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1 Cedric-Lab, CNAM, HESAM université, 292, rue Saint-Martin, 750141 Paris cedex 03, France
ryad.zemouri@cnam.fr

ABSTRACT

Hydrogenerators are complex equipment with many compo-
nents where more than 100 failure mechanisms can be active.
During normal operation, the high voltage stator, one of the
main components of hydrogenerators, is always subjected to
Partial Discharge (PD) activity. Multiple sources of PD ac-
tivity can be active simultaneously. Global PD signals which
include all active PD sources are obtained from periodic mea-
surements made on hydrogenerators while they are in opera-
tion. PD measurements are an effective diagnostic tool for
evaluating the integrity of the stator winding, similar to sig-
nals coming from an electrocardiogram for the health status
of a human. Quantifying PD activity is still a challenge in the
industry since the recognition of the type of PD is not triv-
ial and still requires expert judgement. Since the degradation
rate of all active PD sources is different, automatic classifica-
tion of PD source is thus essential to monitor their evolution.
With that goal in mind, an extensive effort was initiated in
2019 to automatically recognize individual PD sources from
2D Partial Discharge Analyzer (PDA) files using Deep Learn-
ing (DL) techniques. In this context, this paper presents the
use of a Generative Adversarial Network (GAN) in combi-
nation with A Variational Autoencoder (VAE) for increasing
the representativeness of each PD sources in the VAE latent
space.

1. INTRODUCTION

PD activity is caused by local concentrations of electrical
stress and occurs within voids in insulation or around insulat-
ing system exposed to high voltage. During normal operation
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of high voltage hydrogenerators, PD activity from multiple
sources is always present in the stator insulation. Each of
these PD sources has its own insulation degradation rate as
well as its risk of failure. At Hydro-Québec, PD measure-
ments on hydrogenerators have been performed over the past
30 years using the Partial Discharge Analyzer (PDA) instru-
ment, a two-dimensional (2D) pulse height analyzer. More
than 33 000 periodic measurement files have been recorded
using this instrument. The PDA instrument is used as a first
level diagnostic tool. In addition, since the early 2000s, when
PDA measurements indicate an intense discharge activity or
a sudden increase, Phase Resolved Partial Discharge (PRPD)
measurements are made. This second level diagnostic tool
which gives a three-dimensional (3D) representation of the
PD activity, is used by experts to recognize the different types
of PD sources that may occur in the stator insulation. More
than 6000 PRPD measurement files have been recorded using
the PRPD instrument. Typical pattern giving by these two
PD instruments are shown in figure 1. Each measurement file
obtained using the PDA or the PRPD instrument is available
in a home-built database called MIDA (Methodology for In-
tegrated Diagnostic of Generator). Measurement files in the
MIDA database are not publicly available due to the sensitiv-
ity of these data for Hydro-Québec.

Suitable recognition of active PD sources is essential to im-
prove prognostic model of hydrogenerators and to reduce the
risk of in-service failure. However, automatic recognition of
PD sources is not straightforward and cannot be based on
ground rules alone, experts are still required. An analogy
would be the diagnosis of the heart using an electrocardio-
gram where different characteristic signatures can be recog-
nized by medical specialist and associated with health issues.
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Figure 1. A two-step diagnosis tools for hydrogenerator. A
first level of analysis performed by the PDA instrument and a
second level is made using the PRPD instrument.

A PDA measurement file has the form of a histogram as it
can be seen in Figure 1. The discharge rate (PD/s) is plot-
ted against the amplitude in mV for the positive and negative
discharge pulses, respectively Pd+i (in red) and Pd−i (in yel-
low), for each of the 16 amplitude channel i of the horizontal
axis. Each PD signal is then represented by a 2D matrix:

Pd =

[
Pd+1 , ..., Pd

+
i , ..., Pd

+
16

Pd−1 , ..., Pd
−
i , ..., Pd

−
16

]
(1)

