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ABSTRACT 

Health monitoring technologies are increasingly widespread 

in the aviation industry. Following that, several model-based 

and data-driven prognostics methods for remaining useful 

life estimation have flourished in the pursuit of improving 

predictive maintenance for different types of components. 

Recent papers showcased the significant challenges to 

achieve forecast accuracy posed by the inherent uncertainty 

involved in the functional dynamics of complex systems. 

Nevertheless, the ability to pinpoint times to failure by itself 

is not enough to yield better maintainability given that 

scattered standalone interventions may increase total 

downtime. This study depicts the problem and proposes a 

solution consisting of an innovative model that optimizes 

operational availability through the dynamic allocation of 

flight-hours to aircraft in a fleet based on the integration of 

predictive and scheduled maintenance, while accounting for 

prognostics uncertainty. An illustrative case study involving 

multiple components of a small aircraft fleet was used to test 

the method and produced results that demonstrate the 

model’s validity and effectiveness. The main contributions of 

the study are twofold. It adds on the theoretical complexity 

by tackling systems of systems instead of the predominant 

single component approach, and it provides a model with an 

optimising objective function to improve maintenance 

planning in real-life. 

1. INTRODUCTION 

In the aviation industry, there is an ongoing change in 

maintenance strategy towards more proactive, precise, and 

effective approaches to planning that are known as Integrated 

Vehicle Health Monitoring (IVHM) and Prognostics and 

Health Management (PHM) (Fritzsche, Gupta and Lasch, 

2014). While IVHM refers to “an integrated vehicle level 

system deployed on a fleet of platforms” and may not include 

prognostics, “PHM is used where this predictive element 

exists” (Society of Automotive Engineers [SAE 

International] aerospace recommended practice, 2019). This 

process has been fuelled by the evolution and spread of 

condition monitoring technologies enabling continuous 

health assessment of more and more components (de Jonge 

& Scarf, 2020). Additionally, thanks to advances in data 

processing and communication within data buses, and the 

transmission to ground stations, it is now possible for support 

teams to have abundant, precise, and organised health status 

data in almost real time.  

Prognostics tries to anticipate future needs building upon 

diagnostics information to estimate the prognostics distance 

or Remaining Useful Life (RUL) (Fritzsche et al., 2014). It 

projects the expected evolution from the current health status 

throughout a set of planned operations according to a physical 

model or extrapolating from a data-based trend. This process 

is immersed in uncertainty and tackling it is paramount 

(Vandawaker, Jacques and Freels, 2015), hence prediction 

methods are gaining a lot of attention and many studies have 

reported progress in the refinement of prognostics algorithms 

to provide more accurate predictions as to when failures are 

expected to occur.  

Ideally, maintenance should be endowed with timeliness and 

efficiency. Timeliness in the sense of intervening only when 

necessary, preferably right on the verge of a failure 

occurrence. Efficiency meaning that it should be effective in 

attaining recovery within the least possible time to return the 

equipment to operation, and at minimum cost. 

In reality though, either due to regulatory restrictions or to the 

inexistence of mature condition monitoring technology for 

some systems, aircraft safety still relies and will continue to 

be heavily dependent on periodical checks. These inspections 

are mostly designed during the aircraft development phase. 
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On this stage, the various hard-time preventive maintenance 

tasks are grouped to be performed in batches accommodating, 

and invariably shortening, the different mandatory maximum 

intervals to avoid hazardous or catastrophic consequences. 

It is known that risk avoidance feeds on the lack of 

information, thus traditional preventive maintenance 

intervals, defined mainly before the system’s entry-into-

service, can be excessively conservative. Hence, it becomes 

clear how the modern condition monitoring and prognostics 

technologies come to maintenance’s aid in the quest for its 

goals. On one hand, it allows for a maximization of 

equipment usage by estimating and continuously updating its 

RUL as the operation progresses. This prediction also helps 

to prevent further damage that could arise from dependant 

failures triggered by the unwanted event, although it is 

necessary to acknowledge and remark that a residual risk of 

failing before the expected time remains. On the other hand, 

with long enough anticipation notice of impending failures, 

maintenance can prepare and pre-allocate the necessary 

resources to perform the intervention faster. 

In this interim, it is important to emphasize the stochastic 

nature of predictions. The RUL is obviously not a 

deterministic value. Therefore, it should always be 

accompanied by its confidence interval. The adequate level 

of confidence will vary on a case-by-case basis, but some 

degree of confidence is always required for the estimate to 

make sense. It should also be noticed that, since a 100% 

confidence interval is statistically impracticable, failures will 

keep happening, and corrective maintenance will still be a 

reality despite of the advances in condition monitoring 

technologies. 

