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ABSTRACT

There is a constant increase of the market expectations on the
capabilities of industrial high-tech systems. To meet these
expectations, designers of such systems have to explore com-
plex solutions that ensure both functionality and maximum
up-time. We describe a methodology that supports the de-
signers in this task. Specifically, we introduce a model-based
approach that computes both the diagnosability of a system
and the set of hypothetical sensors needed in order to find
the root cause of any of the system’s failures. The metho-
dology starts at design time, by creating behavioural models
for the replaceable parts of the system. These models spec-
ify both the expected behaviour and possible Failure Modes
(FMs) of the replaceable parts. Using these models, the sys-
tem design is composed, with the individual replaceable part
behaviours defining the system’s behaviour. To create these
models we use a domain-specific language that generates a
Bayesian Network that computes the failure symptoms, i.e.,
readings on a given sensor configuration, for every FM in the
system. Finally, we perform the diagnosability analysis by
determining FMs for which the symptoms are equal, caus-
ing them to be unidentifiable. For the unidentifiable FMs, we
compute a set of hypothetical sensors needed to ensure full di-
agnosability and the corresponding sensor readings to differ-
entiate between the failures. This information is then used by
the designer to make system design trade-offs. We illustrate
our approach on two sub-systems of a high-tech machine.

1. INTRODUCTION

Designers of today’s high-tech industrial systems face the
challenging task to deliver simultaneously on two expecta-
tions. On the one hand, they have to accommodate the in-
creasing requirements on functionality, so they have to im-
plement designs with higher number of components and more
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complex control strategies. On the other hand, with the latest
trend towards selling industrial assets as a service, they are
expected to design systems with an optimal performance and
low total cost of ownership.

These two expectations are contradictory: increasing hard-
ware and software complexity inevitably leads to a higher
probability of failure, resulting in down-times for which the
root-cause has to be diagnosed. The down-times degrade the
system’s performance and make it overall more expensive to
operate. Designers partially mitigate this by deciding for a
more robust system, building in hardware redundancy and
adaptive control algorithms which compensate for possible
components malfunctions. Nevertheless, failures that eventu-
ally occur in these systems, made even more complex by such
countermeasures, are challenging to diagnose.

To resolve this difficult situation, we propose to provide de-
signers with an overview of the observable effect, at system
level, of each of the system’s components failures – together
with an estimation of the effort required to diagnose. With
this system diagnosability overview at hand, designers can
explore the design space, for example by adding or remov-
ing sensors, and finally choosing between designs with same
functionality but different sets of components.

In this paper we implement this proposal by extending the
work presented in (Barbini, Bratosin, & van Gerwen, 2020).
Specifically, we use diagnostic models generated from a de-
sign specification to determine the diagnosability of a sys-
tem. Furthermore, we compute a list of hypothetical sensors
needed to diagnose the system’s failures that are not identi-
fied through the given sensor configuration. These hypothet-
ical sensors are an indication of either support for the service
organization to define diagnostic procedures or placement of
additional sensors.

The paper is organised in the following way: Section 2 in-
troduces the relevant literature, Section 3 describes the me-
thodology, Section 4 shows its application on industrial use-
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cases, Section 5 draws directions for future research and con-
clusions.

2. RELATED RESEARCH

The literature tackles the task of designing systems that are
both complex and reliable from three main angles: proce-
dures for safe system design, computation of the system diag-
nosability and computation of optimal sensor configurations.

Classical procedures to assess the safety and reliability of sys-
tems at design time include: Failure Mode and Effects Anal-
ysis (FMEA), Fault Tree Analysis (FTA) and Probabilistic
Risk Assessment (PRA) (Mutha, Jensen, Tumer, & Smidts,
2013). In the context of design space exploration as pro-
posed in this paper, the clear limitation of these approaches
is that they involve tedious activities. Partially, this can be
addressed by using off-the-shelf tools (MADe, 2021; Ghoshal
et al., 2019) that create such assessments in a structured way.

Diagnosability of industrial systems has been subject of a
wide amount of research. (Vignolles, Chanthery, & Ribot,
2020) contains a recent overview. Intuitively, diagnosability
is defined as the the ability of a system to exhibit, for each
fault situation, different symptoms on the system’s monitor-
ing capacities, i.e., the sensors. Examples of diagnosability
analysis computed within different diagnostic frameworks are
(Provan, 2001) for Model Based Diagnostics (MBD), (Console,
Picardi, & Ribando, 2000) for process algebras and (Sampath,
Sengupta, Lafortune, Sinnamohideen, & Teneketzis, 1995)
for discrete event systems.

