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ABSTRACT

Even in the increasingly connected world of smart manufac-
turing and the Industrial Internet of Things (IloT), there will
always be a need for human operators and evaluations. When
creating equipment condition monitoring models and heuris-
tics, the observations from human operators are often difficult
to quantify or track. This situation can lead to the observations
being underutilized, misunderstood, or ignored completely if
autonomous sensors are employed. This work seeks to high-
light the untapped potential for augmenting numeric data from
sensors and control systems with human input and vice versa,
by integrating documented natural language reports with data
collection technology in a novel and intuitive way. It is a
first-step experiment and seeks to establish a link between
human-generated data and sensor-driven information to moti-
vate, justify, and guide future endeavors. This is an exploratory
work that utilizes an experimental setup with a limited and
controlled accelerated aging setup where human observations
were recorded at regular intervals alongside streaming sensor
data. The goal is to validate the relationship between ob-
servers’ natural language, quantified sensed values, and some
ground truth knowledge about the state of the tool. We provide
recommendations for follow-on work and extensions of the
performed analysis as part of a next steps outline.

1. INTRODUCTION

Currently, many companies, industries, and organizations take
advantage of smart manufacturing concepts to design, define,
and promote the next generation of digital manufacturing and
enterprise capabilities. Large companies are already at the
forefront of the development and deployment of digital tech-
nologies that enable connectivity and automation (Jin, Weiss,
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Siegel, & Lee, 2016). However, small- and medium-sized
manufacturers (SMMs) lack the resources that big Original
Equipment Manufacturers (OEMs) have to research and imple-
ment these new concepts (Software, 2018). Without a proper
understanding of how emerging technologies and the integra-
tion of these technologies can make them more competitive,
small manufacturers tend to delay the change of their tradi-
tional ways to new, digitally-integrated strategies.

The changes from the digital revolution in manufacturing are
profound and pose a real challenge, but also an opportunity to
manufacturers of all sizes. To avoid being left behind, com-
panies need to be proactive and develop strategies to exploit
the opportunities of digitalization, improve existing processes,
and develop new business models.

One of the most rapidly growing trends associated with digital
manufacturing is the use of monitoring and data collection
systems. These provide visibility and actionable information
with respect to machine utilization, capacity, and overall equip-
ment effectiveness. This, in turn, can inform condition-based
or predictive maintenance. An increasing number of OEMs
leverage technologies such as these to assess the current and
future states of equipment, machine tools, manufacturing cells,
supporting subsystems, and even manufacturing processes
(Software, 2018).

2. BACKGROUND AND MOTIVATION

Researchers have spent considerable time crafting methods
to collect and analyze data coming from industrial equipment
(Kunche, Chen, & Pecht, 2012; Li, Verhagen, & Curran, 2018).
The majority of the research focus is on the analysis of sensor
data to improve maintenance operations. Multiple publica-
tions provide techniques and results based on numeric data
analysis. Kothamasu, Huang, and VerDuin (2006) reviewed
the strategies and techniques of monitoring and predicting ma-
chine health that focuses on improving reliability and reducing
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unscheduled downtime. Djurdjanovic, Lee, and Ni (2003)
introduced a toolbox of data-driven algorithms and presented
applications in mechanical systems prognostics. Katipamula
and Brambley (2005) completed a representative review of
the research and practices of fault detection, diagnostics, and
prognostics for building systems. Lu, Li, Wu, and Yang (2009)
summarized wind turbine condition monitoring and fault diag-
nosis activities. Venkatasubramanian, Rengaswamy, Yin, and
Kavuri (2003) presented a review of quantitative model-based
methods for chemical process fault detection and diagnosis.
More recent methods leveraging machine learning (ML) and
artificial intelligence (AI) techniques continue to heavily rely
on numeric data collected from sensors, PLCs, and machine
controls.