Here, specific features based on the ratio of positive to neg-
ative pulses have been extracted from the PDA database for
only the following three PD sources: symmetric PD patterns,
negative asymmetry PD patterns and positive asymmetry PD
patterns. These three PD sources represent 70% of the en-
tire PDA database which yields approximately 23 000 mea-
surement files. Analysis of those files suggests an imbal-
ance in the distribution of each PD sources where symmetric
PD patterns account for about 65% of these files while nega-
tive asymmetry and positive asymmetry PD patterns represent
15% and 20% respectively. In this paper, a comparative study
to optimize the latent space based on the PDA files coming
from these three PD sources is presented. The combination
of two DL techniques is used: The Variational Autoencoder
(VAE) and the Generative Adversarial Network (GAN).

In industrial applications, two major difficulties can be en-
countered: unbalanced and unlabelled data. On one side, of-
ten more operating data are available for healthy modes than
for other unhealthy modes. On the other side, most data col-
lected are not labelled. GANs are therefore an interesting
alternative to address these two problems by generating ar-
tificial data to compensate for data imbalance and minority
oversampling (Mullick, Datta, & Das, 2019) (Pan, Chen, Xie,
Chang, & Zhou, 2020) (Zou, Li, & Xu, 2020) (Zhou, Yang,
Fujita, Chen, & Wen, 2020) (Gao, Deng, & Yue, 2020). In
the PHM domain, GANs can be used for two purposes:

• Diagnosis and fault detection (Dai, Wang, Huang, Shi, &
Zhu, 2020) (Ducoffe, Haloui, & Gupta, 2019) (Han, Liu,

Yang, & Jiang, 2019) (Liu et al., 2018) (Shao, Wang, &
Yan, 2019) (Wang, Huang, Hu, & Yang, 2018) (Wang,
Wang, & Wang, 2018) (Zheng & Gupta, 2020) (Zhang
et al., 2020) (Pan et al., 2020) (Zou et al., 2020) (Zhou
et al., 2020) (Mao, Liu, Ding, & Li, 2019) (Farajzadeh-
Zanjani, Hallaji, Razavi-Far, Saif, & Parvania, 2021),

• Prognostic (Khan, Prosvirin, & Kim, 2018) (Huang, Tang,
VanZwieten, Liu, & Xiao, 2019) (Que, Xiong, & Xu,
2019) (Doulamis et al., 2020) (Li, Zhang, Ma, Luo, &
Li, 2020) (Bao, Miao, Wang, Yang, & Zhang, 2020).

The paper is organized as follows. The proposed approach
for PD analysis is first introduced in section 2. Thereafter,
both generative models (VAE and GAN) are briefly described
in section 3. Experimental results and data analysis are pre-
sented in section 4 while the last section of the paper summa-
rizes the conclusion and future works.

2. THE PROPOSED APPROACH FOR PD ANALYSIS

The general scheme of the proposed approach is illustrated in
Figure 2. A Variational Autoencoder (VAE) is used for di-
mension reduction and projection into a 2D latent space to
analyze the training data. Analyzing the data is an essen-
tial step before the classification phase. Projection into a 2D
latent space allows to see if clusters of features are emerg-
ing, thus facilitating the interpretation of the results obtained
by the classifier. Data space in the latent space of the VAE
is restructured and reorganized in a continuous way. This
characteristic is due to the regularization layer z which en-
sures continuity around a given point on one hand, (each new
input data point is represented by a cluster of points uni-
formly distributed around the mean), and on the other hand,
the Kullback-Leibler term of the loss function provides a Gaus-
sian distribution of all the latent space around the origin point.
The problem is how to optimize this latent space and obtain
the best distribution for each PD source in order to maximize
the chances of a good classification? This is an open question
as it is not easy to quantify the quality of a low dimensional
feature space. What is certain is that the optimization of the
VAE learning is directly related to the quality of the learning
database, i.e. a large size and a perfectly balanced database,
which is not the case with the three PD sources from the PDA
database. The Figure 3 illustrates this causal relationship of
the VAE latent space performance.