The above examples of diagnosability analysis share three
main steps:

• The specification, at component level, of the failure re-
sulting from a given fault.

• The propagation of this behaviour at system-level, from
the component towards the sensors, i.e., the computation
of a fault signature matrix (Travé-Massuyes, Escobet, &
Milne, 2001).

• Classification of the signatures, e.g., diagnosable faults.

The main difference in the characterization of the diagnos-
ability between the diagnostics frameworks consists in the us-
age of different algorithms to compute the fault signature ma-
trix. Our methodology follows a similar three-step approach,
the main difference being in the choice of a Bayesian Net-
work (BN) as reasoning engine. This allows us to deal with
lack of observability and provide us algorithms, e.g., mes-
sage passing inference (Pearl, 1988) and moralized ancestral
graphs (Richardson, Spirtes, et al., 2002), to efficiently com-
pute the signatures.

The major difficulty encountered when assessing the diagnos-
ability of a system is an effective way of presenting the re-
sults. Usually, this is done by computing the ratio between

the number of diagnosable faults over the total number of
faults together with reporting the size of sets of faults with
identical signatures (Ghoshal et al., 2019). We re-use these
classical measurements and propose additional ones based on
the number of hypothetical sensors. In this manner, designers
have an estimation of the additional work needed for diagnos-
tics.

Sensor placement has been widely investigated as a means to
achieve a given level of system diagnosability. This is imple-
mented as an optimisation problem, on all the possible sen-
sor configurations and operational modes for a system, given
that the diagnosability can be computed (Scarl, 1994; Daigle,
Roychoudhury, & Bregon, 2014). Computational complexity
makes this approach unfeasible for large complex systems.

In such cases, instead of the computation of the optimal sen-
sor configuration, the diagnosability analysis has to be com-
plemented with the list of hypothetical sensors needed to di-
agnose the set of faults with same signatures. In this paper we
will adopt this strategy, providing a framework for the gener-
ation of such an integrated diagnosability assessment.

3. METHODOLOGY

In this paper we use MBD as framework to compute the di-
agnosability of a system as well as the hypothetical sensors
needed to ensure its full diagnosability. This section presents
our approach to capture behaviour of failure modes for sys-
tem’s components, together with the relevant algorithms for
the computation of the integrated diagnosability analysis.

3.1. Failure Modes in Model Based Diagnostics

MBD defines the diagnostic problem as a consistency check
on the tuple (SD ,CMP ,OBS ) (de Kleer & Williams, 1987),
where SD is the system description as a finite set of logi-
cal formulae, CMP is the set of system components, and
OBS is the set of observations. SD contains two types of
logical formulae: relations and connections. Relations cap-
ture the input-output behaviour of single components, con-
nections capture the interconnections among components, al-
lowing for the propagation of the behaviour from component
level to system level.

MBD has a Weak Fault Model (WFM) when only the nor-
mal behaviour of component c is captured, while the abnor-
mal is computed as its negation. MBD has a Strong Fault
Model (SFM) (Elimelech, Stern, & Kalech, 2018; Feldman,
Provan, & Van Gemund, 2009) when additional information
on the abnormal is captured, i.e., mapping to specific failure
modes. To compute the diagnosability of a system via the
fault’s symptoms using MBD, the model must have a SFM.

In (Barbini et al., 2020), we translate MBD to a probabilistic
reasoning problem where we use BN as inference engine. A
BN (Pearl, 1988) is a directed acyclic graph representation of
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(a) BN using a WFM. (b) BN using a SFM.

Inputs Output Health Failure
ModeFin S Fout

Yes Open Yes Normal
Yes Closed No Normal
No Open No Normal
No Closed No Normal

Yes Open No Abnormal FailOpen

Yes Closed Yes Abnormal FailClose

No Open Yes Impossible

No Closed Yes Impossible

(c) Mapping of behaviours.

Figure 1. An example model of a valve.

the joint probability distribution P (V ) over a set of random
variables V . The arcs of the graph express causal dependence
relationships between the variables. For each of the nodes is
defined a local conditional probability table, i.e., P (n | I)
where I ⊆ V \ {n} is a set of input nodes for node n ∈ V .

