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ABSTRACT

With deep learning models on the rise in safety relevant ap-
plications, securing their predictions has become an impor-
tant task. The most common approaches for this task include
detecting anomalies in the data or predicting an additional
safety score with the model itself or a separate supervisor
model. In this study a joint model approach is presented, con-
sisting of two neural network submodels: a predictive model
and an Autoencoder. The data is first passed through the Au-
toencoder generating a reconstruction of the input. Then the
reconstruction and the original data are both passed through
the predictive model generating two outputs. A subsequent
supervisor ensures the accuracy of the predictive model by
comparing the two outputs. The developed supervisor works
unsupervised, hence no anomalous data is required for train-
ing. In comparison to other Autoencoder based supervisors,
there is no need to set a threshold on the Autoencoder’s re-
construction loss. The approach was tested on image classifi-
cation, multivariate time series classification and multivariate
time series regression. On classification tasks with enough
output classes, it was shown that it is superior to the tra-
ditional threshold based algorithms, ensuring high accuracy
with a minimal drop of samples. The methodology was also
adapted for regression problems, giving a good estimation of
the prediction error for clean and noisy data, but it was not
possible to ensure a satisfying accuracy on time delayed data.

1. INTRODUCTION

Deep learning models are on the rise in many scientific fields.
Their ability to solve complex and nonlinear tasks has made
them popular. However, in comparison to physical models,
they struggle with extrapolation. Hence, it is important that
the data in the production stage is similar to the data seen in
training. Deviations to the training data often occur in real
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world applications due to sensor delays and drifts, aging of
the system, and communication errors such as noise. Espe-
cially in safety relevant applications, securing those models
against these influences, which can be seen as anomalies, is
essential.

In the past, Autoencoders, especially Variational Autoencoders
(VAEs), have been proven useful for anomaly detection. Many
researches focus on improving the Autoencoder’s separation
ability for an optimal set anomaly threshold (Xu et al., 2018),
(Lin et al., 2020). Choosing this threshold is not trivial but
crucial for a good anomaly detection. Setting the threshold
optimal becomes especially challenging if the anomaly is un-
known in the training process, which is often the case in real
world applications.

The proposed method combines a deep learning model with
an Autoencoder. The input data is handed to the trained Au-
toencoder which reconstructs the input. If the data is similar
to the training data, the Autoencoder should be able to re-
construct the input data accurately. Otherwise, an anomaly is
suspected. The reconstruction and the original input data are
both passed through the deep learning model, generating two
predictions, which are then compared.

For applications with discrete result space the prediction of
non-anomalous data should lead to the same class for both
samples. For those tasks this allows us to sort out samples as
anomalies for which the two results are not the same, hence
the threshold becomes obsolete.

For applications with continuous output space the difference
between the two predictions can be interpreted as a safety
measure which gives an estimation of the expected error and
has the same unit as the prediction. This is easier to grasp than
the Autoencoder’s reconstruction error, which has no unit and
is typically used.

The advantage of this method is the distinction between sam-
ples that can or cannot be handled by the subsequent applica-
tion model instead of just deciding if the input is anomalous.

1

Proceedings of the 6th European Conference of the Prognostics and Health Management Society 2021 - ISBN – 978-1-936263-34-9

Page 221



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021

This leads to a higher robustness of the joint model and a bet-
ter usage of the prediction model’s resources. Moreover, the
Autoencoder and the prediction model are trained separately
which makes the training a lot more stable than using coupled
training methods. Furthermore, the supervisor can be applied
to existing prediction models.

The proposed method is validated on both, classification and
regression tasks. For the classification, the publicly available
MNIST (LeCun & Cortes, 2010) and UEA multivariate time
series classification (Bagnall et al., 2018) datasets are used.
For regression, a dataset simulating a SCR catalyst as part of
an automotive exhaust gas aftertreatment system is evaluated.
For both tasks common anomalies are applied to the data.

2. RELATED WORK

Autoencoders have been first introduced by Rumelhart et al.
(1986) and were adapted to deep learning thirty years later
by Hinton & Salakhutdinov (2006) for dimensionality reduc-
tion. The scope of Autoencoders is to produce a compressed
representation of the input data. Autoencoders are built of an
encoder and a decoder connected by a bottleneck layer which
has a lower dimensionality. First the encoder compresses the
input data into the size of the bottleneck, this representation of
the data is called code, from which the decoder reconstructs
the input. The loss is computed between the input and the
reconstruction.