The objective of this study is to compare the quality of the
latent space obtained from the expert rules with a latent space
obtained directly from the input signal in an End-to-End ap-
proach. The first method concerns an original unsupervised
DL method for PD source recognition. Instead of using la-
beled PD measurement files for a supervised learning pro-
cess, rules developed by PD experts were used to create a
feature vector from recognizable PD patterns (purple path in
Figure 2). Indeed, labelling enough PD measurement files for
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Figure 2. The DL framework of the proposed method for the PD analysis.

a supervised approach is very time-consuming and therefore
cannot be implemented. This is a common problem in the in-
dustry where more and more operational data is available, but
in most of the time, is not labeled by experts. In the proposed
approach, expert knowledge is injected into a characteristic
feature vector. The resulting feature space is defined by the
feature vector and delimited by extreme data points. A ran-
dom data generator is then used to artificially increase the
VAE learning base by generating data points within the fea-
ture definition space (referred as VAEfeat in Figure 2). The
whole feature definition space is thus covered while taking
care to create a balanced learning base to optimize the VAE
learning process. In the second method, the VAE is trained
directly on the original PDs signals without any feature ex-
traction. To do so, two different ways were tested: one VAE
built from real PD data (referred as VAEoriginal in Figure
2: the blue path) and a second VAE obtained from synthetic
data generated by a set of Generative Adversarial Networks
(GANs) (referred as VAEgan in Figure 2: the red path). The
use of GANs artificially increased the number of PD mea-
surement files in the database to optimize the learning of the
VAE.

3. THEORETICAL BACKGROUND

3.1. The variational autoencoders

Autoencoder (AE) represents one of the first generative mod-
els trained to recreate or reproduce the input vector x. The
AE is composed by two main structures: an encoder and a de-
coder, which are multilayered neural networks (NNs) param-
eterized by φ and θ, respectively. The first part encodes the
input data x into a latent representation z by the encoder func-
tion z = fφ(x), whereas the second NN decodes this latent
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Figure 3. Causal relationship between the VAE latent space
performance and the quality of the learning data.

representation onto x̂ = hθ(z) which is an approximation or
a reconstruction of the original data. In an AE, an equal num-
ber of units are used in the input/output layers while fewer
units are used in the latent space. The variational form of the
AE becomes a popular generative model by combining the
Bayesian inference and the efficiency of the NNs to obtain
a nonlinear low-dimensional latent space use in industrial ap-
plications such as fault detection (Proteau, Zemouri, Tahan, &
Thomas, 2020), (Huang, Chen, & Huang, 2019), (Lee, Kwak,
Tsui, & Kim, 2019), (Martin, Droguett, Meruane, & das Cha-
gas Moura, 2018). The Bayesian inference is obtained by
an additional layer used for sampling the latent vector z with
a prior specified distribution p(z), usually assumed to be a
standard Gaussian N (0, I), where I is the identity matrix.
Each element zi of the latent layer is obtained as follows:
zi = µi + σi.ε where µi and σi are the ith components of the
mean and standard deviation vectors, ε is a random variable
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following a standard Normal distribution (ε ∼ N (0, 1)). Un-
like the AE, which generates the latent vector z, the VAE gen-
erates vector of means µi and standard deviations σi. This al-
lows to have more continuity in the latent space than the origi-
nal AE. The VAE loss function has two terms L = Lrec+Lkl
The first term Lrec = −Eqφ(z|x)[log pθ(x | z)] is the recon-
struction loss function, which allows to minimize the differ-
ence between the input and output instances. Both the nega-
tive expected log-likelihood (e.g., the cross-entropy function)
and the mean squared error (MSE) can be used. When the
sigmoid function is used in the output layer, the derivatives
of MSE and cross-entropy can have similar forms. The sec-
ond term Lkl = Dkl(qφ(z | x) ‖ p(z)) corresponds to the
Kullback–Leibler (Dkl) divergence loss term that forces the
generation of a latent vector with the specified Normal distri-
bution (Kingma, 2017). The Dkl divergence is a theoretical
measure of proximity between two densities q(x) and p(x).
It is asymmetric (Dkl(q ‖ p) 6= Dkl(p ‖ q)) and nonnegative.
It is minimized when q(x) = p(x). Thus, the Dkl divergence
term measures how close the conditional distribution density
qφ(z | x) of the encoded latent vectors is from the desired
Normal distribution p(z). The value of Dkl is zero when two
probability distributions are the same, which forces the en-
coder of VAE qφ(z | x) to learn the latent variables that fol-
low a multivariate Normal distribution over a k-dimensional
latent space. One of the major advantages of the Variational
form compared to the classic version of the AE is achieved
using the Kullback-Leibler divergence loss term (Dkl), which
generates a more continuous and easier to interpolate latent
space. Instead of encoding an input as a single point, a Nor-
mal distribution is associated with encoding each input in-
stance. This continuity of latent space allows the decoder not
only to be able to reproduce an input vector, but also to gen-
erate new data from the latent space.