Let us consider component c ∈ CMP represented by its in-
puts I and its outputs O. We translate the logical formulae
of SD , into conditional probabilities of O on I . Furthermore,
we add Health nodes H with states Normal and Abnormal to
every inputs/output relation as in (Barbini et al., 2020). For a
component c its definition as BN becomes:

P (c) = P (I,O,H) = P (I) · P (H) · P (O | I,H) (1)

Note thatH is independent of I , similar to (Flesch, 2008) and
that a component has one health node per output node.

Since the faulty behaviour is modeled by means of health
node H , this model is a Horn Strong-Fault Model (HSFM),
as defined by (Feldman et al., 2009). Figure 1a shows the BN
for a valve using this type of model1.

We extend the approach above by adding a more refined de-
scription of the faults. We limit this faulty model description
to the negation of the normal, i.e., a negative literal Strong-
Fault Model (nlSFM) (Feldman et al., 2009).

One might extend to nlSFM, by setting the states for H to
the union of Normal and Faults, such as in (Borth & Barbini,
2019), thus occurrence of a fault is independent of the compo-
nent’s inputs. However, design engineers find it more practi-
cal to describe failure modes, i.e., the manifestation of a fault
in the failed behaviour of a component. In this case, a fail-
ure mode is dependent on both the component’s inputs and
outputs.

Let’s consider the example of a valve. A valve has as inputs
the flow of the water (Fin ) and the desired state of the valve
(S), and as output the water flow (Fout ). The valve’s faults
manifest via failure modes: FailOpen and FailClose, of which
the first indicates that the Fout = 0 when S = Open , and the

1For visualization of the BN we use Netica from (Norsys, 2019)

second Fout 6= 0 when S = Close . These two failure modes
depend on input S.

To accommodate the above behaviour, we add failure modes
to the BN as the set of nodes FM such that:

P (I,O,H,FM ) = P (I,O,H) · P (FM | I,O,H) (2)

Each failure mode node has two states: Active and Inactive.

Figure 1b shows the BN for the valve model according to the
above formulae and Figure 1c presents the P (I,O,H,FM ).
Note that the last two rows are mapped on Impossible, in-
dicating that those combinations of I and O have P (Fin =
No, Fout = Yes) = 0.

For the model defined above, a diagnosis D represents the
assignment of the health nodes H to Normal or Abnormal
together with the assignment of failures modes FM to Active
or Inactive, accordingly.

3.2. Computation of Diagnosability

Diagnosability (Vignolles et al., 2020) represents the ability
of a system to identify failures via their symptoms. In this pa-
per, we compute the diagnosability of a system by analysing
the observability of FM .

To compute the observability of FM for a given system, its
operational context and monitoring capacity must be defined.
The operational context is represented by the system’s inputs
that are independent of the defined behaviour, such as con-
figuration parameters or connection of the modeled system to
other systems such as power inputs. The monitoring capac-
ity are all the properties readable from the system that, as an
ensemble, define a failure signature.

In our BN translation of a system specification, the opera-
tional context is given by a state assignment for all input
nodes that are root nodes. We will refer to this as the base
evidence BE of the BN. The monitoring capacity is a subset
of the output nodesO and is specified as a set of sensor nodes
by the designers. We will refer to this subset as the sensor
configuration SC , with SC ⊆ O.
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Algorithm 1 Fault signature matrix computation algorithm.
function COMPUTEFSM(CMP,BE,SC)

FSM ← INITIALIZEMATRIX()
FM ← FAILUREMODENODES(CMP)
H ← HEALTHNODES(CMP)
for f ∈ FM do

D ← {f = Active}
H ′ ← H \ RELATEDHEALTHNODE(f )
D ← D ∪ {h = Normal | h ∈ H ′}
sig(f)← COMPUTESIGNATURES(SC ,BE , D)
FSM ← APPEND(FSM , [f , sig(f )])

end for
return FSM

end function

3.2.1. Impact Analysis of Failures

To analyse the diagnosability of a system, we use the MBD
model as defined in Section 3.1, to simulate the effect of every
single failure on SC , i.e., the failure signature. This results in
a matrix that provides the signature of every failure: the Fault
Signature Matrix (FSM). The computation of the FSM given
CMP , BE and SC is shown in Algorithm 1.

Algorithm 1 first collects all failure modes FM and health
nodes H from the components CMP . Then a diagnosis D
is constructed for every failure mode f ∈ FM . To construct
D, f is set to Active and all health nodes unrelated to this
failure (H ′) are set to Normal, as this will ensure that all other
failure modes are Not Active. Thus, the algorithm considers
only diagnoses with a single failure at the time, but can easily
be extended to support multiple failures.

