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ABSTRACT

This paper presents a fully Bayesian approach for the survival
analysis of an automotive vehicle fleet using real workshop-
service data as input. It explores a problem instance contain-
ing more than 170 000 individual vehicles driving in 100 dif-
ferent countries exhibiting a certain failure, pre-selected for
this study.

The suggested fleet surival analysis consists of a combina-
tion of two probabilistic models. The first model predicts the
mileage of each individual of the fleet for a given point in
time in the future. The second model attempts to forecast the
total number of failures that will arise for the entire fleet.

Both probabilistic models are fully Bayesian, i.e., all param-
eters of the models are implemented as probability distribu-
tions and computations are solely performed on distributions
rather than on summarizing statistics. As a consequence, un-
certainty of the predictions is made accessible in a very natu-
ral way and can be taken into account in the decision-making
process explicitly.

1. INTRODUCTION

In automotive industry, every car manufacturer is repeatedly
facing the problem of in-advance spare-part stock production.
With every new model series, the question of how many spare
parts to produce and store arises. A precise estimation of the
necessary number of spare parts is required in order to pro-
cess the upcoming component failures adequately. In case of
underestimation, there is a risk that a car cannot be repaired
at all, which amounts to a total loss. At the same time, any
overestimation leads to significant additional costs for pro-
duction and storage. Comparing both scenarios, it becomes
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obvious that the underlying risk function shows an asymmet-
ric distribution. As a consequence for decision-making, not
only the point estimate of total failures but also its expected
distribution is of great importance.

In this paper we present a novel approach for the survival
analysis of a vehicle fleet by combining two Bayesian mod-
els, in order to capture and process all inherent uncertainties
of the data. The first model, M, aims at predicting the to-
tal mileages for all vehicles of the fleet for a desired future
point in time. Based on this estimation, the second model,
S, estimates the total number of losses or survived individu-
als, respectively. One advantage of a fully Bayesian approach
is, that the uncertainties of the mileage estimation model can
be directly taken into account by the model for lifetime esti-
mation. A higher uncertainty in mileage estimation directly
leads to a higher uncertainty in predicting the probability of
survival.

The outline of the paper is as follows: Section 2 introduces
the vehicle fleet dataset used for the analysis. The section also
describes both probabilistic models,M and S, and explains
the underlying assumptions. Based on these models, Section
3 shows the outcome of the analysis of the investigated com-
ponent failure and provides an interpretation of the findings.
Finally, we draw a conclusion of the investigation in Section
4 and discuss advantages and limitations of the method.

2. METHODOLOGY

Bayesian methods have become a valuable tool in the field of
survival analysis (Ibrahim, Chen, & Sinha, 2004), especially
with the availability of probabilistic programming sampling
methods (Kelter, 2020). Recent publications confirm their
suitability, e.g. in medical science (Zhou, Hanson, & Zhang,
2020; Brilleman, Elci, Novik, & Wolfe, 2020) or engineering
applications (Feng, Shengyi, & Dai, 2019).
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The presented survival analysis makes use of these ideas with
an adaptation to the automotive use case. It is based on two
probabilistic models in series. The first model is a mileage
estimator, M, which is responsible for estimating the total
mileage distribution of each individual in the vehicle fleet for
any point in time in the future. The output distributions ofM
act as inputs to the second probabilistic model, the lifetime es-
timator S. The lifetime estimator performs the actual survival
analysis of the fleet based on the uncertain future mileage of
each individual vehicle.

The parameter distributions of the models were fit to the data
using Markov-Chain Monte-Carlo (MCMC), utilizing the Stan-
implementation (Stan Development Team, 2021) of a No-U-
Turn Sampler (NUTS) (Hoffman & Gelman, 2014).

2.1. Input Data

The input to the survival analysis is a data table D containing
time-series data of vehicle states. Each row in D corresponds
to a single data reading event. D comprises 4 columns: vehi-
cle id i, time-stamp t, total mileage m, and a binary variable
δ signifying the repair state of the vehicle. δ = 1 indicates a
repairing event and δ = 0 healthy vehicles. Furthermore, let
N be the number of vehicles in the fleet, i.e. i ∈ [1 . . . N ].

Note that D constitutes a censored data set, since only a frac-
tion of vehicles suffered a failure during the study. In order
to make predictions for the future, the survival analysis also
requires a query time tfuture which is provided by the user.