It results that corrective, preventive and predictive 

maintenance are likely to continue coexisting in the 

foreseeable future. With effect, Wilmering and Ramesh 

(2005) establish that prognostics is only “part of an effective 

integrated Health Management solution” and that it is key to 

an efficient methodology to find a balance between 

diagnostic, prognostic and schedule maintenance approaches. 

Considering the situation above, the problem that follows is 

that the continuous migration of previous preventive tasks 

and of those which would be otherwise failures into 

Condition-Based Maintenance (CBM) tasks do not translate 

directly into better supportability. As a matter of fact, the 

ability to pinpoint when failures might take place by itself 

may conversely increase the overall downtime along the 

lifecycle. That is because the sparse distribution in time of 

planned watertight interventions derived from accurate 

predictions is inefficient for it requires repetitive setup times 

and does not benefit from the synergy of the batched 

preventive checks.  

It turns out that the full realisation of the potential benefits 

offered by IVHM requires yet the compatibilization between 

predictive and preventive (time-based) maintenance tasks as 

defended by Shi, Zhu, Xiang, and Feng (2020) and Ahmadi, 

Fransson, Crona, Klein, and Söderholm (2009), without 

disregarding the potentially unescapable need for corrective 

interventions.  

A gap in this research area was identified and therefore, to 

the extent of our knowledge, this article is amongst the first 

in the aviation field to propose an integrated solution 

addressing both technical and decision-making sides of 

incorporating prognostics into the broad scope of dynamic 

operational and maintenance planning for multiple non-

identical components and multiple aircraft.  

In this sense, this study proposes a novel approach 

synthesized in a theoretical model that launches the basis for 

further developments in terms of its future expansion, 

validation, and implementation. The solution developed 

passes through integrating preventive and CBM interventions 

of various components on a single timeline for each aircraft, 

and from that it optimally distributes a designated number of 

flight-hours among the fleet members seeking to maximize 

the alignment of tasks, i.e., make them coincide in time, 

within a pre-defined range, as much as possible. It might 

require to sacrifice acting exactly on the imminence of a 

predicted failure, but this is in line with one of the research 

avenues recommended by the extensive literature review on 

maintenance optimization carried out in the work by de Jonge 

and Scarf (2020), where it is stated that “the concept of 

unpunctual maintenance that has been studied in time-based 

maintenance settings could be extended to condition-based 

maintenance settings”. The problem modelling demonstrated 

the solution requires heuristic methods to find the sought-

after alignment, which indeed generates the expected 

reduction in total downtime along the period under analysis. 

In terms of the maintenance information flow, this study is 

concentrated on the Prognostic Assessment (PA) and 

Advisory Guidance (AG) levels or functional blocks 

considering the Open System Architecture for Condition-

Based Maintenance (OSA-CBM) standard as a reference and 

the interpretation promoted by Li, Verhagen and Curran 

(2020). Discussing specific prediction models is out of the 

scope, but the one proposed here deals with the uncertainty 

in the forecasts which are inputs fed into the model and 

represent a critical aspect permeating the prognostics science.  

Consequently, the uniqueness of this study resides in two 

main points. First, its breadth of scope for it encompasses 

both the technical side of component prognostics and the 

management side affecting an entire fleet maintenance 

programming. That notwithstanding, the second differential 

to note is that, while most studies focus on individual items 

or systems, the model hereby proposed embraces multiple 

components of multiple aircraft in a single framework. In 

particular, the mechanism for overlapping predictive and 

preventive tasks to reduce overall downtime is a pioneer 

method in this area. 
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The article is organised as follows. Section 1 presents the 

context, motivates the need, states the problem, and outlines 

the solution proposed. Section 2 presents a cohesive literature 

review highlighting the theoretical foundations underlining 

the theoretical framework construction. Section 3 describes 

the modelling approach followed by the author to assure 

scientific coherence and soundness in the process and 

explains the model’s limitations and its mathematical 

formulation. Section 4 demonstrates an application of the 

model using a fictitious scenario and discusses the results 

based on a comparison against a baseline. At the end, Section 

5 concludes with the final considerations emphasizing the 

strengths and fragilities found in the model during its 

verification process and recommends routes to further 

expand it and deepen research on the subject. 

2. LITERATURE REVIEW 

This study drew its basis from a focused literature review on 

the subjects related to IVHM integration with traditional 

scheduled maintenance planning. In this sense, the work 

conducted by Bousdekis, Magoutas, Apostolou and Mentzas 

(2015) was especially welcome for its comprehensive review 

of the state-of-the-art publications about proactive 

maintenance. 