Function ComputeSignatures computes the set sig(f)
of all possible signatures of f on SC , given BE and D as:

sig(f ) = {sig ∈
∏

s∈SC
Σ(s) | P (sig | BE , D) > 0} (3)

where Σ(n) is the set of all state assignments for node n.
Specifically, sig(f ) is given by the elements of the Cartesian
product over Σ(s) for s ∈ SC that have a positive probability
given the diagnosis D and base evidence BE .

Finally, all the signatures are added to the FSM . Note that
there may be multiple signatures possible for some failure
modes, causing them to occur multiple times in the resulting
FSM.

3.2.2. Observability and Service Actions

While the FSM contains failure signatures on the sensors in
sensor configuration SC for all failures, it does not yet pro-
vide insight in how diagnosable the system is. Some failures
may have identical signatures, which makes them indistin-
guishable from each other via SC . The more failures have
different signatures, i.e., diagnosable failures, the better the
diagnosability of the system. To have a system with full di-

agnosability, it typically must be fully observable, i.e., all the
system’s components’ outputs are in SC .

Since this is not feasible for most systems, we developed Al-
gorithm 2 to compute an extended FSM (extFSM ) based
on the set of hypothetical sensors (hpSC ), i.e., additional
measurements, needed to discriminate between failure modes
having identical signatures on SC , for all non-distinguishable
failure modes. These measurements correspond to output
nodes distinguished from SC , i.e., hpSC ⊆ O \ SC .

Let us first introduce a set of definitions, similar to (Travé-
Massuyes et al., 2001), that will be used in the remaining of
the paper.

Definition 3.1 Normal behaviour of a system sig(Normal)
is the set of signatures on SC given BE and assuming that
all components are Normal:

sig(Normal) = {sig ∈
∏

s∈SC
Σ(s) | P (sig | BE ,DN) > 0}

where DN = {h = Normal | h ∈ H}.

Definition 3.2 A failure mode f ∈ FM is called diagnos-
able for signature sig ∈ sig(f) if and only if signature sig
is unique, i.e., ∀g ∈ FM \ {f} sig /∈ sig(g), and sig /∈
sig(Normal), i.e., its signature discriminates from normal be-
haviour.

Definition 3.3 A failure mode f ∈ FM is called D-class
diagnosable for signature sig ∈ sig(f) if and only if signa-
ture sig is not discriminable, i.e., ∃g ∈ FM \ {f} such that
sig ∈ sig(g).

Definition 3.4 A failure mode f ∈ FM is not observable
for signature sig ∈ sig(f) if and only if sig ∈ sig(Normal),
i.e., signature sig is identical to a signature obtained for nor-
mal behaviour.

Note that a failure mode with multiple signatures can be at
the same time not observable and (D-class) diagnosable, for
different signatures. For this reason, in Algorithm 2, we con-
sider failure mode-signature pairs (f , sig).

Algorithm 2 returns the set of diagnosable failure modes FMD ,
failure modes that are not observable FMND and the set of
extended FSM for all D-class failures DFSM .

The algorithm starts by computing the FSM as introduced
above. Then failure modes are grouped by their signatures
in FMG via helper function GroupFMbySig. Specifically,
FMG is the set of tuples (fm, sig), where fm ⊆ FM is the
set of failure modes for which every f ∈ fm has the same
signature sig ∈ sig(f).

For every tuple in FMG , Algorithm 2 discriminates between
the set of not observable failures FMND , the set of diag-
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Algorithm 2 Computation of DFSM , FMD and FMND .
function COMPUTEEXTENDEDFSM(CMP,BE,SC)

DFSM ← {}, FMD ← {}, FMND ← {}
FSM ← COMPUTEFSM(CMP ,BE ,SC )
FMG ← GROUPFMBYSIG(FSM )
for fm, sig ∈ FMG do

if sig ∈ sig(Normal) then
FMND ← FMND ∪ {(fm, sig)}

else if |fm| == 1 then
FMD ← FMD ∪ {(fm, sig)}

else
s← REACHEDNODES(CMP ,BE , fm)
hpSC ← s \ SC
E ← BE ∪ sig
CMP ′ ← RESTRICTTOFM(CMP , fm)
hpFSM ← COMPUTEFSM(CMP ′, E, hpSC )
extFSM ← (fm, sig , hpSC , hpFSM )
DFSM ← DFSM ∪ {extFSM }

end if
end for
return FMD ,FMND ,DFSM

end function

nosable failure modes FMD and D-class diagnosable failure
modes.

