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ABSTRACT

The maintenance of vehicles and components is present in
most people’s daily lives, ranging from changing a private
vehicle’s oil to the failure prediction of an aircraft compo-
nent during flight. Usually, the manufacturer’s maintenance
recommendation is a good solution when the cost is not too
high, and the real application is used as indicated by the man-
ufacturer. However, this recommendation can turn unfeasible
when there is a significant variation in operational conditions
or high maintenance costs. In these cases, the manufacturer’s
suggestion is typically conservative, leading to unnecessarily
high costs. Therefore, the challenge is to find the best ap-
proach for optimizing a component’s maintenance, given the
system in which it is integrated and the associated operational
and environmental conditions. Nevertheless, the available in-
formation on the loads on the component also plays a role in
that choice. This paper proposes to combine case-specific in-
formation with generic degradation prediction models to ob-
tain an acceptable but also affordable approach. The objective
is to develop data selection criteria to indicate the parameters
that have a high impact on the failure prediction, in this case,
of a generic impeller pump. Subsequently, the approach de-
livers to the user an indication of the component remaining
useful life using different operational scenarios.

1. INTRODUCTION

Predictive maintenance (PdM) is a topic in development, and
there are many gaps to be understood and developed. PdM
uses Prognostic and Health Management (PHM) technologies
to avoid premature failures. Besides that, with PdM, it is pos-
sible to enable remote diagnosis, reduce secondary damage
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to components and maintenance costs, and optimize a future
design. Thereby, it is possible to quantify the deteriorated
condition, performance, and the remaining useful life (RUL)
of the system (Lei & Sandborn, 2016).

Some authors use data-driven methods to generate condition
monitoring or prognostics results (Parrondo, Velarde, & San-
tolaria, 1998; J. Wang, Zhang, Zheng, & Wang, 2019). How-
ever, the application turns to be impractical in a real case
due to the complexity of the setup, storage of the data, or
uncertainties in the results. An example of a physics-based
approach is present by Parrondo et al. (1998), who analysed
the system pressure and accelerometer data from a centrifugal
pump. Their work shows which alternative best represents the
cavitation behavior. They conclude that the signal frequency
produced by sensors from the pressure in the pump inlet and
outlet can provide enough data to evaluate the condition of
the impeller. However, this approach cannot provide a de-
terioration prediction, besides that, it demands high storage
space and a laboratory setup.

The study of maintenance strategies is portrayed in the lit-
erature to increase efficiency with consolidated approaches
to proactive, preventive maintenance, and health monitoring
(Ivankevich, Piterska, Shakhov, Shakhov, & Yarovenko, 2019).
This strategy avoids a low quality of services performed, which
causes low efficiency and high cost of components. However,
this strategy lacks a methodology, and the companies do not
have a science-based method to predict failure. Health or con-
dition monitoring is an important element in predictive main-
tenance. In this approach, the deterioration of components is
monitored. The behavior and the evolution of the failure of
a component is described according to a specific condition.
However, extrapolation is not straightforward, as indicated in
the literature (Abdel Fatah, Hassan, Lotfy, & Dimitri, 2019).
There is a need for new approaches and models that predict
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component failure where the condition and application can
change.

The present work proposes a methodology to evaluate the im-
portance of the parameters used in Reliability or Failure Rate
Models, also called Handbook Models in this work. Such
models use a historical failure database, information on the
operating conditions, and some physical properties to pre-
dict the next component failure. The combination of data and
models is implemented in the proposed tool which interacts
with a user by asking for information or data. The type of
data used to run the tool can come from different sources; be-
sides sensor data, Enterprise Resource Planning (ERP) data,
environmental conditions, technical manual information, and
material properties. Although ERP systems are not designed
with a maintenance focus, it is now possible to find service
packages that help with maintenance management and pro-
duce useful information regarding system maintenance his-
tory (Kohli, 2017; Bumblauskas, Gemmill, Igou, & Anzen-
gruber, 2017).

This work aims to develop data selection criteria that will be
used as one of the elements in the tool to be developed. The
tool can decide which model and parameters will be used to
predict the component failure. This decision-making is based
on sensitivity analyses and a proposed set of data selection
criteria. In section 2 a handbook model is presented that is the
base model to demonstrate this approach. Section 3 presents
the data selection methodology proposed in this work. The
proposed criteria are demonstrated in Section 4. Finally, the
paper is closed with conclusions (section 5).