Analyzing human-generated text from the shop floor offers an-
other promising avenue to improve operations. This area of re-
search is called Technical Language Processing (TLP) and cen-
ters around using Natural Language Processing (NLP) meth-
ods on technical text data (Brundage, Sexton, Hodkiewicz,
Dima, & Lukens, 2021). In particular, using TLP on Main-
tenance Work Orders (MWOs) has been an area of budding
research (Brundage et al., 2021; Ho, 2015; Lukens, Naik, Sae-
tia, & Hu, 2019). Information within MWOs provides a health
history of an asset that is rich with quantitative and tacit knowl-
edge within the text. Previously, researchers have analyzed
this information to capture key information about maintenance
operations (Ho, 2015; Lukens et al., 2019; Sexton, Brundage,
Hoffman, & Morris, 2017). Multiple efforts successfully calcu-
lated the Mean Time Between Failure (MTBF) by only using
MWOs (Ho, 2015; Sexton et al., 2017). Other works have
created maintenance Key Performance Indicators (KPIs) from
MWGOs to help analysts understand the performance of their
maintenance operations (Brundage, Morris, Sexton, Moccozet,
& Hoffman, 2018).

An underexplored area of research is the merging of these
two major data streams: (1) data coming directly from the
equipment and (2) the human-generated text data. The human-
generated test data (i.e. natural language) can add significant
value to the maintenance analysis since observations by hu-
mans on the floor (e.g., “the tool is smoking” or “there is a
banging noise in the machine”) provide context to the sen-
sor data. Hybrid data can improve predictive maintenance
capabilities by providing ground truth to the “state” of the
component being monitored. As an example, if an estimate
shows that a bearing will fail in 5 days but the technician pulls
it from the floor with zero damage, an analyst can update their
model based on these observations. Similarly, if the sensor
data indicates zero problems with the bearing, but the techni-
cian observes heavy smoke and noise, this can also improve
the predictive model.

Hybrid data has significant potential for artificial intelligence
(AD) techniques that can achieve improved accuracy and clas-

sification based on information captured through natural lan-
guage. In addition, text data can complement numeric data by
providing information about subsystems that may be outside
the reach or sensitivity of the sensor-based systems (e.g., a
tube that disconnects every few hours of equipment utiliza-
tion, or a filter that needs to be changed so the surface of a
component does not get contaminated).

This paper aims to illustrate the importance of this hybrid
dataset to improve maintenance operations. First, we describe
an experimental setup to generate real-world data that com-
bines both text-based data via human observations and sensor
data to investigate tool wear. This experiment can be run
within any laboratory testbed or manufacturing environment.
Second, we provide methods on how to merge this data and
prepare it for analysis. This leads to initial insights about
analyzing the data and how it can be used to improve main-
tenance operations. Lastly, we discuss improvements to the
experiment and future extensions to this work.

3. TESTBED SETUP

This experimental work uses TechSolve’s M. Eugene Mer-
chant Technology Development Center machining lab to de-
velop a dataset as close to live manufacturing environments
as possible. The facility has modern Computer Numerical
Control (CNC) machines, a full array of measuring and analy-
sis equipment (including force dynamometers, profilometers,
Coordinate-measuring machine (CMM) equipment, micro-
scopes, and inspection devices), and a variety of standard shop
machines and equipment. The selected testbed consists of an
instrumented machine tool. The experiments use the tool to
run cutting tests under the close observation of experienced ma-
chine operators. The primary goal of the setup was to rapidly
degrade a series of cutting tools under increased workloads
while recording both instrument readings and periodic human
observations via free-form text. This setup allows establishing
relations between the human-generated and sensor-driven data.
Periodic direct measurements of the tool-wear were also taken
and are used as a “ground truth” basis for the health of the
tool-piece in the results section of this paper.