Then for each D-class, i.e., failure modes that have the same
signature, the function ReachedNodes computes the set of
output nodes affected by the failure modes with the same sig-
nature. To compute this, all dependent output nodes for ev-
ery f ∈ fm are computed using a moralized ancestral graph
(Richardson et al., 2002) of the BN. Specifically, this method
indicates the output nodes that are affected when a failure
mode node is set to Active . All affected output nodes that are
not yet in SC are stored in hpSC , as these are hypothetical
sensors.

Subsequently the function RestrictToFM restricts the fail-
ure modes in CMP to only those in fm such that CMP ′ =
(I,O,H, fm). Then, a new fault signature matrix hpFSM , is
computed for these hypothetical sensors, given BE together
with sig . Finally, the extended FSM extFSM is constructed
as a tuple containing the following four elements:

• The failure modes covered by the service action (fm).

• The signature of fm on SC (sig).

• The output nodes to measure for discriminating between
the failure modes (hpSC ). Note that hpSC ∩ SC = ∅.

• The FSM for fm on sensors in hpSC (hpFSM ).

The set of all extended FSM, i.e., DFSM , gives designers in-
sight into potential placement for additional sensors given the
provided context BE . Simulations for different operational
contexts could be executed to compare results and come to a
final SC . When SC is definitive, the service organization can
use the information to create effective diagnostic procedures
by using hpFSM as a decision matrix for manual interven-
tion.

3.3. Diagnosability Metrics

To support the designers in the design space exploration, the
results of the diagnosability analysis should be presented ef-
fectively. A common way to do this is to summarize the re-
sults in diagnosability metrics.

A classical metric (Ghoshal et al., 2019) is RD , the ratio of
diagnosable FM over the number of possible FM signatures
in a system:

RD =
|FMD |
|FSM | (4)

We complement this metric with additional ones describing
the complexity of the DFSM . Specifically, we compute the
average number of failure modes in DFSM for each D-class:

fm =
1

|DFSM |
∑

DFSM

|fm| (5)

together with the average number of hypothetical sensors in
DFSM for each D-class:

hpSC =
1

|DFSM |
∑

DFSM

|hpSC | (6)

where DFSM is the set of tuples (fm, sig , hpSC , hpFSM )
as in Algorithm 2. We also estimate the maximum number of
hypothetical sensors MHS , as an indication of the worst case
diagnostic scenario:

MHS = max
|hpSC |

DFSM (7)

Note that for a fully diagnosable system |FMD | = |FSM |
and |DFSM | = 0, therefore RD = 1.

Often industrial systems are not fully diagnosable and the tar-
get values for the diagnosability metrics are decided by ex-
perts. In the next section, we use these metrics to assess the
diagnosability of two industrial subsystems and discuss the
insights obtained.

4. APPLICATIONS

This section describes the application of the MBD diagnos-
ability analysis of Section 3 on several use cases. We first
present our methodology applied on a sample system on which
we perform design space exploration, then we present the re-
sults obtained on two industrial subsystems.

All the system’s models are constructed using a Domain Spe-
cific Language (DSL) as in (Barbini et al., 2020). The DSL
uses an object-oriented paradigm, starting with the creation
of classes for the components and then specifying the system,
by creating instances of these components and interconnect-
ing them together, according to the given design specification.
This ensures a fast model creation as confirmed by design en-
gineers. For all the computations on the BN of Algorithms 1
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and 2, we use the aGrUM (a Graphical Universal Modeler)
library (Gonzales, Torti, & Wuillemin, 2017).

4.1. Small System Example

This section focuses on the application of the methodology
on a small hydraulic system. Figure 2 shows the schematic
of the system. In sequence we have a valve, a pipe, a heater
and two sensors to measure flow and temperature of the water
respectively. Water flows from the valve towards the heater.
Note that we do not model a pipe from the output of the heater
to the sensors.

Figure 2. Schematics of a small hydraulic system.

Table 1 lists the system’s components together with their in-
puts, outputs and failure modes. We consider two types of
inputs and outputs, flow F and temperature T, both having
three possible states Low, Normal, and High. Additionally,
S represents the state of the valve, Open or Closed; P repre-
sents the heater power, On or Off. Note that sensor readings
have an extra state Improbable signifying a reading that is out
of the normal range of the sensor.