Also note that all data originate solely from workshop-service,
i.e., no regular reporting from the vehicle fleet via cloud ser-
vice was available. As a consequence, for the majority of ve-
hicles in the fleet, the time-intervals between two subsequent
data reading events are irregular, ranging from several days to
even several years.

2.2. Mileage Estimator

In a first step, the Mileage Estimator,M, learns the distribu-
tion of distance driven per day, p(di), for each vehicle i. We
assume that the total mileage of every vehicle in D is strictly
increasing, i.e., di > 0, ∀ i ∈ D[id], whereD[id] denotes the
vehicle-id column of D. Accordingly, di should be generated
by a non-negative distribution. Furthermore, we assume that,
for each individual, the mean and variance of p(di) is time-
invariant and finite. Under these constraints, the maximum
entropy distribution is the Log-Normal distribution, which
we chose as likelihood function to keep our assumptions to
a minimum,

di ∼ Log-Normal(µi, σi) . (1)

The Log-Normal distribution has two parameters, its mean µi
and variance σ2

i .

We chose the prior distribution for µi to be weakly informa-
tive, where we assume that the great majority of all drivers
on average drive between 1 km

day and 500 km
day and a value of

approximately 25 km
day has the highest probability. These as-

sumptions can be expressed by a Normal prior distribution

µi ∼ Normal(µα, σα) (2)

with corresponding parameters µα and σα.

It is natural to expect a certain amount of variability σα in a
vehicle’s daily mileage. On the one hand, variability may be
caused by minor fluctuations in traffic management or differ-
ences in personal driving behavior. On the other hand, there
exist also events that cause great variability such as changing
drivers (car sharing, car selling, family car, etc.) or varying
major routes (avoiding traffic jams caused by larger construc-
tion sites, new job location, new partner, etc.). We conclude
that a variability of zero is not very plausible in this setting,
which excludes the Exponential distribution from our candi-
date list of maximum entropy prior distributions for standard
deviation parameters. However, the standard deviation pa-
rameter σi must be positive to avoid multi-modality of its pos-
terior distribution1. Remember that we assume the variability
for a single vehicle is fixed and finite. Again, the Log-Normal
distribution represents the maximum entropy distribution un-
der these constraints. However, this time we utilize it as prior
distribution of the variability parameter σi

σi ∼ Log-Normal(µβ , σβ) . (3)

We chose the parameters of the prior distribution for σi such
that it becomes weakly informative, where we assumed that
an individual’s variability in daily mileage performance, on
average, ranges from 0.1 km

day to 100 km
day and a value of approx-

imately 3 km
day has the highest prior probability. The values of

µβ and σβ were chosen accordingly.

As a final step, the model has to convert the daily mileage
distribution to a distribution of total mileage driven by the
vehicle at some point t in the future. This is accomplished
by integration over time. Let ti be the most recent timestamp
available in D for the i-th vehicle. Now, if we take a look
at the variables themselves, we get the relationship between
total mileage and distance driven per day is

mi(t)−mi(ti) =

t∫

τ=ti

di dτ = di · (t− ti) . (4)

From this follows that the integration over time simply corre-
sponds to a coordinate transformation of the argument of the

1Both σi and −σi would lead to the same variance of σ2
i , and thus have the

same compatibility to a given data set D.
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probability distribution

P (mi(t) = x) = P

(
di =

x−mi(ti)

(t− ti)

)
. (5)

Accordingly, in order to compute the probability distribution
p(mi(t)), it is sufficient to know p(di) and the constants ti,
mi(ti).

One of the most important use-cases of the mileage estima-
tor is the estimation of the current fleet mileage given past
data. Suppose the current time is t0. Let ti be the most re-
cent timestamp for vehicle i available in D. The fact that
no failure was reported within the time interval [ti, t0] bears
valuable information for the survival analysis. Suppose, for
vehicle i a modelMi was fit to the data Di, where Di corre-
sponds to all data points in D with D[id] = i. Each of these
models outputs samples from the posterior predictive distri-
bution p(di|D). Furthermore, by looking up the values of ti
and m(ti), we can compute an estimate for the total mileage
of vehicle i at time t0 for each sample drawn from p(di|D).
This process is equivalent to drawing samples from the distri-
bution p(mi(t0)|D). By inserting the tuple (i, t0, one sample
from p(mi(t0)|D), δ = 0) intoD we have generated a sample
from the distribution p(Di(t0)|Di(ti)).