A special form of Autoencoders are Varational Autoencoders
(VAE) (D. Kingma & Welling, 2014). The difference be-
tween a vanilla and a VAE architecture is that the code con-
sists of two separate vectors, µ and σ, instead of one. The
vectors µ and σ are interpreted as the mean and standard de-
viation of a normal distribution from which a sample is drawn
and then passed to the decoder. During training, in addition
to the loss between input and reconstruction, the Kullback-
Leibler divergence (Kullback & Leibler, 1951) between the
normal distribution of µ and σ and the standard normal dis-
tribution is computed. This regularization enforces the distri-
bution to be close to the standard normal distribution, which
is a desirable property, especially for data generation since
new samples can be created easily by inputting values from
the standard normal distribution into the decoder (Doersch,
2021).

Apart from dimensionality reduction and generative model-
ing, Autoencoders have been used for unsupervised anomaly
detection. In the following, some examples of studies that use
Autoencoders for anomaly detection for time series data are
presented.

Xu et al. (2018) use VAE for anomaly detection for seasonal
KPIs in web applications. To improve the performance, they
sample L times from the latent space and then compute the
reconstruction probability instead of the reconstruction error.

As evaluation metric they use the area under curve (AUC) and
the F1-score corresponding to the optimal set threshold.

Lin et al. (2020) propose VAE-LSTM for time-series anomaly
detection. In addition to the standard VAE, their model con-
sists of an Embedding and LSTM layers, both situated behind
the encoder and a predicted embedding located in front of the
decoder. They evaluate their model on five real world uni-
variate datasets and compare the results to anomaly detection
with VAE (An & Cho, 2015), LSTM-AD (Malhotra et al.,
2015) and ARMA (Pincombea, 2007). As evaluation metrics
they use precision, recall and F1-score. The value they use
as threshold on the score function to determine an anomaly is
set to give the best F1-score.

Chen et al. (2019) built a joint model consisting of a VAE and
a LSTM model to address anomaly detection and trend pre-
diction together. The univariate data is first passed through
the VAE and an anomaly label is given according to the re-
construction error and a threshold kσr where k is a fixed value
determined by the validation dataset and σr is the standard de-
viation of the absolute reconstruction error. The reconstruc-
tion is cleaner than the original data in the sense that the VAE
reduces the noise. The cleaned reconstruction is thus used
as input for the LSTM for trend prediction. In comparison
to this study, prediction performance and anomaly detection
are evaluated separately while the present approach uses the
anomaly detection for confidence estimation of the prediction
model. Additionally, in the model built by Chen et al. (2019)
the models have to be trained together and a threshold needs
to be set for anomaly detection which is not needed in this
study’s approach.

Furthermore, Zhang et al. (2018) developed a Multi-Scale
Convolutional Recurrent Encoder-Decoder for anomaly de-
tection in multivariate timeseries. They compare their model
to eight different baseline methods including a one-class SVM
model, Deep Autoencoding Gaussian Mixture model (Zong
et al., 2018), History Average (HA), Auto-Regression Mov-
ing Average (ARMA) (Hamilton, 1994) and LSTM encoder-
decoder (LSTM-ED) (Cho et al., 2014) on a synthetical and
a power plant dataset. Their model is able to outperform all
baseline models with regard to precision, recall and F1 score.
They set the anomaly detection threshold according to

τ = β · s(t)valid (1)

where s(t)valid are the anomaly scores over the validation
data and β[0, 1] was set to maximize the validation F1-score.
For all methods using the F1-score a validation dataset with
anomalies must be available.

Apart from the sole task of anomaly detection, Autoencoders
can be used as network supervisors. Network supervisors de-
tect inputs that are dissimilar to the training set. Using Au-
toencoders as network supervisors is very similar to anomaly
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detection since the inputs that are dissimilar to the training
data can be seen as anomalies. Henriksson et al. (2019) pro-
vide a framework for comparing the performance of network
supervisors evaluated with seven different metrics including
area under receiver operating characteristic (AUROC), area
under precision recall curve (AUPRC), the true positive rate
at 5% false positive rate, the precision at 95% recall and oth-
ers. Their study showed that the performance of a network
supervisor strongly depends on the metric used for evalua-
tion.