Initially, it is necessary to register that the research done 

indicated that the majority of references found in the area are 

concerned with technical and specific models that seek to 

process the different signals provided by electronic sensors 

of many different components in order to extract useful and 

reliable information to support diagnostics and prognostics 

conclusions (Baek, 2007; Eliaz & Latanision, 2007; Lv, 

Zhang, and Jiayang, 2015; and Sudolsky, 2007). The issues 

involved in raw data processing are not considered in this text 

since the model hereby proposed operates in a higher level 

and considers the condition-based forecasts as inputs to P-F 

curves.  

These curves are a central concept in the condition 

monitoring and failure prognostics theory, reason why it is 

the point from which the modelling process takes off in the 

next section. They are used for estimating the Remaining 

Useful Life (RUL) of an equipment, or Prognostics Horizon 

as named by Julka, Thirunavukkarasu, Lendermann, Gan, 

Schirrmann, Fromm and Wong (2011), because they define a 

trend line from the current condition or a point where a failure 

process begins (the potential failure point “P”) to the 

estimated/projected point when a failure is expected to take 

place (“F”) (Bousdekis et al., 2015). It is worth clarifying that 

although many authors are keen on the definition of “P”, 

nowadays there are intricate model-based projection 

algorithms that are used to predict failure irrespective of 

detecting the start of a failure process base on health data 

analysis (Petrillo, Picariello, Santini, Scarciello and Sperlí, 

2020). 

Nevertheless, it must be acknowledged that the indication 

that a failure process is in progress may come up at different 

stages and the RUL or prognostics distance (PD) may vary 

from minutes to several hours. It depends on the degradation 

pattern which can be anything from a smooth descent to a 

sharp decline (Jennions, 2013). If the failure process is too 

fast or if its detection can only occur when PD is already too 

short, the advantage provided by the prognostics anticipation 

might have only an immediate operational repercussion 

(Dibsdale, 2013). For maintenance planning though, only 

prognostics distances greater than the flight duration are 

worth considering since it cares about the implications of 

forecasts for the support team on the ground. 

On that basis and according to Peppard (2010), predictive 

maintenance is only possible if the degradation pattern 

displayed in the P-F curve is reasonably consistent, i.e., it 

roughly follows a certain gradient profile for a given part type 

in every cycle of its operational life. In addition, not only the 

decay speed and profile have to be consistent, but it is also 

important that the curves are sufficiently well-behaved to 

present a reasonably low dispersion in terms of the 

uncertainty range around the failure expected time.  

Nevertheless, prognostics are in their essence based on 

stochastic models and therefore will always bear a certain 

degree or margin of error embedded in the forecast (Ferreiro, 

Arnaiz, Sierra and Irigoien, 2012; Singh, Singh and 

Srivastava, 2016). Using the definition given by Grenyer, 

Dinmohammadi, Erkoyiuncu, Zhao and Roy (2020), the 

knowledge provided by condition monitoring data can help 

mitigating epistemic uncertainty, but the aleatory component 

of uncertainty “represents statistical variables that constantly 

fluctuate and therefore cannot be reduced”. Consequently, 

any technique or solution approach to problems involving 

this feature should be able to deal with probability and 

uncertainty.  

Unfortunately, a considerable portion of the approaches to 

predictive tasks programming found on the literature focus 

solely on average values, disregarding the inherent risks to 

estimates and the importance of establishing reasonable 

confidence levels. However, since this is an intrinsic part of 

the problem, the authors believe that the uncertainty ranges 

around RUL estimates shall be reflected in the model 

otherwise risking to compromise its validation, as defended 

by Ferreiro et al. (2012), Singh et al. (2016), Grenyer et al. 

(2020) and Adhikari and Buderath (2016). 

A recent publication by Shi et al. (2020) scoured the literature 

and identified that most studies on CBM and prognostics are 

restricted to single items. Their review showed a general 

“lack of CBM models for multi-component systems”, in 

special those capable of leveraging the use of “multi-source 

dynamic information for effective inspection and 

maintenance planning”. Targeting this gap, they developed a 

method to minimize maintenance cost for a multi-component 

system composed by k-out-of-n subsystems serially 
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connected based on the use of dynamic information discretely 

updated upon periodical inspections. It is considered that the 

gap was partially filled since the study was restricted to cost 

optimization and the evaluation of one single platform, while 

in many cases complex systems are managed in fleets and 

downtime may also result in intangible costs (loss of future 

revenue, cost of opportunity etc). 

In addition, the references surveyed often cited the need to 

translate IVHM capabilities into actual benefits by means of 

implementing changes to present courses of action, both in 

maintenance and operations decision-making processes, to 

justify the investment and open way for further IVHM 

progress (Esperon-Miguez, John and Jennions, 2013; Li et 

al., 2020). In fact, this is a key aspect of the whole IVHM 

concept, but it has been facing hitches in becoming integrated 

to the maintenance plan because of regulatory restrictions and 

lack of an objective framework to conciliate the different 

needs and possibilities offered by all the data being 

generated, processed, and transmitted with precision and in 

real time (Hölzel, Schröder, Schilling and Gollnick, 2012). 