3.2. The generative adversarial networks

The reconstruction loss function Lrec of VAE is not efficient
for data generation compared to the adversarial learning tech-
nics (Goodfellow et al., 2014). The main idea of GANs is to
create an additional NN, called a discriminator Dis(x), that
will learn to distinguish between the real data and the data
generated by the generator Gen(z). The learning process
then consists in successively training the generator to gener-
ate new data and the discriminator to dissociate between real
and generated data. The learning process converges when the
generator reaches the point of luring the discriminator. The
discriminator Dis(x) is optimized by maximizing the proba-
bility of distinguishing between real and generated data while
the generator Gen(z) is trained simultaneously to minimize
log(1 − Dis(Gen(z))). Thus, the goal of the whole adver-
sarial training can be summarized as a two-player min-max
game with the value function V (Gen,Dis) (Goodfellow et
al., 2014):

min
Gen

max
Dis

V (Gen,Dis) = Ex[Φx] + Ez[Ψz] (2)

where Φx = log(Dis(x)) and Ψz = log(1−Dis(Gen(z))).
These techniques are much more efficient than the reconstruc-
tion loss function Lrec for generating data from a data space,
for example, the latent space of VAE. Unlike the latent space
of the VAE where the data are structured according to the
Kullback-Leibler divergence loss term, the data space gener-
ated by GANs is structured in a random way, making it less
efficient in managing the data.

4. EXPERIMENTAL RESULTS AND DATA ANALYSIS

4.1. VAE trained on the feature space

As shown in Figure 2, the first VAE is built from a feature
space definition obtained from extraction of expert rules that
have been integrated in a function fext. For further details
on fext, see our previous work (Zemouri et al., 2020). The
feature vector F is obtained by transforming the data space
PD into a feature space F: PD → F, Pd → F = fext(Pd),
where F ∈ [−1,+1]

16. In order to optimize the VAE learn-
ing, the size of the learning database was increased by gen-
erating additional points {F̂j} within the feature space. The
algorithm 1 gives the details of the whole procedure which
allows to obtain a sufficiently large and well-balanced learn-
ing database in order to consider all possible combinations.
The parameter α is used to define the boundary between the
PD sources when generating each random variable ε. In this
case, α = 0, 5. A total of 465k points have been gener-
ated (Nbmax = 5000) for learning the VAEfeat. The Fig-
ure 4 gives the projection of the PD measurement database
in a 2D latent space Z obtained by the encoder Encfeat with
Z = Encfeat(F). It is important to note that this latent space
respects a certain consistency in the distribution of data dur-
ing encoding (see the visual landmarks in Figure 4).
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Figure 4. The projection of the PD measurement database in
a 2D latent space Z with the corresponding visual landmarks
of the feature vector F.
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Algorithm 1: Feature space generation algorithm
Data:
ε = Rand(a1, a2): return a random number ε ∈ [a1, a2]
Nbmax: size of the generated data
F̂j(i): is the ith feature Fi of the jth generated vector F̂j
Result: Generate a training dataSet {F̂j} for the VAE
j = 0
while j < Nbmax do