2. METHODS

The methodology is developed for a generic centrifugal pump
through Handbook Models. Further, it is analyzed how oper-
ational factors like water flow and temperature can influence
cavitation during pumping. The generic models available for
centrifugal pumps focus on a single failure mode, i.e., cavita-
tion or erosion. In practice, it will be necessary to consider all
possible failure modes in a centrifugal pump, but to demon-
strate the approach, in this paper only the cavitation model
will be considered. The case study analyzes a centrifugal
pump from a seawater cooling system in different scenarios
with varying operational and environmental conditions.

Firstly, a handbook model is selected based on failure rate
history and physical parameters. Secondly, the necessary op-
erational parameters and their range of values are determined.
In this step, a sensitivity analysis identifies which parameters
have the most significant impact on the model, indicating the
necessity for more precise data. This step also ensures that the
user does not collect unnecessary data for a parameter with a
minor impact. Simultaneously, the user is encouraged to col-
lect more accurate data, like time series data or verified data,
for the parameters with a significant impact.

2.1. Failure Rate Model

A handbook or Failure Rate Model (FRM) is usually referred
to as a collection of previous works. The NSWC-11 (Hand-
book of Reliability Prediction Procedures for Mechanical Equip-
ment) presents a methodology to evaluate mechanical designs
based on information from databases, aging characteristics,
regression techniques, and field failure data (NSWC, 2011).
The failure rate App (in failures per million hours) for a fluid
driver, i.e. the impeller, in a centrifugal pump is given as:

Arp = Arp,B - Cpr-Cps-Cc - CsFr (1)

where App g is the base failure rate for the pump fluid driver;
Cpr is the percent flow multiplying factor, C'pg is the oper-
ating speed multiplying factor; C¢ is the contaminant multi-
plying factor; and C'sr is the service factor. The base failure
rate is based on historical data for the considered pump. As it
acts as a scaling factor, and its value can vary several orders
of magnitude (depending on the application), it has a signifi-
cant impact on the failure rate App. In NSWC-11 a historical
failure rate is proposed that varies between 0.12 and 0.2 fail-
ures per million hours. However, this variation is based on
the driver mode and impeller model type, while application,
type of fluid, and environmental factors are not considered in
this Handbook Model.

Note that the correction factor for the flow C'pr is determined
by the ratio between the actual flow @) and the specified max-
imum flow @Q),.. The value of the correction factor depends,
for an ordinary volute casing, on the flow ratios according to:

For 0.1 < Q <1.0:

Qr

2 3
Cpr =9.94 — 0.90 (g) ~ 10 (3) +1.77 (3)

_ Q) L, (QY <Q)3
Cpr =-30.6+36 <Qr> 4.5 <QT) 2.2 0,

2

Similarly, C'pg is a based on the ratio between operating Speed
(Vo) and the maximum allowable design speed (Vp). Ac-
cording to the NSWC-11, this factor affects the cavitation
damage since the increase of operating speed also increases
the pump energy level. The correction factor is defined as:
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V 1.3
Cps =5 (1/2) 3)

The correction factor for contamination C was developed
based on research from the NSWC and is given as:

Cc =0.6+0.05-Fac 4

where F4c is the filtration level typically given in microm-
eters. However, the application under investigation in this
work highly differs from the application from the NSWC, im-
plying that the validity of Eq. (4) is questionable.

3. DATA SELECTION CRITERIA

This paper’s main goal is to establish data selection criteria
for a predictive maintenance tool applied to a generic com-
ponent. Figure 1 presents the flowchart for the tool under
development. The user should fill the fields in green, and the
software then takes the actions in blue, i.e. selects the most
suitable RUL model (from a database of models), identifies
the dominant parameters, advices on data collection and ulti-
mately performs the RUL calculation. In this paper, the focus
will be on the step in the red dashed box: determining the
high impact parameters. Initially, the user should select the
component, insert the component information, and specify
available data. The latter field “specify available data” sig-
nalizes to the software which parameters are available with
specific information, but in this step, the user does not yet
need to provide data for the tool.

Data information combined with the models available in the
software, such as the Handbook model, will enable the system
to choose the most suitable physics based model for the case.
However, it is not mandatory that all the available data will be
provided to the chosen model. Such a method may analyze a
second model, Physical Model, with considerable efficiency
and parameters with high influence available. Therefore, the
second model can present more significant results than the
model chosen previously.