Determining the anomaly threshold is a commonly known
problem where no ideal solution exists. This paper introduces
a new approach to ensure a model’s accuracy without the need
to set a threshold.

For the purpose of anomaly detection, besides Autoencoders,
Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014) have been proven useful (Schlegl et al., 2017). GANs
consist of a generator and a discriminator network. The latter
learns to distinguish between generated and real data. GAN
based methods rely on concurrent training of generator and
discriminator, producing and detecting adversarial examples
during training. During inference, the discriminator is able to
distinguish between adversarial or anomalous and real sam-
ples. The present approach focuses on supervising a pre-
diction regarding typical anomalies occurring in production
stage, like noise, instead of adversarial examples, therefore
GANs are not further considered in this study.

Besides autoencoder based methods, there exist other net-
work supervision approaches. Hendrycks & Gimpel (2016)
monitor the activation of a classifier’s softmax layer. They
propose that correctly classified samples have greater maxi-
mum softmax probabilities than falsely classified and out-of-
distribution samples. DeVries & Taylor (2018) introduce a
classifier network that learns to estimate its own confidence.
They add a second branch, consisting of one or more fully
connected layers, in parallel to the softmax prediction. That
confidence branch produces a scalar output between 0 and 1,
representing the network’s confidence. During training, they
modify the network’s predictions according to the confidence
of the network such that they are closer to the target probabil-
ity distribution.

The most similar study was conducted by Geifman & El-
Yaniv (2019) who introduced SelectiveNet which is a net-
work for end-to-end learning of selective classification. The
selective model is defined through a prediction function f and
a binary selection function g. For a sample x, if g(x) is 1, the
selective model does a prediction f(x), otherwise no predic-
tion is conducted. SelectiveNet is trained with the selection
prediction objective as an additional term of the loss function
optimizing the model to a target coverage. They compare
their model to Softmax Response and Monte Carlo Dropout
on several image classification and on one regression dataset.

3. METHOD

The traditional process of supervising a deep learning net-
work with an Autoencoder is schematically displayed in fig-
ure 1. Here the network that is to be supervised is called
prediction model. The prediction model and the Autoencoder
use the same input X . While the Autoencoder reconstructs
the input resulting inXR, the prediction model estimates the
output YP . If the Autoencoder’s reconstruction loss is rated
non-anomalous by the supervisor, the prediction is expected
to be secure otherwise the prediction is likely to be inaccurate
(Kühne et al., 2020).
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Figure 1. Schematic overview of a classical VAE supervisor.

In the present paper a new approach for supervision of ma-
chine learning models is provided, which is shown in figure
2. The two submodels (Autoencoder and prediction model)
are the same as in the classical approach. The difference is
that the Autoencoder’s reconstruction XR is used as input
for the prediction model instead of computing of the recon-
struction loss. The prediction model thus makes two separate
predictions: one from the original input X and one from the
reconstructed input XR leading to YP and YR, respectively.
The supervisor compares the two predictions and depending
on the prediction model’s task, a statement about the risk of
the prediction can be made.
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Figure 2. Schematic overview of the proposed method.

If the prediction model is a classifier with distinct classes, the
supervisor compares YP and YR. If the result is not identical,
the prediction is labeled insecure, otherwise it is labeled safe.
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The goal of this method is to sort out samples that are dis-
similar to the training data, retaining a high prediction accu-
racy for the remaining samples. The performance of the joint
model can thus be measured by two parameters risk and cov-
erage defined in (3) and (4) where Ntotal is the total number
of test samples, Nclassified is the number of samples that are
found to be non-anomalous by the supervisor and Ncorrect is
the number of non-anomalous samples that are classified cor-
rectly. The definitions of risk and coverage for selective clas-
sification were first introduced by El-Yaniv & Wiener (2010).

Accuracy =
Ncorrect
Nclassified

(2)

Risk = 100 · (1−Accuracy) (3)

Coverage = 100 · Nclassified
Ntotal

(4)

In some safety relevant tasks it is better to have no prediction
at all, than to get an inaccurate result. The advantage of this
method is that the decision whether a sample is valid or not
does not only depend on the Autoencoder and its strictness
but also on the prediction model’s robustness. The classifica-
tion cases that can occur using the joint model are displayed
in table 1. There exist five possible combinations of correctly
or falsely classifying the original sample YP and the recon-
structed sample YR. The chance of obtaining true negatives,
which lead to a drop in accuracy and therefore increase in
risk, decreases if several output classes are present.