Furthermore, it has been noticed a general concern about the 

cost effectiveness of maintenance acting surgically on the 

imminence of each monitored component loss of function. 

Whereas it improves the exploitation of useful life to its 

maximum, the dispersion of standalone condition-based 

interventions could severally jeopardize operation by 

increasing total downtime as the proportion of predictive 

maintenance tasks increases. In this sense, the awareness 

brought by the health monitoring and prognosis equipment 

and algorithms is a double-edged sword. Based on that, it was 

understood that a model intending to make feasible the 

integration of predictive tasks in a maintenance strategy 

should address this issue and try to combine the occurrences 

in a way that cause them to coincide in time as much as 

possible. 

Thereby, in view of all the references consulted, it is clear the 

need for cost-effectively integrating predictive maintenance 

into a fleet preventive maintenance plan, and that means to 

conciliate estimated values of RUL, along with their inherent 

uncertainty, with hard time interventions. Also, it was 

verified that the technological means to support that are 

already in place and the precision levels of diagnostics, fault 

isolation and prognostics are rapidly improving. 

Nevertheless, a gap has been identified due to the absence in 

the literature of a solution designed to address this challenge, 

and it is with the aim of filling this gap that this study follows 

on to the next section 

3. MODEL DEVELOPMENT 

The scientific approach employed to ensure a sound problem 

formulation and development of a viable solution algorithm 

started by identifying and selecting the parameters pointed in 

the literature as the most relevant and influent to maintenance 

planning. Following that, the parameters were integrated in a 

dynamic framework structured on the logical rules governing 

the relationships between those parameters and restricted by 

the assumptions adopted to limit its scope. After that, the 

modelling process is wrapped-up with a verification test 

using fictional data to demonstrate its coherence and 

consistency, thus attaining the objective posed in this article. 

The problem is stated as the inefficiency in yielding benefits 

from the use of IVHM technologies and prognostics 

algorithms caused by the increasing migration of time-based 

tasks to sparsely distributed and isolated condition-based 

tasks, which may increase the total downtime of an air fleet. 

It results that the full realisation of the potential advantages 

offered by IVHM and PHM requires yet the 

compatibilization between predictive and preventive (time-

based) maintenance tasks in an integrated planning 

framework. 

For the integration of these two maintenance approaches, it is 

important to state that the current modelling process 

established time-based maintenance checks as fixed 

deadlines, while predictive times to failure are taken as 

dynamic thresholds allowed to move as the operation 

progresses and the estimates are updated.  

In terms of scheduled maintenance, there are basically two 

possible categories into which a fleet might fall depending on 

its intensity of use. That is because time-based tasks like 

those resulting from an MSG-3 analysis are usually 

constrained both in calendrical time and by operational times 

or cycles. Therefore, if the operation falls into the low 

utilization category, then the aircraft maintenance packaging 

will be designed according to calendrical deadlines, 

otherwise it will be programmed based on the operational 

aging. On this paper, the former category is adopted due to 

the authors’ experience showing this to be the most common 

case for military aircraft, in special fighter jets during peace 

times. 

At this point, it is important to highlight that the scope of this 

analysis is tightly defined because the adopted assumptions 

and simplifications are essential to understand the problem at 

hand, and this is considered an initial approach since nothing 

similar was found in the literature. 

The low utilization premise notwithstanding, the model 

proposed should not be considered unable to handle the high 

intensity category, which can be contemplated via elementary 

changes in the formulation. 

On with the model development, the framework construction 

departs from aircraft data provided in standard P-F curves as 

explained in the previous chapter. As shown below by Fig. 1, 

it is interesting to notice that in a complex system such as an 

aircraft there might be many (hundreds, if not thousands) 

different P-F curves relative to each sensor enabled 

component in the platform. Not only that, another sensitive 

aspect that must be regarded when dealing with prognostics 

data is the uncertainty inherent to any forecast, which means 
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that the expected failure point estimate is not of much help on 

its own but should be regarded in conjunction with its 

variation boundaries for a certain confidence level defined in 

accordance with the user’s risk tolerance. 

 
Fig. 1- Aircraft Components’ P-F Curves Representation. 