2.3. Lifetime Estimator

In order to perform the lifetime estimation, the censored data
setD has to be transformed using the product-limit estimator2

(Cox & Oakes, 1998) first. The result of this transformation
is a non-parametric estimate of the survival function, Ŝ(m),
as a function of the total mileage m. Recall that the value of
the survival function at a specific value of m is a probability,
i.e., 0 ≤ Ŝ(m) ≤ 1, ∀m.

In the next step we need to fit the parameter distributions
of a parametric model S(m) to the non-parametric estimate
Ŝ(m). For this regression problem, we chose a normal distri-
bution as likelihood function

Ŝ(m) ∼ Normal(S(m), σe) (6)

where σe can be interpreted as a measure describing the resid-
ual model error between S(m) and Ŝ(m). Due to the con-
straint σe ≥ 0, the prior distribution over σe is chosen to be
an Exponential distribution, the maximum entropy distribu-
tion under this constraint,

σe ∼ Exponential(λ) , (7)

with weakly informative rate parameter λ = 100.

In our model we assume that the moment a specimen is pro-
duced, it is also assigned a certain failure mechanism k =
1, . . . ,K with probability θk. This failure mechanism will

2Also known as Kaplan-Meier estimator.

cause the specimen to fail eventually. The lifetime distribu-
tion p(lk) for each of the K failure classes is modelled using
a Weibull distribution

lk ∼ Weibull(αk, σk) . (8)

The prior distributions over the αk’s and σk’s were chosen
to accommodate specimen half-lifes ranging from 100 km to
1 000 000 km.

αk = αmin + α̃k (9)
σk = σmin + σ̃k (10)
α̃k ∼ Exponential(λα) (11)
σ̃k ∼ Exponential(λσ) (12)

The complementary cumulative distribution function of the
Weibull distribution is the corresponding survival function

Sk(m) = exp

(
−
(
m

σk

)αk
)
. (13)

As we need to consider all possible failure mechanisms si-
multaneously, the K different survival processes are com-
bined

µ(m) =

K∑

k=1

θk · µk(m) . (14)

The θk’s are the hidden states of the Weibull mixture model
and are drawn from a Dirichlet distribution

[θ1, . . . , θk] = sort{θ} . (15)
θ ∼ Dirichlet(γ) (16)

In order to mitigate the danger of a multi-modal posterior dis-
tribution, the mixing parameters must be sorted, i.e., θ1 ≤
θ2 ≤ . . . ≤ θK . Since no prior knowledge on the composi-
tion of Weibull distributions was available, we chose γ to be
a K-dimensional vector of ones. This prior assigns an equal
probability to every K-simplex.

2.4. Failure Ratio

The survival function S(m), which is part of the model S, and
the individual total mileage estimates mi, which are obtained
from the N models Mi, can now be used to compute the
failure ratio of the vehicle fleet.

Given that the i-th vehicle survived until time t, its probability
of survival until some point in the future tfuture > t is

πi(tfuture|t) = 1− S(mi(t)) + S(mi(tfuture)) . (17)

Accordingly, a predicted failure ratio φ for the entire vehi-
cle fleet can be computed by summing up the probabilities of
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survival for each vehicle

φ(tfuture|t) =
N̂failures(tfuture|t)

N
=

N∑

i=1

πi(tfuture|t) , (18)

where N̂failures(tfuture|t) is the estimated number of failures at
time tfuture given the health state of the fleet at time t.

3. RESULTS

The results presented in this section were obtained from ana-
lyzing a data set D containing more than 745 000 data points
obtained from more than 170 000 different vehicles from 100
different countries. All vehicles were of identical brand and
type. Furthermore, the vehicles were produced in 2014/Q1,
i.e., from January, 1st 2014 to March, 31st 2014. It took, how-
ever, until the beginning of 2015/Q1 for all produced vehicles
to be sold and used in the field. The survival analysis takes
into account failures of a particular engine component. If that
particular component did not break during the study, the ve-
hicle is labeled as survived. On the other hand, if a vehicle
experienced a failure of the component of interest, we assume
that it was repaired immediately. Thus, starting its new life-
cycle from m = 0 km.