A sensitivity analysis with the range of the data and the se-
lected model is done first. This step indicates the parameters
that have a high influence on the model output. After that,
the tool analyzes if there is sufficient data for the parameters
identified with high influence. The user needs to specify the
parameters to allow the system to identify whether sufficient
data is provided in the first step. If not all data is, or can be,
specified by the user, reference values will be used. The tool
calculates the Remaining Useful Life, but also communicates
to the user which data is necessary to improve the RUL esti-
mation, in case incomplete data was provided.

The feature importance technique commonly used in data min-
ing does not apply to this case. For cases with extensive

- Select the
component

—>Insert component
information

!

Suitable RUL model selected

}

-> Insert the reference value and
range of the model parameters

-> Specify
available data

Is there sufficient data for the parameters
identified as high influence?

The data that would reduce the RUL
uncertainties is presented

1 - Insert the
data for these
For parameters that have insufficient parameters
data, the ref. values are used
Accurate
Less accurate RUL
RUL calculation .
calculation

Figure 1. Tool flowchart. The actions made by the user are
in green/rectangle, and the decision made by the software in
blue/rectangle with rounded corners. The solid colors present
what will be displayed for the user.

features, some data are excluded due to the irrelevance or
redundant contribution (Razmjoo, Xanthopoulos, & Zheng,
2017). Note that in case of large datasets, many (advanced)
techniques are available to select the most important features
(e.g. Principal Component Analysis). However, in this case it
is assumed that such a large dataset is not available (yet), and
the (physical) reliability model is used as starting point.

It is proposed here to use a sensitivity analysis to select the
most relevant parameter. There are many types of sensitivity
analysis methodologies, and each methodology is specifically
suitable for a certain application. There are many factors con-
sidered to select the suitable method; however, there is no in-
dication for a unique methodology for each case. Tian (2013)
characterizes the Morris method with high computational ef-
fort, many inputs, and qualitative parameters analysis. This
work aims to create a generic model to apply to a generic hy-
draulic system. The Morris method meets this specification
since it covers the high amount of parameters and high com-
putational effort of an entire system.
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The Morris method provides not only the influence of each
parameter, but also the correlation between the parameters
(Meghoe, Loendersloot, & Tinga, 2020; Forrester, Sobester,
& Keane, 2008). Each input (k) varies along a pre-determined
number of levels (p) in the input factor space. The domain of
experimentation (2) is a regular k-dimensional p-level grid.
For a given vector X = [z1, ..., 2] the elementary effect Fe;
of the i parameter z; to the response value y is presented as
(Meghoe et al., 2020; C. Wang, Peng, & Xia, 2020):

,l’k) - y(xla -..,Ik;)

&)

y(xla ey Ti F Aaxi-‘rlv
A

Eei (X) =

where X € Q, when z; <1 — A (Morris, 1991).

According to Campolongo, Cariboni, and Saltelli (2007), an
even number of levels p and A defined as:

A= 6
2(p—1) ©

is a convenient choice because it ensures symmetric treatment
of inputs, with which it is likely to have a more even distribu-
tion of values in X. Thereby, the probability of a severely
imbalanced sample decreases in every column. Since this
work intends to apply this methodology in different models
with different amounts of inputs, this is the recommendable
approach.

It is essential to define criteria to select or exclude some pa-
rameters using multiple sensitivity analyses, since the aim is
to build a generic model for an arbitrary centrifugal pump.
According to Campolongo et al. (2007), 20 is a sufficient
number of random analysis. Convergence analyses of three
different models and some literature findings were used to de-
termine the p-level grid (Ruano, Ribes, Ferrer, & Sin, 2011;
Campolongo et al., 2007; Meghoe et al., 2020). Values be-
tween four and eight discrete levels along each dimension are
pointed out to be sufficient according to the literature. The
convergence analyses also indicated values of p = 8§ as suffi-
cient. Therefore, the authors choose to use eight levels.