F̂j←j+1(i) = Rand(−1,−α)|i=1 to 16;
F̂j←j+1(i) = Rand(−α,+α)|i=1 to 16;
F̂j←j+1(i) = Rand(+α,+1)|i=1 to 16;
for k ← 1 to 15 do∣∣∣∣∣∣∣∣∣

{
F̂j←j+1(i) = Rand(−1,−α)|i=1 to k

F̂j(i) = Rand(−α,+α)|i=k+1 to 16{
F̂j←j+1(i) = Rand(−1,−α)|i=1 to k

F̂j(i) = Rand(+α, 1)|i=k+1 to 16∣∣∣∣∣∣∣∣∣

{
F̂j←j+1(i) = Rand(−α,+α)|i=1 to k

F̂j(i) = Rand(−1,−α)|i=k+1 to 16{
F̂j←j+1(i) = Rand(−α,+α)|i=1 to k

F̂j(i) = Rand(+α, 1)|i=k+1 to 16∣∣∣∣∣∣∣∣∣

{
F̂j←j+1(i) = Rand(+α,+1)|i=1 to k

F̂j(i) = Rand(−1,−α)|i=k+1 to 16{
F̂j←j+1(i) = Rand(+α,+1)|i=1 to k

F̂j(i) = Rand(−α,+α)|i=k+1 to 16

4.2. VAE trained on the data space

In addition to the VAEfeat, two other VAEs have been built
directly from the PD data space PD. The first one, VAEoriginal

is trained on the whole real PD database {Pdj}, while the
second one, VAEgan is obtained from a training performed
exclusively on data generated by GANs. The algorithm 2
gives the procedure adopted for learning the GANs to gen-
erate an artificial PD database {P̂dj}. Instead of creating a
single generator Gen(z) derived from an adversarial learning
performed on the whole PD database {Pdj}, several genera-
torsGenk(z) obtained from subsets have been created. These
subsets are extracted from the latent space Z obtained by the
previous model VAEfeat. Figure 5 gives the distribution of
the areas Ak which forms these subsets {Pdj}k. A total of
35 areas were selected to cover the entire latent space. The
selection of these areas is crucial as it helps to compensate
for the real dataset imbalance. The objective is to cover the
entire latent space by considering small areas in order to have
a maximum chance of capturing minority PD patterns. Once
the learning of the GANs is performed, the obtained k gen-
erators Genk(z) were exploited to produce several artificial
PD datasets { ˆPdj}k used to learn the VAEgan. As shown in
the table 1, three dataset configurations were tested where the
size of the data generated by the generators Genk(z) were
varied. As an illustration, the Figure 6 shows some examples

of PD patterns generated by generators Genk(z).

Algorithm 2: Training of the GAN
Data: Ak: selected areas from the feature latent space
Result: {Genk}: set of k generators
for k ← 1 to NbArea do

Step 1: Select the kth area Ak from the feature latent
space (Figure 5) ;

Step 2: From Ak extract {Zfeatj }k where Zfeatj ∈ Ak;
Step 3: From {Zfeatj }k extract {Pdj}k where
Zfeatj = Enc(fext(Pdj));

Step 4: Train the kth generator Genk on {Pdj}k;
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Figure 5. The distribution of the areas Ak over the 2D latent
space Z.

Table 1. Size of the generated data used to learn the VAEgan.

Size of the generated subset
by each generator Genk

Total gener-
ated data

VAEgan1 1 000 35 000
VAEgan2 10 000 350 000
VAEgan3 100 000 3 500 000

4.3. Neural network structure

The structure of the NNs used is as follows. For the VAEfeat,
a network with fully connected (FC) layers has been used.
The encoder has 5 hidden layers composed successively by
512, 256, 128, 64 and 32 neurons with a hyperbolic tangent
activation function. For the VAEoriginal and VAEgan net-
works, a mixed of convolutional layers (CL) and FC layers
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Figure 6. Example of PD generation with the generators Genk(z).

was chosen. A 3 CL was constructed in the encoder net-
work with 2×2 kernel and respectively 128, 64 and 32 filters.
A residual block is added after each CL and all the residual
blocks contain two 2× 2 kernel CL with the same number of
filters (Zemouri, 2020). Lastly, three FC layers with respec-
tively 1024, 512 and 256 neurons are added. Each of the CL
and the FC layers are followed by a LeakyReLU activation
layer. The decoders have exactly the same structure as the
encoders but inverted.