One issue that stands out is that different items may follow 

distinct aging units like calendar time, flight cycles, flight 

hours, number of shots among many others. The solution to 

that is to perform a migration from the operational parameter 

axis (power-up hours, flight hours, flight cycles etc.) to a 

calendrical or continuous time axis, which can be done by 

applying a utilization factor according to each component’s 

life counter. For simplicity, this utilization factor was 

considered to represent an even distribution of a certain 

number of operational hours (OPH) over the time before the 

next scheduled intervention. In this case, it is also important 

to notice that this factor must not overcome the low 

utilization threshold for obvious reasons. It is valid to note 

that assuming uniform distribution of OPH is not a limitation 

of the model given that any other transfer function 

representing the operational profile, if known, may be applied 

to the conversion. 

In result, the estimated RUL, originally in operational hours 

or whatever other parameters, is converted into a new value 

RULC, now expressed in continuous time as displayed in Fig. 

2. In this graph the scheduled maintenance time is fixed, but 

the items RULC can be flexed by changing the aging speed 

through the utilization factor.  

For simplicity, the conversion was initially modelled 

following a linear function, but other types of relationship 

could be applied within the model with no harm to the method 

or its results as explained before. Many other factors can be 

considered such as the application factor, relative to the 

proportion of actual utilization of an item per flight hour, or 

the degree to which an item is demanded and therefore aged 

according to the mission profile to be performed. 

 
Fig. 2 - Remaining Useful Life in Continuous Time Domain 

(RULC). 

Still on the same illustration, it is possible to verify that the 

prognostics information can lead to the scattering of efforts 

over isolated standalone tasks, each requiring a complete 

cycle of setup and demobilization, rendering the direct 

application of condition-based optimal intervention time 

ineffective both in terms of availability and cost. 

The solution to this issue hereby proposed is to adjust 

operational hours distribution with a view to maximize the 

overlap of expected failure times and respective confidence 

intervals (henceforward called “moving platforms”) amongst 

various items, and most importantly with the scheduled 

maintenance check. The latter is considered a higher priority 

target in the model. This is because a moving platform once 

merged onto a preventive maintenance stop usually becomes 

diluted in the overall effort and its downtime can be 

completely absorbed within it. Another advantage is that 

usually for those checks a considerable amount of resources 

are made available, and therefore are hard to move for they 

represent significant costs to the ownership and are planned 

considering long-term lifecycle implications (Deng, Santos 

and Curran, 2020). 

With this purpose in mind and considering that each aircraft 

pertaining to a fleet will have its own distinctive set of P-F 

curves, the flight-hours to be distributed and performed by 

each equipment before its programmed inspection are 

established as the decision variables of the model. The OPH 

are then used to calculate the utilization factors, thus being 

the sole responsible for changes in the RULC values. 

A fundamental constraint that helps the model to converge is 

related to the fact that a fleet is usually subject to a maximum 

number of flight-hours that can be performed over a specified 

period due to business or budgetary guidance. In other words, 

the sum of each aircraft OPH must not exceed the total value 

assigned to the fleet but ideally should be as close to the limit 

as possible. The OPH appointed to each plane will be spread 

over its respective Time to Scheduled Maintenance (TSM) as 

can be seen in Fig. 3. 
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Fig. 3 – Fleet Scheduled Maintenance Standard Diagonal 

Distribution. 

Before proceeding to the formal statement of the problem and 

considering that models are simplified representations of 

reality, it is imperative to delimitate the context envisaged in 

the model creation. The scenario consists of a fighter jet fleet 

that operates from a single base with the aircraft returning to 

it after each mission. It means that the problem is restricted 

to optimising operations by aligning the expected time when 

maintenance events may happen without particular concern 

regarding the location where the necessary resources must be 

in place. Considering a network of operational bases is one 

of the possible future extensions to this inaugural version of 

the model. 

In addition, the scope of analysis must be delimited by 

establishing the assumptions adopted and the limitations 

imposed: 

- For each aircraft, the model is restricted to the next 

scheduled maintenance stop (henceforth also referred to as 

inspection or check). It does not affect the model whether the 

next inspections of different aircraft are of the same category 

(e.g., checks A or C) or not, but the key point here is that it 

does not see future programmed interventions beyond that. 

This is in line with the recommendation by Fritzsche et al. 

(2014) that the planning horizon when using prognostics 

“should be long enough to take appropriate actions and short 

enough so that forecasts of future failures are reliable”. 

Indeed, the longer the projection, the higher the uncertainty 

levels and the lower the planning’s reliability. 

- The component’s location is not considered for the purpose 

of maximizing the moving platforms overlapping. Time 

coincidental tasks involving items closely located, for 

instance on the same bay in the aircraft, may offer higher 

advantage since it could reduce downtime, but it was 

considered neglectable at this initial phase of the model. 

- There is no health deterioration outside operational time. 

RUL is not diminished during idle periods, including 

maintenance stops. 