The experimental setup included the following elements:

e Machine: Milltronics HMC35, instrumented with sensors,
data acquisition system and tool condition monitoring
system

e Cutting tools: Carbide end mill with 4 flutes, 0.5 diame-
ter and 1” length of cutting zone

e Metalworking fluid: Water-based (Trimsol 206)

*  Workpiece: 4140 steel block of 6" x 4” x 4”

» Fixturing: The workpiece, clamped into a vise with 6”
long jaws

The data collection system enabled simultaneous acquisition
of machine control data and data from the added sensors. The
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following data was collected from the Fanuc 0i Controller:
date and time; the axes positions in absolute, machine, and
relative coordinates; distance to go on each axis; actual spindle
speed; actual feed rate; spindle load; spindle motor speed; exes
loads; servo delays; and the acceleration or deceleration delays.
The added sensors included:

» A three phase hall effect sensor, monitoring the power
drawn by the motor of the spindle with an analog output
of 0 to 10VDC corresponding to OHP to maximum HP

* Uniaxial accelerometers ((Integrated Circuit-Piezoelectric
(ICP) type), placed on the housing of one of the ball-screw
bearings of each axis

* A tri-axial accelerometer on the spindle housing, an In-
tegrated Electronics Piezo-Electric (IEPE) sensor with a
higher sensitivity comparing to the accelerometers on the
feed axes

» J-type thermocouples on each axis and each axis motor,
on the spindle, and in the metalworking fluid tank

The machining center has other sensors and instrumentation,
which were not used for this experiment.

4. EXPERIMENTAL DESIGN

Using the setup described above, the experiment design fo-
cused on linking sensor values with simultaneous human ob-
servations. The experiment focused on the degradation of the
cutting tools rather than the degradation of the machine itself,
allowing repeatable and timely observations. The approach
included the following steps:

Create a long cut machining program of at least 1.5 hours.

2. Modify the program such that some of the cuts exhibit
chatter or higher than normal vibration — to create con-
trolled process failures.

3. While the CNC program is running, collect data from
sensors and controllers and have a technician, other than
the one that created the machining program, come to
observe the test periodically (e.g., 15 minutes) and take
notes relative to the status of the cut, tool and machine
(similar to creating maintenance logs).

To create the cutting program, TechSolve engineers identi-
fied the test conditions for this experiment through a series of
exploratory cutting tests. These tests validated the physical
combination of material, tooling, and cutting parameters, and
helped establish the intervals for collecting human-generated
information during the experiment. The results defined a CNC
program that would enable a cut of approximately 3 hours (con-
tinuous cutting) including regions with chatter or increased
vibration for the tool to simulate real-world observable events.
The exploratory cutting tests also established a criterion for
the end of tool life. The engineers observe the exploratory
tests and use these observations to measure tool wear after

machining one complete surface (one layer). A cutting test
was considered complete after removing 6 layers of material.

The engineers use climb milling to machine the 6” x 4” surface
of the workpiece (the steel block) in a transversal direction.
A spindle tap test determined the chatter lobe diagram and
the stability zone for the tool-spindle assembly. Based on this
information, the team identified cutting conditions that would
generate chatter. The CNC program’s design induced chatter
to introduce abnormal cutting conditions in the experiment.
Chatter was achieved by increasing the radial depth of cut
and slightly increasing the feed rate. The team used a limited
number of test scenarios to validate chatter generation and to
observe the effects on the cutting tool and machined surface.
Eventually, the team selected the cutting conditions presented
in Table 1 for both the normal and abnormal (chatter) cuts.

The tests were planned and conducted as follows. One techni-
cian (Technician A) participated in the development of the test
and of the CNC program, which included randomly inserted
abnormal (chatter) cutting parameters. Another technician
(Technician B) conducted observations on the cutting process
at periodic intervals.

Each cutting test followed the procedure below:

1. The machine setup was prepared and the workpiece was
clamped in the vise by Technician A.

2. Technician A took pictures of the fresh cutting tool prior
to starting the test; both the end and lateral surfaces en-
gaging the workpiece have been photographed.