4.4. Visual data analysis

The three PD sources are recognizable from the features la-
tent space: three areasAk with k = 1, 2, 3 in red in the Figure
5 and described in table 2. Area 1 corresponds to symmetric
PD patterns which is distinguished by an equal distribution
between positive and negative PDs, area 2 and 3 correspond
respectively to negative and positive asymmetry PD patterns,
characterized respectively by a clear superiority of negative
/ positive PD pulses. These three types of PD patterns are
characterized by the feature vectors E, A, I in Figure 4.

Table 2. The three main PD sources.

# PD source Feature description

1 Symmetric
∑16
i=1 Pd

+
i ≈

∑16
i=1 Pd

−
i

2 Negative asymmetry
∑16
i=1 Pd

+
i <<

∑16
i=1 Pd

−
i

3 Positive asymmetry
∑16
i=1 Pd

+
i >>

∑16
i=1 Pd

−
i

Figure 8 gives the correspondence between the different la-
tent spaces: the corresponding original PDs in the data space
PD were extracted from the areas {Ak} of the Figure 5 and
projected into the other latent spaces. For example, the green
cluster (symmetric PD patterns) corresponds to the areas {Ak}
of the latent space VAEfeat with k = 1, 4, 8. The original PD
data of these three areas {Ak} were identified and then pro-
jected into the latent spaces of the VAEoriginal and the three
VAEgan. As it can be seen in Figure 8 three main clusters
of data points are formed. These clusters correspond respec-
tively to the three main PD sources mentioned above, namely
symmetric, negative asymmetry and positive asymmetry. For
all of the VAE models, the green cluster representing the PD
source of symmetric signals, is positioned between the red
and blue clusters representing respectively the negative and
positive asymmetry PD sources. By analyzing the original PD
sources projected on the different latent space, moving away
from the center of the green cluster in the direction of the
blue or red one, the more important the asymmetry is. This
result proves that the models trained on the data space have
well captured the asymmetric relationship that exists between
the different PD patterns. The second characteristic that the
VAE models captured was the density in each channel of the
PD pattern matrix. This characteristic does not appear in the
latent space of the VAEfeat model because it has not been
integrated into the function fext. It should also be noted that
VAEgan models trained exclusively on data generated artifi-
cially by the GANs have captured the two characteristics as
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well as the VAEoriginal model trained on the real data. This
is an important result that validates the quality of the artificial
data generation by the GAN. In addition to the three main
PD sources, hybrid PD patterns could also be present. These
particular PD sources are characterized by the presence of
several sources at the same time, for example the presence
of positive and negative asymmetries in the same PD pat-
tern. An attempt to integrate this feature into the function
fext was made, but this aspect has yet to be further devel-
oped. However, the VAEgan and VAEoriginal models failed
to capture this characteristic, as shown in Figure 8. This is
due to the low presence of these PD patterns in the overall
available data. GANs have not been able to capture these
PD patterns as they are certainly mixed with other patterns
within the various selected areas Ak. The model failed to
disentangle these two characteristics in the latent space. An
interesting prospect to explore would be to exploit the recent
work on the unsupervised learning of disentangled represen-
tations (Locatello et al., 2018) (Eastwood & Williams, 2018)
(Chen, Li, Grosse, & Duvenaud, 2018) (Kim & Mnih, 2019)
(Duan et al., 2019) (Hristov, Angelov, Burke, Lascarides, &
Ramamoorthy, 2019).