The results of a Morris analysis are visualized by plotting the
standard deviation versus the mean of the samples in a screen-
ing plan, as for example shown in Figure 2. The importance
of each of the variables is defined by the combination of both
the standard deviations and the mean. There are no well-
defined rules to select which parameters should be included
or excluded. An automation of the selection of parameters
is desired, to avoid human intervention at this point in the
process. It is proposed here to draw a quarter ellipse, cross-
ing the horizontal and vertical axis at 50% of the mean value
and 50% of the standard deviation as the limit. The general
validity of this method is tested on the findings of a number
of sources from the literature. Touhami, Lardy, Barra, and

Bellocchi (2013) analyzed 28 parameters with the purpose of
identifying the most influential parameters for the grassland
system in specific contexts. The authors divided the plot into
four quadrants; however, they do not define by which criteria
the quadrants are limited. On the other hand, the represen-
tative variables are at the quadrant opposite from the origin,
and this matches with the ellipse approach.

Morris (1991)analyzed a problem with 20 parameters. An
artificial computational model was used to demonstrate the
method. In this analysis, the ten last inputs are clustered with
means and standard deviation close to 0. The first ten in-
puts are considered significant. However, from these first in-
puts, seven have a higher impact. The degree of importance
of three of the first set of ten parameters is not defined; the
selection criteria proposed in the present a solution for this
question.

Forrester et al. (2008) analyzed ten parameters to identify the
inputs with little and high impact on the objective function.
They evaluated the impact of the inputs of a function to op-
timize the weight of the wing of a light aircraft. The authors
pointed out that the values far from the origin have the most
significant impact. The analyzes match the approach propose
in this work.

C. Wang et al. (2020) analyzed 24 parameters to identify the
essential parameters for a marine passive residual heat re-
moval system. The parameters indicated as being of greater
importance appear out of the ellipse when the technique is
applied. However, there is some inconsistency in the ellipse
approach versus the assessment of the authors: firstly, and
sometimes they take parameters with minor relevance, some-
times a parameter does not appear very important in the same
analysis with a different normalization.

Finally, Meghoe et al. (2020) analyzed 8 parameters to iden-
tify which parameter affect the wear number of a rail. The
data selection criterion proposed here confirms the parame-
ters indicated as those with a strong influence and correla-
tion. However, one of the analyses considered one parameter
as relevant that presents a relatively minor impact compared
with the highest impact parameter. The ellipse approach still
largely matches the findings of Meghoe et al. (2020).

With the ellipse selection method proposed in this work, the
software points out which parameters have a high impact. A
value of 50% of half of the maximum mean value and 50%
of the maximum standard deviation for the axis of the ellipse
proved to give satisfactory results when applied to a number
of examples from literature. The results of the analysis are
collected in Table 1.

4. DEMONSTRATION, RESULTS AND DISCUSSION

In this section, the described methodology of data selection is
applied to an impeller of a pump system. The demonstration
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Table 1. Overview of the correspondence of the ellipse based method with findings in the open literature.

Paper Num. of p Out
reference evaluated parameters urpose utcome
Touhami et al. 8 Identification of the most influential parameters Good
(2020) for the grassland system in specific contexts correlation
Morris 20 Demosntration of the Good
(1991) Morris Method correlation
Forrester et al. 10 Identification of inputs with little and Good
(2008) high impact on the objective function correlation
C. Wang et al. 24 Identification of important parameters for a Good correlation -
(2020) marine passive residual heat removal system small inconsistency
Meghoe et al. ] Identification of which parameter Good correlation -
(2020) affect the wear number small inconsistency

is based on the data from a NISM 125-250/01 pump installed
in a seawater cooling system (Janse, 2009). The particle dis-
tribution and sediment concentration were based on previous
studies (Sheldon, Prakash, & Sutcliffe Jr, 1972; Lauwaert et
al., 2016). The installation details, like pipe length and liquid
level height; and time-series data, like temperature and flow,
were assumed for a realistic situation.

4.1. Sensitivity Analysis

The sensitivity analysis (SA) is an essential function in this
work; it selects the parameters with a large influence on the
results and therewith prevents that time and cost are wasted
on parameters that have a low impact. The Morris method
calculates the means and standard deviation of the elemen-
tary effect (E'e) distribution for each parameter. The mean of
the Ee distribution represents how influential a parameter is.
When a parameter returns a high mean value, that parameter
has a significant influence. The standard deviation indicates
how a parameter deviates from the distribution. So, if a pa-
rameter highly deviates, it has a high correlation with one
or more other parameters. Considering that, the results of a
Morris method are usually plotted to visualize the relation be-
tween the parameter’s influence and correlation in a so-called
screening plan. Table 2 presents the parameter ranges for the
handbook model as estimated for the demonstration case of
this work. Minimum (min) and maximum (max) values rep-
resent the range of probable values during operation. The ref-
erence value (Ref) is either the manufacturer recommended
value for operation or the most probable value in the case of
environmental and operational factors.