Table 1. Possible outcomes of the joint model used for clas-
sification tasks.

YP YR YP = YR classification case
correct correct true true positive
correct false false false negative
false correct false true negative
false false true false positive
false false false true negative

If the prediction model is performing a regression task, the
application is more complex since it is not possible to just
compare the predicted classes to one another. Instead, a safety
measure is defined according to (7). This safety measure es-
timates the deviation ∆YT of the prediction model’s output
YP from the ground truth data YT at any given point, using
the deviation between two predictions ∆YR. This is useful in
a production stage application where the ground truth values
are not available.

∆YT = |YP − YT | (5)
∆YR = |YP − YR| (6)
Safety = σR∆YR (7)

In equation (7) σR is a calculated constant, which can be in-

terpreted as a safety factor and differs for any given feature.
The optimal value for σR can be calculated with (8), which
can be interpreted as the minimal distance between ∆YT and
∆YR, where n is the number of samples. The same distance
can later in the test cases be used as a Key Performance In-
dicator (KPI) for the supervisor. If the KPI is zero, ∆YT
and ∆YR are identical for every time step which would be
an ideal error estimation. On the other hand, a large KPI
indicates an insufficient error estimation.

σR = argmin
σR

(
1

n

n∑

i=1

|σR∆YRi −∆YTi|
)

︸ ︷︷ ︸
=KPI

(8)

In contrast to optimizing a threshold, optimizing σR does not
require anomalous data.

4. EVALUATION

4.1. Image Classification

To prove the proposed concept a study was conducted on the
MNIST (LeCun & Cortes, 2010) dataset. This dataset con-
sists of images of handwritten digits and is mostly used for
classification tasks. It was chosen for the concept validation
since it is publicly available and widely used as benchmark
dataset. The dataset is divided into training and test set, with
60000 and 10000 samples, respectively.

Table 5 shows the architectures chosen for the VAE and the
Classifier. ReLU was used as activation function and Adam
(D. P. Kingma & Ba, 2015) as optimizer. Training was con-
ducted separately for the two models with the unmodified
training dataset. To test the supervisor property of the joint
model normal distributed noise was added to the test data with
a standard deviation of 0.3. Figure 3 shows the joint model’s
risk and the corresponding coverage as defined in equations
(3) and (4). In addition to the joint model, the data was eval-
uated with a threshold based approach with the same models
for varying thresholds. The upper boundary of the threshold
range is set to result in a Coverage of 100%. Two prominent
thresholds are marked differently: the average training loss
and the threshold for which 90 percent of the train samples
are labeled non-anomalous. The lower the threshold is set,
the more samples are labeled anomalous resulting in a small
coverage. The objective is to have a high coverage while not
losing accuracy in comparison to the unmodified data.
For the non-anomalous case, displayed in figure 3a, the risk
does not vary a lot with an increasing threshold. The train
threshold and the 90 percentile threshold are both valid choices
resulting in a low risk with a coverage of 50% and 85%, re-
spectively. The joint model’s risk and coverage are close to
the 90 percentile threshold result. However, when introduc-
ing noise to the test data (figure 3b), the set thresholds become
unsuitable. The risk for the same threshold is lower than for
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the non-anomalous case and the reconstruction errors of all
samples are higher than many of the set thresholds, including
the train threshold and the 90 percentile threshold. The joint
model is able to retain the low classification risk even for the
high noise magnitudes and still achieve a high coverage. Ta-
ble 4 depicts the differentiated classification outcomes of the
joint model as defined in table 1 for noises with standard de-
viations of 0.1, 0.2 and 0.3. The number of false positives,
where the first prediction YP and the second prediction YR
are both false but by chance the same, is low (0.68-1.12%).
This confirms the proposed hypothesis that the joint model
works well for classification tasks with several output classes.
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Figure 3. Risk over coverage for the MNIST (LeCun &
Cortes, 2010) dataset. The upper plot (a) is generated with
non-anomalous data, the lower plot (b) with normal dis-
tributed noise with a standard deviation of 0.3. The round
markers display the results for arbitrary chosen thresholds
for a traditional VAE supervisor model. The upper bound-
ary of the threshold range is set to let all non-anomalous test
samples pass through the supervisor resulting in a coverage
of 100%. The square and diamond marker indicate the set
threshold on the train threshold and 90% coverage, respec-
tively. The star marker indicates the joint model’s perfor-
mance.