3. Technician A started the CNC program, while Technician
B observed and took notes of the process condition.

4. The machine ran linear climb milling cuts according to
the CNC program created by Technician A.

5.  While Technician B was free to move away from the ma-
chine, they were instructed to make text entries about the
operation every 15 minutes. The technician was unaware
prior to any given cutting pass if it was being performed
with the chatter parameters. At 30 minute intervals, once
a layer was removed from the steel block, Technician B
had the option to pause the program and observe the tool
and workpiece condition. A table was created in Excel
to record various characteristics of the process. The idea
was to emulate a data collection log similar to what is ap-
plied for MWOs. Table 2 lists a selection of the recorded
characteristics.

6. A test was considered complete after 6 layers were re-
moved from the steel block. A layer consisted in a volume
of 6” x 4” x 0.5”, removed through the milling process
with the 0.5” axial depth of cut.

The experiment automatically collected data from the sensors
and machine tool control for each pass. Technician B was the
main technician for observing the tests and collecting notes.
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Table 1. Cutting Parameters

Parameter Normal Cut (Stable) | Abnormal Cut (Chatter)
Axial Depth of Cut 0.51n 0.51n
Radial Depth of Cut 0.04 in 0.121in
Tool Diameter 0.51n 0.51n
Cutting Speed 435 sfm 435 sfm
# of Teeth 4
RPM 3323 rpm 3323 rpm
Feed per Tooth 0.0018 in/tooth 0.002 in/tooth
Feed Rate 24.00 in/min 26.59 in/min
Feed Stroke 4775 in 4775 1n

Table 2. Human Recorded Process Characteristics

Recorded Characteristic

Description

Test No. and Workpiece No.

Indication Value [1 - 6]

Various Test and Observation Times

Time Records

Test Status

Short Descriptor

Layer No. Indication Value [1Ist / 2nd / etc]

Tool Gauge length (in) Value

Type of observation Short Descriptor

Process condition Short Descriptor [Normal / Abnormal / other]
Tool condition Short Descriptor

Tool flank wear - END (in)

Value [0 - 0.005 in]

Tool flank wear - LATERAL (in)

Value [0 - 0.005 in]

Tool wear - RAKE FACE (in)

Value [0 - 0.005 in]

Surface finish - face (i in)

Value [~15 - 50 Ra]

Surface finish -lateral (i in)

Value [~15 - 25 Ra]

Did you hear chatter? Yes / No
Anything out of ordinary? Yes / No
Out of ordinary description Short Description

General Notes/Comments

Free Form Text

However, if Technician B was unavailable due to other tasks,
Technician A would take notes. In general, the technicians
were instructed to write down observations and, if needed,
stop the cycle to observe what happened if they heard sounds
or observed unusual behavior of the cut. Irrespective of ob-
serving irregularities or not, the test was stopped at the end
of each machined layer (approximately 30 minutes) to allow
Technician B to measure tool wear. Either technician would
then start the process where it was left off, and the process of
collecting numeric data and periodical observations continued.

5. RESULTS

We aim to establish a quantitative link between the recorded
human observations and the sensed values of the test pieces.
Establishing this link requires translating the human obser-
vations into some ordinal scaled value. Although we expect
this to eventually be automated, we accomplished translation
by having independent experts read the human-generated text.
After the tests were completed, the experts read the entries to
infer a level of damage between None to Imminent Failure.
We presented text entries in the Recorded Characteristics ta-
ble (Table 2) to 7 independent experts to interpret. They were
instructed to disregard any measured wear or finish quality val-
ues and focus exclusively on the text entries. Figure 1 shows

an example of the interpreted damage from the 7 experts. We
use the average value of the expert interpretations to calculate
the quantitative link between the sensor values, “ground truth”,
and the human observations.

The manually-measured values of the tool wear are used as the
“ground truth” level of degradation on each machine tool. Fig-
ure 2 shows that there is a strong correlation between human-
interpreted damage level and the measured wear of the tool.
The average correlation between the interpreted damage and
the measured wear across all tests is 0.74, with a maximum
of 0.97 and a minimum of 0.42. This includes all statistically
significant correlation coefficients (p j 0.05) for all of the three
measured wear features: rake face, flank lateral, and flank end
wear. Not all values were measured at all points. When there
were not enough recordings to establish statistical significance,
we omitted the correlation coefficient.