- The exchange of components between aircraft aiming to 

improve results is not allowed. 

- The optimisation considers predictive maintenance tasks 

packaging for each aircraft in separate. 

- Possible differences in duration between maintenance tasks 

were considered irrelevant, thus this parameter was not 

implemented in the framework under development. 

Depending on the case, it is possible to further improve the 

model by loading a priority factor onto longer tasks. 

In face of all considerations and analysis above presented, it 

is postulated that the best possible result for combining 

predictive tasks and scheduled checks is achieved by 

maximizing the level of overlapping between RULC 

estimated ranges and inspection periods in the time 

continuous domain.    

Moreover, let us consider the following parameters to 

formulate the problem: 

• q = total number of aircraft. 

• n = number of items monitored. 

• AE = total fleet flight-hours assigned. 

• uk = utilization factor 

• LUL = maximum rate of use to remain in the Low 

Utilization class. 

• RULC = estimated remaining useful life in continuous 

time. 

• RULCmax = RULC upper limit for a given confidence 

level. 

• RULCmin = RULC lower limit for a given confidence 

level. 

• TSMk = time until scheduled intervention for aircraft k. 

• PR = priority factor assigned by the user to ascertain the 

level of priority given in the model to overlapping with 

the scheduled check over the alignment between 

individual predictive tasks. 

With that, arranging the parameters according to their 

specific roles and bearing in mind the aim of maximizing 

overlapping, it results the statement of Eq. (1) as the objective 

function:

 max 𝐹(𝑂𝑃𝐻𝑘) = ∑ ∑ ∑
(𝑅𝑈𝐿𝐶𝑖,𝑘

𝑚𝑎𝑥 − 𝑅𝑈𝐿𝐶𝑗,𝑘
𝑚𝑖𝑛)

(𝑅𝑈𝐿𝐶𝑗,𝑘
𝑚𝑎𝑥 − 𝑅𝑈𝐿𝐶𝑖,𝑘

𝑚𝑖𝑛)

𝑛

𝑗=1

𝑛

𝑖=1

𝑞

𝑘=1

+ 𝑃𝑅 ∗ ∑ ∑
𝑅𝑈𝐿𝐶𝑖,𝑘

𝑚𝑎𝑥 − 𝑇𝑆𝑀𝑘

𝑅𝑈𝐿𝐶𝑖,𝑘
𝑚𝑎𝑥 − 𝑅𝑈𝐿𝐶𝑖,𝑘

𝑚𝑖𝑛

𝑛

𝑖=1

𝑞

𝑘=1

 , ∀𝑖 ≠ 𝑗 (1) 

 

Where: 
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 𝑅𝑈𝐿𝐶𝑖,𝑘 =
𝑅𝑈𝐿𝑖,𝑘

𝑢𝑘

=
𝑅𝑈𝐿𝑖,𝑘

𝑂𝑃𝐻𝑘
(𝑇𝑆𝑀𝑘)⁄

 (2) 

Subject to the following constraints: 

i. 𝑅𝑈𝐿𝐶𝑗,𝑘
𝑚𝑖𝑛  ≤ 𝑅𝑈𝐿𝐶𝑖,𝑘

𝑚𝑎𝑥 ≤ 𝑅𝑈𝐿𝐶𝑗,𝑘
𝑚𝑎𝑥 , ∀𝑖 ≠ 𝑗; 

ii. 𝑅𝑈𝐿𝐶𝑖,𝑘
𝑚𝑖𝑛 ≤ 𝑇𝑆𝑀𝑘 ≤ 𝑅𝑈𝐿𝐶𝑖,𝑘

𝑚𝑎𝑥; 

iii. ∑ 𝑂𝑃𝐻𝑘
𝑞
𝑘=1 = 𝐴𝐸; 

iv. 𝑂𝑃𝐻𝑘  | 𝑢𝑘 ≤ 𝐿𝑈𝐿, ∀𝑘 = 1, … 𝑞. 

N.B.: constraint “i” refers only to the first half of the objective 

function, and constraint “ii” just to the second term. 

It is necessary to point out that the first summation in the 

equation is more sensitive in cases where degradation rates 

change in different ways for different items with the variation 

of use intensity. 

With regards to the second factor, one could make the case 

that the higher the parcel of the moving platform left before 

the inspection, the higher the risk that a failure might occur 

and demand for a reactive maintenance, which would mean a 

higher cost and have a negative impact over the aircraft 

availability. The equation already seeks to avoid it, but it is 

recognized that a third factor could be inserted in the 

formulation to represent the cost of this risk, thus reinforcing 

its aversion power, especially for items to which failure 

comes with secondary undesirable effects.  