4.2. Time Series Classification

Analogous to the evaluation on image data, the joint model
is evaluated for classification of time series data. The evalu-
ated time series originate from the UEA multivariate dataset
archive (Bagnall et al., 2018). For the proposed approach a
certain number of output classes is required, otherwise the
number of samples YP and YR that are the same by chance is
too high. As minimum number of classes six was found to be
suitable. With that restriction six datasets are chosen for eval-
uation. The specifics of the datasets are summarized in table
2. For each dataset a VAE and a classifier are trained sepa-
rately. The architecture specifics are shown in table 5 and are
the same for all the time series classification datasets except

for the bottleneck dimension.

Table 2. Timeseries classification dataset specifics.

Dataset train test dim. seq len classes
Articulary Word
Recognition

275 300 9 144 25

Cricket 108 72 6 1197 12
ERing 30 270 4 65 6
Libras 180 180 2 45 15
PenDigits 7494 3498 2 8 10
UWave Gesture 120 320 3 315 8
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Figure 4. Bottleneck search on the Libras dataset. The grey
lines represent the two objectives for risk and coverage while
the size of the markers represents the bottleneck size.

The bottleneck dimension is an important hyperparameter since
it determines the strictness of the Autoencoder. If the bottle-
neck dimension is too large, samples that are not similar to the
the training data can be reconstructed well, if it is too small
even the training data cannot be reconstructed sufficiently. To
determine a suitable bottleneck size two objectives were de-
fined for the performance of the joint model on the training
data:

1. the joint model’s risk (according to equation 3) should be
at least as low as the classifier risk when used stand-alone

2. the coverage (according to equation 4) should be at least
90%.

Starting with a size of two, the bottleneck size was gradu-
ally increased until both objectives were satisfied. This pro-
cedure is visualized in figure 4 for the Libras dataset. The re-
sulting bottleneck dimensions for all time series classification
datasets are summarized in table 6. Choosing the bottleneck
dimension and the other architecture hyperparameters influ-
ences the supervisor performance of the VAE. The advantage
of the presented joint model is the ambiguity of a reconstruc-
tion loss threshold, which is an additional hyperparamter of
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Figure 5. Risk over coverage for the Articulary Word Recognition dataset. The upper left plot (a) is generated with non-
anomalous data, the upper right plot (b) with noise with a standard deviation of 0.25, the lower left (c) with 0.5 and the lower
right (d) with 0.75.

the classical approach shown in figure 1. For the comparison
of the two methods the exact same autoencoder is used.

The joint models were then tested on the original test dataset
and four modifications: three noisy datasets, where noise is
applied to the test dataset with standard deviations of 0.25,
0.5 and 0.75, and a dataset with a mirror anomaly. For the
latter, dimension zero was mirrored for each time series, so
the last time step is the first and so on. This procedure cre-
ates a contextual anomaly (Chandola et al., 2009), meaning
that the values are feasible for the channel but not in the con-
text of the other channels. Figure 5 displays the joint model
results for the normal and noisy cases exemplary for the Ar-
ticulary Word Recognition dataset. The results are similar
to the MNIST results (figure 3). For the non-anomalous case
the train threshold and 90 percentile threshold both lead to ac-
ceptable results (figure 5a). With increasing noise, however,
all samples are above the train and 90 percentile threshold so
no samples are labeled secure. In contrast, the joint model has
still a coverage of 70% with the highest noise applied while
keeping the same risk as for the normal data (figure 5d).

Figure 6 displays the results of the mirror anomaly. The joint
model again excels since the coverage is with 70% signifi-
cantly higher than for the 90 percentile threshold (15%) while
resulting in the same risk. Moreover, for all the anomalies
(figures 5 and 6), the joint model marker is above the varying
threshold markers, meaning even with an optimal set thresh-
old, the combination of coverage and risk cannot be achieved

with the threshold based method.
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Figure 6. Risk over coverage for the mirror anomaly applied
on the Articulary Word Recognition dataset.