The next step focuses on quantifying the relationship between
sensed values and human interpretations. Due to the asyn-
chronous nature of the two sets of data, we employed a method
for determining asynchronous correlation. This simple pro-
cess uses dual signal interpolation to find the estimated overlap
values for each data stream, then concatenates those values to
determine a correlation coefficient. We present the breakdown
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Human Interpreted Damage Indicator: Test Number 4

Imrminent Failure

Lnsafe -
*
W SEVErE A L T
7 = sChhs
E Middling 4 O L I Rt +""_*__,F-I-- — .
] . ® .,a':___.g___"r ————— v f-—-*_ 7 __. 1 .
- Slight - :__-*——4-"'; —W - T XU X =i o« "¢ s s
MNone - -f- Bl
0 5 10 15 20

25
Observation Mumber

Figure 1. Results of Human Interpreted Damage for Test Piece 4
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Figure 2. Relationship Between Human Interpreted Values and Ground Truth Wear
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of that process as pseudo code below.

Algorithm 1: Pseudocode

With S1 = Signal 1 Values, S1t = Signal 1 Locations
With S2 = Signal 2 Values, S2t = Signal 2 Locations
# Find Points of Overlap
OLI =t < max(S2t) & t >= min(S2t) for t in S1t;
OL2 =t < max(S1t) & t >= min(S2t) for t in S2t;
# Interpolate Sig X at Sig Y locations
if len(S1)>1 then
F1 = interpolate(S1t,S1, kind = interpkind);

‘ Slest = F1(S2t(OL2));
else

| Slest=S1[0] for x in S2t(OL2);
end
if len(S2)>1 then

F2 = interpolate(S2t,S2, kind = interpkind);

‘ S2est = F2(S1t(OL1));
else

| Slest=S2[0] for x in S1t(OL1);
end
# Concatenate and Calculate Correlation
Slcat = concatenate((S1(OL1),S1est),axis = 0) ;
S2cat = concatenate((S2(0OL2),S2est),axis = 0) ;
return Correlation(S1cat,S2cat)

The goal of this work was not to establish an optimal degra-
dation inference method from sensor signals, but to show that
correlating the human observations with information derived
from sensed values is not only possible, but may yield more
robust methods for decision support than either could provide
alone. Raw sensor data rarely is used in live settings for deci-

sion support, and so the decision was made to use a simplistic
form of information extraction for the recorded sensors. This
method compressed standard-sized windows of the raw sig-
nals into one root mean square value per window. This step
both acts as a pseudo information extraction algorithm and
makes correlating the signals more visually appealing with
less computational demand due to the reduction of raw values.
Future work may focus on more robust information extrac-
tion methods to connect the sensor values to the ground truth
degradation of the tool wear.

Because of this simplistic data compression/ information ex-
traction method, we expect a noticeable level of disconnect
between the recorded values and the ground truth. However,
the authors feel there is sufficient correlation in enough of the
signals to establish that concurrent information exists.

This work focused on signals whose activity was expected
to directly correspond to the wear of the tool. This included
the power signal, the tri-axial accelerometer on the spindle,
three accelerometers on the feed axes, and a suite of temper-
ature sensors described in the previous section. The figures
below show an example of the processed signals and their
correlations between other sensor signals.

Inspecting Figures 1, 2, 3, we can visually identify a pattern of
increasing values over time occurring in the human observa-
tions, the “ground truth”, and the sensed values. Asynchronous
correlation between the respective values confirms this visual
cue.
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Figure 3. Relationships of Sensed Signals

Figure 4 shows the relationship for both the power consump-
tion and the spindle acceleration to the human observations.
These exhibit strong asynchronous correlations of 0.92 and
0.91, respectively.The average correlation between each group
of signals and the human assessment can be found in Table 3.