Another factor that could be added to the equation is the 

possibility of advancing predictive actions for those items 

eventually falling a little after the inspection. This would 

require a delimitation over how much of an item’s life could 

be abbreviated to the advantage of the combination aimed by 

the model. In this case, the formula would confer a prize to 

any anticipation possible for the benefit obtained in terms of 

economy and opportunity but would also penalize 

proportionally the loss of a fraction of expected useful life. 

4. RESULTS AND DISCUSSION 

With the intention of verifying the coherence and consistency 

of the framework built over the previous chapter, a set of 

fictitious data was assembled to represent a possible scenario 

for the model application.  

The proposed case study consists of a fleet comprised by 

three aircraft each containing five monitored components for 

which there is IVHM data available as revealed by Table 1. 

Table 1 - Current RUL per component and aircraft. 

 Component current RUL (Operational Hours) 

Aircraft 1 2 3 4 5 

1 200 205 194 202 215 

2  120  132 125 143 156 

3 230  246 223 225 248 

In addition to that, the uncertainty range for a confidence 

level of 90% is also known and can be verified in Table 2. 

Table 2 - RUL uncertainty limits for a 90% confidence level. 

 RUL Estimates 90% Confidence Level Bounds 

Limit 1 2 3 4 5 

Upper 1.08 1.10 1.12 1.05 1.15 

Lower 0.90  0.85 0.90 0.95 0.90 

Completing the input data required by the problem 

formulation, the aircraft scheduled maintenance interventions 

are staggered monthly in a diagonal resulting on the times to 

inspections from current date represented in Table 3. 

Table 3 - Time Before Maintenance per aircraft. 

Aircraft 

Time Before 

Inspection 

(Months) 

Time Before 

Inspection 

(Hours) 

1 2 1440 

2 3 2160 

3 4 2880 

Lastly, it was considered that the total number of flight-hours 

assigned to the fleet in analysis amounts to 500 flight-hours. 

With that, two baseline scenarios were created against which 

the optimised solution will be compared. The baseline cases 

reflect the two most common distribution rules used in 

practice as per the authors experience.  

The baseline scenario 1 applies the same utilization factor to 

all members of the fleet as represented by Fig. 4, Fig. 5 and 

Fig. 6. 

 
Fig. 4 – Aircraft 1 on Baseline Scenario 1. 

 
Fig. 5 – Aircraft 2 on Baseline Scenario 1. 
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Fig. 6 – Aircraft 3 on Baseline Scenario 1. 

The baseline scenario 2 splits the available flight-hours 

evenly among the fleet members resulting in the situation 

represented by Fig. 7, Fig. 8 and Fig. 9. 

 

Fig. 7 – Aircraft 1 on Baseline Scenario 2. 

 
Fig. 8 – Aircraft 2 on Baseline Scenario 2. 

 

Fig. 9 – Aircraft 3 on Baseline Scenario 2. 

With a view to find the best possible division of these 

operational hours between the three aircraft, the input data 

and the equations that form the model were inserted and built 

on a Microsoft Excel © spreadsheet. The optimisation was 

carried on with the help of an Excel add-in called Solver ©, 

which is a program able to optimise a given objective 

function subject to a set of constraints using three different 

methods to find the correspondent values of the decision 

variables. 

For the case under analysis, the Simplex Linear Programming 

method could not find a solution since the problem behaviour 

does not follow a linearity rule. From the other two 

possibilities, the best result was obtained by the non-exact 

Evolutionary method, which is based on a genetic algorithm, 

followed closely by the non-exact GRG Nonlinear method. 

The results can be compared on Table 4. 

Table 4 - Solver optimisation methods results comparison. 

Method F(OP)
max OPH1 OPH2 OPH3 AE 

Simplex 

LP 

N/A N/A N/A N/A N/A 

Evolution

ary 

7.3842 177.1 112.5 210.0 499.7 

GRG 

Nonlinear 

7.3479 176.0 112.5 211.5 500.0 

The results analysis and discussion can also benefit from a 

graphical illustration of how the different RULC are allocated 

in time based on the utilization rates resultant from the flight-

hours assigned to each aircraft. The graphs plotted on Fig. 10, 

Fig. 11 and Fig. 12 represent the panorama ensued by the best 

solution found. 

 
Fig. 10 – Aircraft 1 resulting panorama. 

 
Fig. 11 – Aircraft 2 resulting panorama. 
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Fig. 12 – Aircraft 3 resulting panorama. 

The charts testify the results robustness by showing 

compliance and coherence with the objective pursued. In fact, 

the pictures corroborate that the framework was able to adjust 

the AE distribution in a way to maximize the number of 

overlaps among the moving platforms and between these and 

the periodical checks for each aircraft while reducing the risk 

of failure occurrence before the intervention. 