Table 7 provides an overview of the results for all exam-
ined time series classification datasets. Comparing the joint
model’s risks for the different anomalies, it is noticeable that
remaining the risk steady works better on datasets with a high
number of classes, e.g. Articulary Word Recognition and
Cricket, as it was anticipated beforehand. The accuracy for
the mirror anomaly is significantly lower than for the non-
anomalous case for the Pen Digits, ERing and UWave Ges-
ture and Libras datasets. All those datasets have four or less
dimensions (compare table 2), therefore mirroring one di-
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mension is has a great impact and cannot be dealt with well
by the joint model.

4.3. Time Series Regression

For the time series regression problem the multivariate dataset
from März et al. (2020) is used. It is a result of a 1D physical
simulation of an SCRF catalyst. For the present application
the regression of the wall temperature signal is evaluated. The
feature space has seven distinct features and the last two time
steps are taken into account.

To find a well fitting prediction model, an architecture search
was conducted. All models are trained with ReLU activation
functions, using an Adam optimizer. The chosen architecture
can be found in the appendix in table 5. As supervisor net-
work an Autoencoder instead of a VAE is used since it shows
a better performance for the task at hand.

Next up, the optimization problem (8) is solved for the net-
work, finding the parameter σR. The behavior of sigma in
comparison to the KPI is displayed in figure 7, leading to
σR = 1.16.

���� ���� ���� ���� ���� ���� ���� ���� ����
σR

���

���

���

���

���

�
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Figure 7. KPI over σR for the regression model. According
to equation (8), σR is chosen where the KPI is minimal,
resulting in σR = 1.16 at KPI = 0.63.

Table 3. KPI for Regression task.

Figure Anomaly Type Anomaly Value KPI

8a - - 0.63
8b noise 5◦C 0.60
8c noise 10◦C 0.67
8d delay 2s 1.26

In figure 8a, the two deviations ∆YT and σR∆YR are shown
for non-anomalous data. The ground truth values and the pre-
diction of the model can be found in the appendix in figure 9.
In the real life scenario ∆YT is an unknown property, which
is estimated by ∆YR. Hence, in the optimal case both curves
are nearly identical. This cannot be achieved completely but

the general trend and scale are matching. Especially at the
beginning, where the difference between input and wall tem-
perature is high, and thus the prediction of the output temper-
ature is difficult, a good approximation of the error is given
by the joint model. As with the classification data, in the next
phase different errors are applied to the original data. Figure
8b, c and d display ∆YT and ∆YR for different errors. The
error is applied starting at 500s. In the plots 8b and c, noise
errors of 5◦C and 10◦C are applied to the input temperature,
respectively. In both cases the joint model is able to estimate
the accuracy of the prediction model. In plot 8d a time delay
error of 2s on the input temperature is applied. The resulting
deviation is not very large and the joint model is not able to
predict the deviation in a significant way.

For further evaluation, the KPI for the different tests are
evaluated and summarized in table 3. For a perfect error es-
timation the resulting KPI would be zero. It becomes clearly
visible that the joint model is able to estimate the error on
noisy data as good as on non-anomalous data, but its estima-
tion of the error on time delayed data is not reliable enough.

5. CONCLUSION

The present study shows that the proposed joint model ap-
proach is superior to the traditional threshold based supervi-
sor models for image and time-series classification. It works
especially well if the number of distinct output classes is high
enough. The results on the regression problem indicate that
the model is a good estimator for the accuracy of the model, if
the data is clean or noisy. The denoising property of Autoen-
coders is a well known feature and can here be used to great
effect. However, on time delayed data the performance is not
consistent. This can be further researched and maybe fixed
with a recursive prediction model. Another interesting study
would be to adapt the joint model approach on reinforcement
tasks, where the supervisor can activate a fall back strategy
for unsafe predictions. The proposed joint model could be,
for example, very useful in the medical field in the applica-
tion of tumor classification, where it is more important to en-
sure that predictions are accurate rather than to predict every
sample.
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Figure 8. Deviation and safety for different anomalies applied on SCR dataset. The upper plot (a) is without anomaly, the next
(b) and (c) with noise of 5◦C and 10◦C and the lower plot (d) with a time delay of 2s.