Looking at this table, it is very important to note that most
of the negative or low correlation values are due to the im-
precision of the information extraction method applied to the
sensors and the disregard for confounding factors. This is
especially pertinent in the cases of the temperature signals
where long delays between starts and stops can have a pro-
found effect on the pattern of the signal. See Figure 5 as an
example of this.

Notice that even in these examples that the signals visually
trend with the human assessment inferred damage values.
These trends, in turn, follow the ground truth pattern of the
measured wear values and establish a clear link between the
wear of a tool and the human assessment of that tool in a live
working environment.

The visual confirmation, the calculated correlations, and the
intuitive understanding of how humans process information
provides ample evidence to support the idea that asynchronous
human input should be used to supplement sensor readings
in a live environment. This work justifies the exploration of
deeper topics relating to the combination of heterogeneous
data sources, both from human and mechanical sources. The
value of using human agents as supplemental sensors in areas
that are under-sensed or hard to evaluate makes intuitive sense.
However, there is also value to adding that information to a
well-sensed environment or asset. Humans are natural pattern
identifiers and can add valuable insight or tacit information
that a limited sensor set might not be able to. Future work
will explore methods for incorporating this information and
quantifying the value return of its use.

6. DISCUSSION

This experimental setup and initial results provided some sig-
nificant observations and potential avenues for further im-
provements.

Adding More Human Observers The major focal point for
creating this dataset is the linking of the human observa-
tions to mechanically-sensed values. Of the two, the
highest levels of variations will arise from the human
observations, and thus, a greater number of human obser-
vations will allow for better relational development with
the more rigorously sensed data. Although a high level of
human observations or redundant observations may not
be expected in a real-world scenario, adding more human
observers would greatly enhance the development and
validation of methods and technologies to best use this
information in a real-world setting.

The current setup involved one human observer at any
given observation of a machine. Future experiments can
explore having multiple humans to simulate a real main-
tenance operation. The ideal dataset would have multiple
people independently evaluating and recording regular
observations of each machine through time. This would
allow for developing better uncertainty bounds and ex-
pected variations between human agents.

Future investigations might also seek to find the satu-
ration point for inserting human observations. Intuitively,
humans will not effectively notice subtle changes over
time if the change is gradual enough; the same is true
for some computer-based monitoring systems. However,
allowing a human agent to step away from the system,
then check back on it after some interval may circumvent
this problem. Identifying the interval of greatest return
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Figure 4. Relationship Between Sensed Signals and Human Assessment

Table 3. Asynchronous Correlations Between Sensors and Human Assessment

Correlation to Human Damage Assessment
Sensor Group Average | Max | Min
Power 0.44 0.92 | -0.69
Spindle Accelerometers | 0.66 091 | 0.22
Machine Accelerometers | 0.64 0.85 | 0.39
Temperature 0.11 0.95 | -0.79
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Figure 5. Example of Temperature Shift Caused by Delayed Restart
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from human observation could help to schedule regular
‘walk-through’ style checkups on various processes and
machines. This process would be especially useful for
assets that are not fully equipped with mechanical sensors.

Incorporating NLP/TLP Humans are best suited to express

their observations through free-form text. Although Likert
scales and similar can be useful in analyses, they are prone
to inconsistency and lack much of the contextual informa-
tion that free-form text can provide Hodge and Gillespie
(2003). Additionally, much of the human-collected in-
formation already available in industrial settings (e.g.,
maintenance work orders) does not intrinsically contain
this type of structured information. This motivates and ne-
cessitates a focus on natural language processing (NLP)
or technical language processing (TLP) as a means to
automate and capture a more full scope of any human
observation.

By its very nature, free-form text is somewhat inconsis-
tent, and as such, difficult to definitively confirm ground
truth. To help circumvent this, this work created a post-
collection Likert scale value for each entry from a human
observer. These were made by aggregating the responses
of multiple experts, but fundamentally may or may not
have captured the original observer’s intent. An ideal test
setup would prompt the human observers to provide some
Likert-style value as well as the free-form text. This setup,
coupled with the post-collection interpretations, could be
used to train and validate any developed NLP/TLP models
as well as provide more information about the expected
uncertainty within the data.