To validate our method, we simulated the successive accumu-
lation of data over time. To be more precise, let D(t0) ⊆ D
be the data that was available at timestamp t0, i.e., the time-
stamp of each data point contained in D(t0) is less or equal
to t0. In this paper we show results for training data available
at timestamps t0 ∈ {2015/Q2, 2016/Q2, 2017/Q1, 2017/Q2},
each instance predicting the future at tfuture = 2020/Q4. I.e.,
while the ground truth is available for 2020/Q4 and is used
as validation, for model training only data readings up to one
of the above-mentioned time-stamps have been used. This
reflects a typical real-world scenario, where such models are
usually fed with the latest gathered information.

3.1. Mileage Estimator Results

3.1.1. Estimation of distance driven per day, d

The mileage estimation models aim at the prediction of each
vehicle’s mileage for a specific point in time. To gain an ex-
emplary insight into the data, Fig. 1 shows four different data
readings Di and their corresponding posterior predictive dis-
tribution (PPD). Whereas some vehicles, like i = 141417,
exhibit a very repeatable pattern of daily driving, others, e.g.,
i = 000055, show high fluctuation in daily driving. As ex-
plained in Section 2.2 this may originate from the individ-
ual use cases, e.g., private car vs. car sharing. Note that the
prior assumptions of (2) lead to a higher probability around
the value of 25 km

day , also for vehicle i = 000055. However, in
case of strong evidence of deviation from prior assumptions,
significantly different posterior predictive distributions, like
for vehicle i = 092381, are nevertheless compatible with the

model.

3.1.2. Prediction of total mileage, m

Fig. 2 shows the distribution of total mileage of the fleet (left)
and the distribution of number of years to forecast (right).
The left side of Fig. 2 depicts three different distributions.

• The gray shaded area (�) corresponds to the available
data readings so far.

• The black solid line (−) shows the prediction of the
propagated future fleet mileage distribution.

• The black dashed line (- -) marks the ground truth.

In order to demonstrate the increase of model quality with
new data, we predict the final data readings from 2020/Q4 in
every iteration. Starting from the available data in 2015/Q1
in Fig. 2 (top), we loop over new data readings up to 2017/Q2
in Fig. 2 (4th row). This means whereas in 2015/Q1 (top) we
predict over a horizon of 5 years with a very limited amount
of data, in 2017/Q2 (4th row) we predict the fleet mileage over
3.5 years into the future.

We can see that for t0 = 2015/Q2, Fig. 2 (top), there are no
vehicles present with a higher mileage than 50 000 km. This
is no surprise, as the total time span of driving for all con-
sidered vehicles is only up to 12 months in this plot. At the
same time, the predicted fleet mileage is already surprisingly
accurate. Although there is still a difference in the mode of
the posterior predictive distribution and the distribution of the
future final readings, the overall shapes of both distributions
already looks very similar. Note that this result is obtained
from a forecast five years into the future.

One year later, for t0 = 2016/Q2 (2nd row), the prediction
of the total mileage distribution has improved greatly (left),
while a larger fraction of the fleet did not report any new data
(right), i.e., a large portion of probability mass is still around
the value of 6 years to forecast.

For t0 = 2017/Q2 (3rd row) and t0 = 2017/Q2 (4th row),
the predicted mileage distribution and ground truth are almost
identical (left). The wide distribution of years to forecast il-
lustrate the strong irregularity of the time intervals between
data reporting events (right). Note that there is a distinct peak
of the years-to-forecast distribution, Fig. 2 (right), hovering
over the 6-years mark. This means that some car owners did
not carry their vehicle to a service inspection until at least
2017/Q2.

In what follows, we will assume that each vehicle will be used
by its driver in the future according to distribution of distance
driven per day seen so far. Thus, if a driver changes his or her
behavior over time, the distance driven per day distribution
will become wider, thereby expressing the greater variability
in this user’s behavior.
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Figure 1. Posterior predictive distributions p(di|D) (gray,
filled) and actual data readings (black ticks) for four differ-
ent vehicles. The time interval the data readings correspond
to are shown in the upper right of each figure.

3.2. Lifetime Estimator Results

3.2.1. Description

The result obtained from the lifetime estimator are shown in
Fig. 3.

Each row of Fig. 3 corresponds to a different training data set
D(t0) with t0 ∈ {2015/Q2, 2016/Q2, 2017/Q2, 2017/Q2}, thus
simulating the accumulation of more and more training data
over time. The model is validated via comparison of the
results obtained from the complete dataset D = D(t0 =
2020/Q4)

The left column shows the development of the posterior pre-
diction of the quantity log(F (m)) = log(1 − S(m)), which
is simply the logarithm of the cumulative lifetime probability
distribution.