NOMENCLATURE

Nclassified number of samples that are labeled
non-anomalous by the supervisor

Ncorrect number of correctly classified sam-
ples

Ntotal number of test samples

µ mean

σ standard deviation

σR safety factor

X input data

XR reconstructed input

YP predicted output from original input

YR predicted output from reconstructed
input

YT ground truth output
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APPENDIX

Table 4. Differentiated results for MNIST (LeCun & Cortes, 2010) classification in percent. 1 YP false and YR correct 2 YP
and YR false

noise 0.1 noise 0.2 noise 0.3

true positive rate 87.76 84.83 76.14
false negative rate 10.09 11.61 14.84
true negative rate 1 0.88 1.57 5.51
false positive rate 0.68 0.83 1.12

true negative rate 2 0.59 1.16 2.39
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Figure 9. Real and predicted output temperature of the SCR catalyst without any anomalies.

11

Proceedings of the 6th European Conference of the Prognostics and Health Management Society 2021 - ISBN – 978-1-936263-34-9

Page 231



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021

Table 5. Architectures of the Autoencoder and prediction model for the different applications. PyTorch (Paszke et al., 2019)
is used for implementation and the hyperparameters for the different layer types (Linear, Convolutional, Pooling, Dropout and
Softmax) not displayed in the table are the default values. All models are trained with Adam (D. P. Kingma & Ba, 2015)
optimizer and have ReLU as activation function.

dataset model layers hidden dim kernel size

MNIST

VAE

Encoder
Linear 512 -
Linear 256 -
Linear 4 -

Decoder
Linear 256 -
Linear 512 -
Linear 784 -

Classifier

Conv. 16 5
Pool. - -
Conv. 22 3
Pool. - -
Conv. 22 3
Pool. - -
Linear 50 -
Dropout - -
Linear 10 -
Softmax - -

UEA datasets

VAE
Encoder 3 Conv. 20 1

Linear bottleneck dim -

Decoder Linear flat dim -
3 Tr. Conv. 20 1

Classifier

2 Conv 64 1
Dropout - -
Conv. classes 1
Linear 1 -
Softmax - -

SCR

AE
Encoder Linear. 12 -

Linear 10 -

Decoder Linear 12 -
Linear 14 -

Regression
Linear 64 -
Linear 64 -
Linear 1 -

Table 6. Bottleneck dimensions of the VAEs used for the time series classification datasets.

Dataset bottleneck dimension
Articulary Word Recognition 9

Cricket 12
ERing 3
Libras 7

PenDigits 4
UWave Gesture 5
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Table 7. Risk and coverage for Classification Tasks for non-anomalous data and for four different anomalies in percent.

Dataset evaluation point non-anomal. noise 0.25 noise 0.5 noise 0.75 mirror
risk cov. risk cov. risk cov. risk cov. risk cov.

Articulary train 0.00 23.33 0.00 5.67 - 0 - 0 - 0
Word 90-percentile 1.90 55.33 0.84 41.67 - 0 - 0 2.56 13.00
Recognition joint 1.47 91.00 1.09 91.33 1.12 89.67 1.49 89.33 1.62 82.33

Cricket
train 0 20.83 - 0 - 0 - 0 - 0
90-percentile 0 36.11 0 31.94 - 0 - 0 - 0
joint 1.82 76.39 1.85 75.00 1.92 72.22 2.27 61.11 2.44 56.94

ERing
train 0 13.70 0 8.89 - 0 - 0 - 0
90-percentile 4.76 23.33 0 16.67 - 0 - 0 - 0
joint 6.90 75.19 9.52 77.78 6.50 74.07 8.81 71.48 53.03 48.89

Libras
train 33.96 29.44 - 0 - 0 - 0 56.00 13.89
90-percentile 38.05 62.78 41.94 17.22 - 0 - 0 63.33 33.33
joint 41.89 82.22 44.37 83.89 48.78 68.33 52.53 55.00 68.46 72.22

Pen Digits
train 15.64 60.15 23.86 8.75 - 0 - 0 33.33 2.66
90-percentile 19.32 85.96 23.85 47.34 42.03 1.97 - 0 60.01 15.09
joint 16.74 90.02 19.40 80.16 28.08 60.26 41.97 44.68 72.64 59.78

UWave Gesture
train 5.26 11.56 0 3.44 - 0 - 0 - 0
90-percentile 19.55 41.56 12.50 30.00 - 0 - 0 32.00 15.62
joint 14.10 70.94 14.53 73.12 12.82 73.12 12.73 68.75 53.88 52.81
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