The equation 3 gives the Pearson correlation coefficient rp
between the original data space PD and the target space Z
computed for each of theAk areas presented in Figure 5. The
Pearson correlation coefficient was used here to quantify the
quality of latent spaces. Pd and Z represent respectively the
means of each cluster k in respectively the original data space
PD and the target space Z. The Euclidean norm ‖.‖ is used
for the distance calculation. A cross-correlation coefficient is
also given between the different Ak areas. Figure 7 gives all
the obtained correlation results: correlation within each area
Ak and cross-correlations between two areas. the VAEfeat

model has the lowest correlation score rp. This is certainly
due to the expert rules, used for feature extraction, which need
to be further optimized.

rp =

N∑
i=1

‖Pdi − Pd‖.‖Zi − Z‖
√

N∑
i=1

‖Pdi − Pd‖2.
√

N∑
i=1

‖Zi − Z‖2
(3)

5. CONCLUSION AND FUTURE WORKS

In this paper, the latent space properties of the Variational
Autoencoder for the Partial Discharge analysis have been ex-
ploited. The quality of the low dimensional latent space ob-
tained from the expert rules was compared with a latent space
obtained directly from the input signal. For this purpose,
the Generative Adversarial Networks were used to artificially
enhance the learning database of PDs. An important result
is that the latent space of the VAEs trained exclusively on
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Figure 7. All the obtained correlation results: correlation
within each areaAk and cross-correlations between two areas
given by the heatmaps.

generated data has captured the same characteristics as the
VAE trained on real data. This first level validation allows
us to approve the quality of the data artificially generated by
the GANs. In future works, focus will be made on isolat-
ing underrepresented PD patterns such as hybrid PD sources
in order to increase their significance by the GANs. Fur-
thermore, the final objective of this study is to automatically
recognize each individual PD source. A reference PD pat-
tern set will be developed and labeled by experts. The en-
coder part would then be kept to extract characteristic fea-
tures of each PD sources, used as input for a classifier. As
in other feature representation learning papers (Franceschi,
Dieuleveut, & Jaggi, 2019), a classifier will be trained on top
of the different feature spaces to showcase the superiority of
certain spaces over the others. Afterwards, several degrada-
tion phenomena leading to failures will be analyzed in the
latent space. The objective would then be to obtain a particu-
lar degradation pattern in the form of a trajectory on the latent
space that will characterize each degradation phenomenon.
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Zemouri, R., Lévesque, M., Amyot, N., Hudon, C., Kokoko,
O., & Tahan, S. A. (2020). Deep convolu-
tional variational autoencoder as a 2d-visualization
tool for partial discharge source classification in
hydrogenerators. IEEE Access, 8, 5438-5454.
doi: 10.1109/ACCESS.2019.2962775

Zhang, W., Li, X., Jia, X.-D., Ma, H., Luo, Z., & Li,
X. (2020). Machinery fault diagnosis with
imbalanced data using deep generative adver-
sarial networks. Measurement, 152, 107377.
doi:https://doi.org/10.1016/j.measurement.2019.107377

Zheng, S., & Gupta, C. (2020, May). Discriminant
generative adversarial networks with its application
to equipment health classification. In Icassp 2020
- 2020 ieee international conference on acoustics,
speech and signal processing (icassp) (p. 3067-3071).
doi: 10.1109/ICASSP40776.2020.9053475

Zhou, F., Yang, S., Fujita, H., Chen, D., & Wen,
C. (2020). Deep learning fault diagnosis method
based on global optimization gan for unbalanced
data. Knowledge-Based Systems, 187, 104837.
doi: https://doi.org/10.1016/j.knosys.2019.07.008

Zou, L., Li, Y., & Xu, F. (2020). An adversarial denoising
convolutional neural network for fault diagnosis of ro-
tating machinery under noisy environment and limited
sample size case. Neurocomputing, 407, 105 - 120.

doi: https://doi.org/10.1016/j.neucom.2020.04.074

10

Proceedings of the 6th European Conference of the Prognostics and Health Management Society 2021 - ISBN – 978-1-936263-34-9

Page 503