The solid thick black line (−) is the median of the posterior
predictive distribution

p(log(F (m))|D(t0)) , (19)

where only data up to timestamp t0 has been taken into ac-
count to train the model. The gray shaded area (�) between
the thin solid black lines correspond to the 99%-compatibility
interval3 of (19).

The black dots (•) correspond to the values obtained from

3We use the term compatibility interval, which was introduced by Richard
McElreath (McElreath, 2020), to describe the compatibility of the model
and the data.

the non-parametric product limit estimator

log(F̂ (m)) = log(1− Ŝ(m)) (20)

evaluated for different samples drawn from the posterior pre-
dictive distribution p(m|D(t0)).

The black dashed line (- -) corresponds to the median of

p(log(F (m))|D(tfuture)) (21)

at tfuture = 2020/Q4, i.e., when all available data was taken
into account. Again, the gray shaded area (�) between the
black dashed lines corresponds to the 99%-compatibility in-
terval of (21).

The right column compares the actual and predicted values
of the fleet failure ratio φ.

The black dashed line (- -) corresponds to the actual failure
ratio φtrue ≈ 0.18 of the data set D = D(t0 = 2020/Q4).

The gray shaded area (�) shows the posterior predictive dis-
tribution of the failure ratio

p(φ(tfuture)|D(t0)) . (22)

3.2.2. Discussion

At t0 = 2015/Q2 (top), the posterior predictive distribution
of the failure ratio (right) is very flat. This corresponds to a
great amount of uncertainty within the prediction. The cause
of this uncertainty can easily be derived. Note that at t0 =
2015/Q2 the majority of the fleet drove less than 40 000 km.
The mileage estimator, however, expects the majority of the
fleet to have driven more than 40 000 km at tfuture = 2020/Q4.
Accordingly, there is no data available that describes how
well the fleet is doing for total mileages above 40 000 km. In
consequence, the lifetime estimator S produced an extremely
flat PPD of the survival function (left). The uncertainty in the
survival function is then transported to the failure ratio (right).

One year later, at t0 = 2016/Q2 (2nd row), the situation
looks very different already. Some vehicles drove for more
than 75 000 km and the PPD of the failure ratio (right) be-
comes more concentrated around the (unknown) true value of
φ(tfuture) ≈ 0.18. However, the PPD of the failure ratio is bi-
modal which suggest that two different settings of parameter
distributions within S are fighting for prevalence.

Nine month later, at t0 = 2017/Q1 (3rd row), the most active
drivers have reached approximately 100 000 km. Note that
the models still have to forecast four to six years of driving
behavior for the majority of the fleet. Both PPDs have nar-
rowed substantially, and we get our first reliable estimate of
the survival function and prediction of the fleet failure rate.
The lifetime estimator S now assigns great probability to a
Weibull mixture model corresponding toK = 2 different fail-
ure mechanisms present in the fleet. Also, the PPD of the fail-
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ure ratio has become uni-modal, developing a distinct peak
(around the true value!). If one had to decide how many spare
parts were required within the upcoming 45 months in a prob-
able worst-case scenario, the survival analysis presented here
suggests the following answer: ≈ 0.22 · N or about 37 000
parts necessary until 2017/Q4 for the entire fleet, compare to
Fig. 3 (right, 3rd row).

The results show that a reliable estimate of the fleet survival
function S and thus a reliable prediction of the fleet failure ra-
tio φ is only possible after having gathered a sufficient amount
of data. For the case regarded in this paper we required to
collect data from January 2014 to March 2017 (27 months)
in order to make reliable predictions for December 2020, i.e.,
forecasting a total of 45 months. However, at each moment in
time the amount of uncertainty within the posterior predictive
distributions correctly reflected the level of confidence one
could have in the predictions.

However, there is still some residual uncertainty left. There
are two mechanisms that make the PPD more narrow, i.e.,
more confident, with increasing timestamp of the snapshots
shown in Figures 2 and 3. First, short prediction horizons lead
to more confident predictions. As time goes on, the number
of days until the fixed future date 2020/Q4 is reached gets
smaller. Now, when simulating the future behavior of the
fleet, the uncertainty about its state can only increase with
increasing simulation time. Thus, for small prediction hori-
zons there are only few opportunities for the uncertainty to in-
flate. Second, rich data sets, especially ones containing many
high-mileage vehicles, cf. Fig.2 (left), lead to more confident
predictions. If there is no historical data available for a cer-
tain (high-value) mileage interval, the model must extrapolate
when making predictions about such a region. In this case,
the model can only rely on the expert knowledge that was in-
corporated into it via the prior-distributions. If the relevant
priors are not informative, the extrapolation is accompanied
by an excessive growth of uncertainty. This behavior is typ-
ical for Bayesian model, and it is a desirable behavior, since
the user is always informed on in how far the model’s predic-
tions can be trusted.

