and run 10 (Table 4). In run 1 this can clearly
be traced back to selecting MLP as the chosen methodology,
especially when comparing the results with those that can be
observed in Figure 4. The average performance of prognostic
models build using MLPs is an MSE of 1109, while it is 860
for the SVM. In run 10, it seems as if the choice of using
PCA as a dimensionality reduction technique is the reason
for the low performance. When used together with FAG, the
CMA for the feature extraction and SVM reach the highest
performance.

Another important finding appears in Table 5 and are visual-
ized in Figure 4. We can, in fact, learn two lessons from those:
First, the GPF outperforms the existing prognostic algorithms
when used stand alone, which is a sort of validation, because
this lies in the nature of how the GPF was built. The second
lesson, however, is more interesting: The different techniques
reach very different MSEs on the data sets. They range from a
mean MSE of 860 for SVMs to an MSE of 2378 of the kNN.
This is rather unexpected and is not really in alignment with
what was found previously on the data set (Zhang, Lim, Qin,
& Tan, 2017). The reason for this could be the set of hyper
parameters explored during the grid search.

Next, we explore the results found during the sensitivity anal-
ysis in section 4.2 and look into what implications can be
made for the adaptivity of the framework and the loop back
to the input data and their prognosability. For this purpose,
we first address scenario 1, i.e. changing the train data sizes
(section 4.2.1) and then scenario 2, i.e. the effect of changing
the quality of the input data set (section 4.2.2). As shown in
Table 6 and Figure 5 there is no significant difference in the
outputted prognostic model’s performance. They only dif-
fer in the worst performance reached by a model over ten
runs, which decreases from 3283 for 20 units, to 2856 for 60

units to 1985 for 100 units. This is what one would expect
also for the mean of the MSE, but instead it hovers around
1100 for 20, 40 and 60 units and only drops to around 850
for 80 units and 950 when using all units. The answer to this
could be linked to the answer of our research question: By
dynamically choosing feature engineering methodologies, the
framework adapts to smaller train data sets. Indeed, for the
two smallest data sets the feature extraction technique was al-
ways set to EMA and the dimensionality reduction technique
to SRP. Opposed to that for the two bigger data set sizes, the
preferred features selection technique was SMA and the di-
mensionality reduction technique GRP.

Equally interesting are the results found for scenario 2 given
in Table 7 and Figure 6. Here, the by the GPF found prognos-
tic models performance ranges from 675 for the baseline GPF
that uses all features to 1188 for the GPF that was trained on
a constrained set of features containing for prognostics rele-
vant and irrelevant features. The prognostic model found on
the set of relevant features performed with an MSE of 1103
only slightly better and the prognostic model found on a set
of as irrelevant regarded features with an MSE of 842 per-
forms best. We found three possible explanations for this be-
haviour: The first makes use of a finding from section 4.1,
namely the instability of the framework in terms of dimen-
sionality reduction technique chosen. In Table 7 it can be
seen that the three methodologies chosen for feature extrac-
tion for those setups are all different from each other, leading
to very different performances overall. However, when we
look deeper into the features that were chosen by the respec-
tive dimensionality reduction techniques, those features are
all in alignment with the findings by (Wang et al., 2008). For
setup b, e.g. the PCA selects sensors 9 and 7, two of the as
relevant regarded features. Another explanation for this be-
haviour could simple be the fact that we ran the GA only one
time using those settings and as we could observe in Table
4, the MSE between different runs can change by margins of
around 500. Yet another explanation could be the fact that
the features of sensors 2, 3, 11, 13, 14 and 15 contain impor-
tant prognostic information after all. This is highly unlikely,
however, since they at least do not contain any visible trends
(Wang et al., 2008).

With all of those findings, we can assess the second question
we asked in the beginning of section 4.2, which is also re-
lated to our central research question. Scenario 2, very like
scenario 1 showed that the framework indeed adjusts to input
data of various sizes and qualities. Due to its adaptivity and
due to instabilities mainly in the choice of the dimensionality
reduction technique, it is almost impossible to make impli-
cations about the input data from the results of the GPF. The
only way to do so is by assessing the choices it makes in terms
of feature extraction and dimensionality reduction. However,
further research is recommended to address these issues.
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5.2. Limitations and further research

The GPF as presented in this paper, intends to give a first
overview over the possibilities that lie within applying such a
framework to various system data and enable a quick prog-
nostic assessment on this data set. We do not claim that
it is exhaustive or contains all steps and methodologies that
should be included in a very generic framework. This is cer-
tainly a limitation. There are various more steps in prognos-
tics that can have quite an impact on the quality of RUL es-
timations, such as enhanced health estimations or diagnostics
(Elattar, Elminir, & Riad, 2016).

Furthermore, although the GPF can give an indication of the
prognosability of a system, it should be kept in mind that this
is only an indication. In case a system, based on the underly-
ing data, turns out to be not prognosable, it could still be the
case that a change in system data, like adding more sensors
or measuring in different time intervals, provides prognos-
able data for this system. It is important to note that while the
framework provides the capability to assess prognosability, it
does so based only on the available system data.

Similarly, the representative prognostic algorithms chosen in
this study are only a few selected algorithms of many. We
assume that prognostic algorithms of sufficient quality exist.
The idea of the framework, however, is that whatever prog-
nostic algorithm is used as an input, it would be able to find
the respective optimal feature engineering settings. A future
research could be to test the framework on a set of more re-
cent prognostic algorithms that were shown to perform quite
well on this data set, such as LSTM-CNNs (Jayasinghe et al.,
2018). Finally, to explore the adaptivity and advantages of
the GPF further, it would be interesting to extend the analysis
to real system data.

6. CONCLUSION

We applied a generic prognostic framework to a publicly avail-
able prognostic benchmark data set to assess its flexibility to
deal with changes in data sets, understand how it adapts to
those changes and draw conclusions towards the prognosabil-
ity of systems. Two important findings were observed: First,
the framework is highly adaptive to changes in both, the data
quality and size. Second, drawing conclusions about input
data and a systems prognosability is tricky but not impossi-
ble. One thing is clear, the prognostic models performance
alone does not give enough clues about how prognosable a
system is. However, when looking deeper, into the settings
the algorithm comes up with, then we could observe certain
trends, especially with regards to data set sizes. Furthermore,
the framework has the potential to be used to find the optimal
feature engineering settings, given a prognostic algorithm. To
fully explore this and understand the GPFs dynamics even in
more detail, we suggest to further extend the research to real
system data.

ABBREVIATIONS

C-MAPSS Commercial Modular Aero-Propulsion System
Simulation. 5, 6, 7, 9, 10

CMA Central moving average. 4, 6, 9, 10
EMA Exponential moving average. 4, 9, 10
FAG Feature agglomaration. 4, 5, 6, 8, 9, 10
GA Genetic algorithm. 10
GPF Generic prognostic framework. 2, 3, 5, 6, 7, 8, 9, 10
GRP Gaussian random projection. 4, 5, 6, 9, 10
kNN k-Nearest neighbors. 3, 5, 9, 10
MLP Multilayer perceptron. 3, 5, 6, 9, 10
MSE Mean squared error. 2, 3, 4, 5, 6, 7, 8, 9, 10
PCA Principal component analysis. 4, 5, 6, 8, 9, 10
rf Random forest. 2, 3, 5, 10
RUL Remaining useful life. 2, 3, 4, 5, 6, 8, 10
SMA Simple moving average. 4, 6, 9, 10
SRP Sparse random projection. 4, 6, 9, 10
SVM Support vector machine. 3, 5, 6, 7, 9, 10
tSVD truncated singular value decomposition. 4, 10
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