The data from Table 2 are used as input in the Morris method
described before. The method calculates the elementary ef-
fect for each parameter using the handbook model. The means
and standard deviations are calculated from the results of the
elementary effect and presented in a screening plan, Figure
2, as an output. Additionally, the ellipse as proposed before,
connecting the half values of the maximum mean and stan-
dard deviations, is plotted in red. This indicates that filter size
(Fac), operational flow (Q)), historical failure (Arp ), and

Table 2. Parameter values handbook model for sensitivity
analysis.

Parameter | Min | Max | Ref | Unit
AFD.B 2425 1 7.275 | 4.85 | failures/million hrs
Q 1 400 260 m3/h
Vo 1700 | 1800 | 1750 rpm
Faic 1 128 32 pm
Csp 1 2 1.5 -

service factor (C'sp) have a high correlation and influence.
Therefore, it is necessary to focus more on these parameters,
as a slight variation in these parameters can substantially im-
pact the result. For operational flow (@), it is necessary to
present time series data since it is a directly measured pa-
rameter. The user chooses the service factor (Csp) accord-
ing to the severity of the operation; 1.25 for uniform load,
1.5 for moderate shock, 1.75 for heavy shock, and 2 for ex-
treme shock (NSWC, 2011). The Cgp is 1.5 for this work be-
cause it is considered an operation with moderate shock and
actual operational hours. App p is the base failure rate of
the pump fluid driver. For App g the historical failure rate of
such a component can be used. In case that it is not available,
it is suggested to use the data provided by the manufacturer
(SINTEF, 2002).

4.2. Remaining Useful Life (RUL)

The models introduced in section 2.1 will now be applied to
calculate the RUL of the pump in various scenarios. In the
simulations, the decrease of the pump condition will be mod-
elled, where a condition equal to 1 represents the initial state
of the component, as new from the manufacturer, and O rep-
resents the component wholly degraded. For the model, con-
dition 0O corresponds to the occurrence of the first failure, for
which the time can be obtained from inverting the failure rate.
As the parameters can change over time, the ’condition” de-
creases with steps corresponding to the actual values of the
parameters. Time steps of 3 seconds are used in this work.

Figure 3 presents the results of four analyses with the failure
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Figure 2. Sensitivity analysis result: screening plan of im-
peller failure rate model (eq. 1).

rate model. The black line represents the model without ad-
justment; in this analysis, the model was used with the param-
eter values as recommended in the handbook. The user pro-
vided the filter size, 3000 um, to avoid animals, vegetation,
and trash from the sea entering the pump. However, this Fluc
is not representative for the particles that can be expected in
the flow since the seawater particle diameter varies from 1 to
128 um (Sheldon et al., 1972). Besides that, the base failure
rate used is 0.2 failure/million hours. This Arp g is also un-
realistic since the generic handbook model does not cover the
specific application and environmental factors considered in
this case. Applying the model without adjusting the param-
eters, for the type of component and application, can lead to
an unexpected failure.

The green line represents the model with App g = 4.85 fail-
ures/million hours, where the base failure rate has been ad-
justed to apply for the specific case in this work. The param-
eters ) and Csr are realistic if applied as recommended by
the model. However, as can be observed in Figure 2, the fil-
tration level (F'a¢), also has a high correlation and influence,
which still results in an unrealistic model. Applying the par-
tially adjusted model is still very conservative, and may lead
to premature replacement of components.

The blue line (“Model entirely adjusted” in Figure 3), consid-
ers the realistic reference data for all parameters, Ref value,
as listed in Table 2. The red line (“Realistic Model in Figure
3), presents the model for actual measured data of (). As pre-
sented in Figure 4, there is only data for the first 1500 operat-
ing hours, and there is only a slight variation of this parame-
ter. This also yields a slight variation on the estimated degra-

dation in Figure 3, where beyond 1500 hours the dashed red
line represents the extrapolation of the initial curve. The ref-
erence value is applied for F4¢ since there is no time-series
data for this parameter. The authors intend to use the proba-
bility distribution of this parameter in future work. The refer-
ence value is also used for App p since there is no historical
data; the authors used the most likely data from SINTEF.