4. CONCLUSION

Survival analysis of mechanical or electrical components is
a common tasks in engineering and it bears a huge poten-
tial for cost reduction as well as a high risk for cost increase
in the decision-making process. To overcome the impacts of
asymmetric cost functions, the use of Bayesian models has
been suggested as a fundamental step to process the inher-
ent uncertainties. The advantages of this approach have been
demonstrated for an automotive use case with a vehicle fleet
of over 170 000 cars and a specific component failure of in-
terest.

In the presented scenario, a set of two combined Bayesian

models has been used. The first model estimates the mileage
of each individual car for a desired time point in terms of its
posterior density. This estimate is used for modeling the pre-
dictive posterior distribution of the survival rate. It has been
shown, that with each new information the posterior distribu-
tion becomes more narrow and finally converges to the real
value (provided by the data of 2020/Q4.)

By analyzing the PPD of the survival rate, the decision-making
process can be supported in an optimal way, as all the pos-
sible values along with their probabilities are available. The
knowledge about the uncertainty of one’s predictions is an in-
dispensable attributre of the presented approach. Compared
to a point estimate it gives way more insight into the underly-
ing data generation process and helps to predict the expected
failure rates more realistically.

5. APPENDIX

5.1. The Log-Normal Distribution

The Log-Normal distribution is defined over y ∈ R+ as

Log-Normal(y|µ, σ) =

1√
2π σ

1

y
exp

(
−
(

log(y)− µ√
2σ

)2
)
, (23)

with µ ∈ R and σ ∈ R+.

5.2. The Dirichlet Distribution

For K ∈ N, the Dirichlet distribution is defined as

Dirichlet(θ|α) =

Γ

(
K∑
k=1

γk

)

K∏
k=1

Γ(γk)

K∏

k=1

θγk−1 , (24)

where γ ∈ (R+)K is a vector of shape parameters and θ ∈
K-simplex is a vector of probabilities. The Γ-function is de-
fined as

Γ(z) =

∫ ∞

0

xz−1 exp(−x) dx . (25)

5.3. The Weibull Distribution

The Weibull distribution is defined over y ∈ [0,∞) as

Weibull(y|α, σ) =
α

σ

( y
σ

)α−1
exp

(
−
( y
σ

)α)
,(26)

where α ∈ R+ is a shape parameter and σ ∈ R+ is a scale
parameter.
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5.4. The Exponential Distribution

The Exponential distribution is defined over y ∈ R+ as

Exponential(y|λ) = λ exp (−λ · y) , (27)

where λ ∈ R+ is the rate parameter.
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Training data from time interval April 2014 to June 2015

Training data from time interval April 2014 to June 2016

Training data from time interval April 2014 to March 2017

Training data from time interval April 2014 to June 2017

Figure 2. Development of mileage estimation result over time. Left: distribution of total mileage data readings (gray, filled)
in D as well as the predicted (black, solid) and actual (black, dashed) total mileage distribution of the vehicle fleet over total
mileage m for tfuture = 2020/Q4 and different t0 = [2015/Q2, 2016/Q2, 2017/Q1, 2017/Q2] (rows). Right: distribution of years
to forecast, giving an impression of the irregularity of data reporting events.
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Training data from time interval April 2014 to June 2015

Training data from time interval April 2014 to June 2016

Training data from time interval April 2014 to March 2017

Training data from time interval April 2014 to June 2017

Figure 3. Development of survival analysis result over time. Left: logarithm of predicted (black, solid) and actual (black,
dashed) cumulative lifetime probability distribution log(1 − µ(m)) over total mileage m for tfuture = 2020/Q4 and t0 =
[2015/Q2, 2016/Q2, 2017/Q1, 2017/Q2]. Right: posterior predictive distribution of fraction of failures (gray, filled) and the
actual value (black, dashed) at tfuture = 2020/Q4.
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