Developing state-of-the-art language processing models
could enable deeper and more rich use of currently avail-
able data. These would eventually preclude the need for
Likert-style assessment from the human operators. These
advances can allow observers to express their assessment
more efficiently. In turn, this procedure increases the
chances that the observer will provide useful information.

Focus on Temporal Asynchronicity Facilities often sense

and record values at unaligned intervals. Adding in irreg-
ular and inconsistent observations and recordings from
human agents creates a strong need to address methods for
merging asynchronous data streams. This work showed
visual alignment, as well as one method for interpolating
expected values to create alignment. However, these are
not the only, nor the best possible methods.

Addressing asynchronicity can be done in a multitude
of ways that will largely be dictated by the desired results

data sources that are largely asynchronous.

Experimental Scope The scope of any future experiments

should build upon those that have come previously. The
current experiment focused on a single type of machine
tool, specifically a CNC milling center. Conversely, a
future experiment could focus on a series of machines
to provide scenarios similar to a full manufacturing line.
Such a setup would allow researchers to not only un-
derstand process parameters but manufacturing system
dynamics as well.

Future experiments should first recreate the scope of the
experiment described in this work with a larger number
of test units. This work’s experiment involved a single
type of failure on a single type of asset. Next, experi-
ments should progress to multiple types of failures on a
single asset. Later experiments could address multiple
failure types amongst multiple assets. We recommend this
progression of experiments because it allows for steady
validation of developed tools while retaining focus on the
human-supplied portions of the experimental data.

In any experiment, a minimum number of assets should
be subjected to trials to develop statistical significance
and allow for variation across the human observations. Al-
though needs may vary depending on specific setups, the
authors suggest a minimum of 50-100 entries confirmed
by some ‘ground truth’ as a starting point. NLP or TLP
tools may require hundreds or even thousands of entries
Brundage et al. (2021).

Real-World Data Concerns Although controlled testing and

environments greatly ease the process of defining and de-
veloping tools and technologies for incorporating human-
derived information, the perspective that these will ulti-
mately be used in a live industrial setting should not be
lost. Whenever possible, steps should be taken to ensure
that the types and formats of data ultimately reflect those
that could or would be acquired in an industrial setting.

Unfortunately, obtaining real-world data, particularly in-
dustrial data, can be difficult due to proprietary restric-
tions and fear of losing competitive advantage. When-
ever possible, providing real-world datasets can help re-
searchers advance their analysis methods by verifying
their tools and test datasets against real industrial data.
Making reference datasets - both laboratory and real-
world - available to the general public can accelerate
the development of applicable tools, best practices, and
standards.

and the preferred models. Although it would take very
little effort to find a solution for a given application, future
work may want to focus on finding the optimal methods
to aggregate, incorporate, merge, or align heterogeneous

7. CONCLUSIONS

This paper discusses the need and a methodology to create
a dataset with both sensor-based and human-generated data.
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Our initial analysis illustrates the value of capturing this in-
formation within the scope of maintenance operations. Our
results show a strong correlation between a human interpre-
tation of the system, ground truth measurements, and hard
sensor values captured during the experiment.

This work provides the initial motivations and justifications for
further developing rigorous methods to utilize human-derived
data in the traditionally-incompatible environment of sensor-
driven technologies. We provide discussions on successes and
challenges faced during this experiment, along with a loose
guide on improvements for future work.

Skilled humans will always be one of the most accurate tools
for assessing the broadest intake of direct and indirect informa-
tion about a system. Sensing equipment can provide more con-
sistent and objective precision than any single human. Each is
well suited to provide incredibly useful information for their
respective areas of excellence. The challenge we highlight and
begin to address is the development of datasets that show this.
Datasets facilitate the development of tools and technologies
that capture and capitalize on both types of valuable informa-
tion. The future of industry lies at the intersection of humans
and technology.
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