Table 5 summarizes the results presenting the number of 

operational hours distributed to each aircraft on all scenarios 

analysed and an example of resulting downtime due to 

predictive maintenance tasks was calculated for comparison 

purpose. For this matter, it was considered that each task 

takes 8 hours to be performed and that the task will be 

absorbed within the scheduled inspection duration in case its 

moving platform overlays with the check before the 

respective item’s RUL estimate, therefore offering less risk 

of running into failure. Although the overlaying between 

moving platforms was also improved, the potential benefit 

was not included in the final calculations because that would 

require further discussion about the impact residual risks 

could offer to the possible reductions in downtime. This 

discussion demands a refinement in the model, which is 

recommended further down this paper. 

Table 5 – Optimisation results vs baseline scenarios. 

 Aircraft (OPH) Downtime 

(Hours) Scenario 1 2 3 

Baseline 1 111.1 166.7 222.2 88 

Baseline 2 166.7 166.7 166.7 120 

Optimal 177.2 112.6 210.1 56 

From the data presented above it results that the solution 

offered by the model yields a reduction in total downtime of 

36.4% against the strategy used in baseline 1 and of 53.3% 

when compared to that deployed on the baseline scenario 2. 

The experience with the software employed was positive. 

Despite the heavy limitations imposed, the results provided 

were impressively good in terms of the economies of scale 

achieved.  

Another positive aspect worth emphasizing is the flexibility 

and adaptability of the model to deal with scenario changes, 

making it ideal to highly dynamic situations such that of the 

IVHM and PHM data, which is constantly updated by new 

rounds of information arriving from the operations. This fast 

adjustment to changes provoked by new information was 

yielded by the intrinsic features built-in the framework, 

particularly its mathematical foundation and the ability to 

work with the uncertainty inherent to failure time forecasts. 

Flexible maintenance planning is indeed a required feature to 

improve “asset utilization and to reduce downtimes 

(maintenance opportunity times)” according to Ferreiro et al. 

(2012). Besides that, the model demonstrated to be adjustable 

to each user’s priorities by means of allowing the free 

attribution of weights and the use of levels of confidence 

compatible with their risk tolerance. 

Finally, the successful model verification cleared the path for 

its future expansion through the addition of parameters such 

as those identified in the mathematical formulation process 

and possibly the easing of limitations or riddance of some 

assumptions, which are going to disclose its full potential. 

5. CONCLUSION 

The research and modelling efforts were successful in 

attaining the pursued objective once they managed to identify 

and relate the key parameters necessary to account for in 

deciding the best way to combine predictive, scheduled and 

corrective maintenance tasks to form optimal maintenance 

strategies. 

On top of that, by taking into account the utilization rate using 

the allocated flight-hours as decision variables, the model 

integrated the operational and maintenance systems in a 

single framework that support decision to improve strategies 

on both fields.   

Moreover, the basic case study elaborated for the model 

verification confirmed the modelling process soundness in 

correctly framing the problem and showing the solution 

viability using operational research techniques. However, 

further research needs to be done to expand the problem’s 

size and submit the model to simulation to validate its results.  

The complexity of representing a real aircraft fleet imposes 

challenges to the mathematical solution and a computational 

challenge to simulation, but the proposed framework offers 

built-in features that facilitates its implementation being able 

to cope with dynamic scenarios like those involving IVHM 

data for a dynamic maintenance planning using a mix of 

maintenance strategies.  

Another important remark is that the literature review 

exposed both a growing need for effective ways to yield 

benefit from IVHM technologies in maintenance and a 

staggering lack of objective and technical solutions to the 

problem. On this regard, this paper showed its relevance and 

novelty contributing to research in the area by adding on the 

theoretical complexity by tackling systems of systems instead 

of the predominant single component approach that has 

limited practical use, and it provides a model showing the 
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value of using an optimising objective function to improve 

maintenance planning in real-life. 

In other words, the main contribution provided by this study 

is a simple and expandable model that takes advantage of 

latest prognostics information developments and allows for 

better operational planning with less maintenance costs and 

downtime. With effect, from the case study, the theoretical 

model showed potential to cope with different levels of 

uncertainty from multiple components reducing total 

downtime when compared to the baseline scenario. 

At the end, it is recommended for further studies the 

expansion and deepening of this seminal work by either 

eliminating a few of the adopted assumptions or 

incorporating in the formulation other factors such as location 

of the faulty part and time required to perform the task. Also, 

it is unlikely that a generalized version of the current model 

can be handled by standard software packages like the one 

used in this text, thus it is arguably going to require the 

development of a dedicated and specialized tool to disclose 

the model’s full potential, what is also suggested to be 

targeted by future research efforts. 
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