The present pump works on average 1946 hours per year.
The model entirely adjusted indicated that the impeller would
work 6000 hours before the first failure. It indicates that the
impeller lifetime is around three years. According to Rivas
(2008), proper coverage of the NPSH rate can guarantee a
lifetime of 40000 calendar time hours, i.e., around 4.5 years.
The handbook model presents a conservative approach to de-
termine the failure, besides evaluating the actual failure rate.
However, the predicted lifetime looks reasonable. Valida-
tion of the model with accurate data will take place in future
works.

1
——Model without adjustment
——Model entirely adjusted
0.8 —Realistic model
--—-Realistic estimation
- Model with )\FD‘B adjusted
E=
g
O 04
0.2
0 1000 2000 3000 4000 5000 6000

time[hours]

Figure 3. RUL Failure rate model for with different usage of
data.

0 500 1000 1500
time [hours]

Figure 4. Historical variation of the flow, as obtained from
measurements.

Figure 5 presents the RUL for the scenarios using the F'gocmin
(1 wm) and Facmaz (128 um) . The reference values were
used for the other parameters. In these analyses, a significant
difference is observed in the RUL prediction for the minimum
and maximum values. This confirms that F'y~ indeed is a
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high impact parameter, as was derived from its position in
Figure 2.

1

o
e

Condition
o
o

o

0 1 2
time[hours] «10%

presents a prediction of RUL in an area where the particle di-
ameter is 64 um. The green line represents a scenario where
the particle diameter is 8 um. Finally, the dashed line presents
the same component applied in two different environments.
In the first 3000 hours, the particle diameter is 8 wm and after
that, operation is continued in an area with a particle diameter
of 64 um. This analysis demonstrates that the model can be
applied in different environments with a data update. It is not

necessary to restrict to only one scenario. Once the data is
updated, the RUL is also updated.

Just one condition: F, .= 8 m
0.9

———-Begin with condition: FAC: 8um

o
o]

-~ --Change for the condition: F, .= 64, m
———Just one condition: Fac=64nm

o
oy

o
o
:

Figure 5. RUL Failure rate model F4¢ minimum and Fa¢

Figure 6 presents the RUL for the scenarios using Vomin
(1700 rpm) and Vomaz (1800 rpm). Again, the reference
values were used for the other parameters. In these analyses,
a smaller difference in the RUL prediction for the minimum
and maximum of this values range is observed. As expected
from Figure 2, Vp has a much lower impact than F4c-. How-

ever, this parameter can still reduce uncertainties although the
effect is rather small.

This reduction makes some authors
consider the available data from parameters indicated with a

small impact in a sensitivity analysis (Meghoe et al., 2020).

Condition
© o o o
N w H [8)]

o
=

\ \

\

0
0

2000 4000 6000 8000 10000 12000 14000
time[hours]

Figure 7. RUL Failure rate model F4¢ In two different ap-
plications.

—Min V0
—Max V
0.8 0
.5 0.6
=
5
004
0.2
0 L L I}
1 1.5 2
time[hours]

x10%
Figure 6. RUL Failure rate model Vo minimum and V max-
imum.

Finally, Figure 7 presents the result of the model applied to
three different applications. The scenario of the pink line

5. CONCLUSION

The data selection criterion proposed in this work to reduce
prediction uncertainties proves to be effective. The predic-
tion is based on failure rate, but rather than taking a single
value for it, it is derived from a model containing a number
of parameters. A sensitivity analysis is then used to iden-
tify which of these parameters play a significant role in the
estimation of the actual failure rate and hence the prediction
of the RUL. The method proposed to identify the significant
parameters in a Morris sensitivity analysis, using an ellipse,
with the ratio at half the value of the largest standard devi-
ation and mean, proved to be effective. When compared to
other studies, the method proved to select the same parame-
ters, apart from a few specific cases, which seemed a delib-
erate choice of the authors of those studies. This work also
demonstrates that this approach works for different applica-
tions, and the method can calculate the new prediction con-
sidering the previous stage. Therefore, it is concluded that the

criterion proposed in this work meets the requirement of data
selection for failure prediction.
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