To compute the diagnosability of the system we specify SC
and BE , i.e., monitoring capacity and operational context.
SC is given by FlowSensor.Fr and TempSensor.Tr. Here
the notation c.n stands for node n in component c. BE is
chosen as the state assignment for the system’s input nodes:
{Valve.Fin = Normal, Valve.Tin = Normal, S = Open,
P = On}. This context assumes that all systems connected
to this example system are operating correctly.

The FSM for the system is presented in the first three columns
of Table 2. The last column maps the failure mode signature
to the set of diagnosable failures FMD or to a specific D-

Table 1. Inputs, outputs and failure modes of the components
in the small hydraulic system.

Component Inputs Outputs Failure Modes

Valve
Fin Fout FailClose
Tin Tout FailOpen
S

Pipe Fin Fout Leaking
Tin Tout

Heater
Fin Fout NotHeating
Tin Tout Overheating
P

FlowSensor Fin Fr Broken
TempSensor Tin Tr Broken

Table 2. FSM for the small hydraulic system together with
mapping to FMD and D-class.

Failure Mode Tr Fr

FlowSensor Broken Normal Improbable FMD

FlowSensor Broken Normal NoFlow FMD

TempSensor Broken Improbable Normal FMD

Heater Overheating High Normal DC1

TempSensor Broken High Normal DC1

Evidence Tin mismatch High Normal DC1

Pipe Leaking Low NoFlow DC2

Valve FailOpen Low NoFlow DC2

Evidence S mismatch Low NoFlow DC2

Evidence Fin mismatch Low NoFlow DC2

Evidence P mismatch Low Normal DC3

Heater NotHeating Low Normal DC3

TempSensor Broken Low Normal DC3

Evidence Tin mismatch Low Normal DC3

FlowSensor Broken Normal High DC4

Evidence Fin mismatch Normal High DC4

FlowSensor Broken Normal Low DC5

Pipe Leaking Normal Low DC5

Valve FailOpen Normal Low DC5

Evidence Fin mismatch Normal Low DC5

class (DCn). Note that several failure modes appear multiple
times in the table, due to their manifestation via different sig-
natures. Furthermore, the failure mode Valve FailClose does
not appear because it cannot manifest given the chosen BE .

The failure mode entries such as Evidence n mismatch cap-
ture the possibility that node n could have a different state
than what is assumed in BE . Such a mismatch could explain
certain abnormal behaviour captured by the sensors. We do
so, to capture also the cases when the failure is outside of the
boundary of the system modeled (e.g., a user error).

Table 3 presents the hypothetical FSM for D-class DC5. The
first column lists the failure modes corresponding to DC5 in
Table 2, the other columns indicate the hypothetical sensors
hpSC needed to diagnose the failure modes. Each cell en-
try lists the signature for the given failure mode and hpSC
combination. hpSC correspond to readings of the outputs
of system’s components not already present in SC , i.e., state
assignment of the corresponding nodes in the BN. Table 3
extends the failure modes signature on the SC from Table 2,
i.e., {Tr = Normal, Fr = Low}, with the hpSC signature.

Table 3. Example of hypothetical FSM for D-class DC5.

Hypothetical sensors
Failure Mode Pipe.Fout Heater.Fout Valve.Fout Fin

FlowSensor Broken Normal Normal Normal Normal
Pipe Leaking Low Low Normal Normal
Valve FailOpen Low Low Low Normal
Evidence Fin mismatch Low Low Low Low
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Design Space Exploration

The diagnosability analysis presented above assumes that wa-
ter flow and water temperature are measured at the outlet of
the small system. During design space exploration, the de-
signer might consider placing an additional sensor or moving
one of the two already considered to a different location.

The metrics in Equations 4-7 are computed to compare the
diagnosability for different SCs . Table 4 lists the metrics to-
gether with the size of not observable failure modes and the
size of the sensor configurations. SC 1 is the sensor configu-
ration in Figure 2, and is our zero-measurement.

In Table 3, we notice that by measuring Valve.Fout we can
reduce the table size to half. We create a new sensor configu-
ration SC 2 by adding a flow sensor positioned at the outlet of
the valve. As expected, adding a sensor greatly improves the
RD , while partially improving fm and hpSC . However, it
does not decrease the maximum number of hypothetical sen-
sors that need to be introduced to identify the failure (MHS ).

We also analyze sensor configuration SC 3, which has a flow
sensor at the outlet of the valve and a temperature sensor at
the outlet of the heater. SC3 allows for the unique identifi-
cation of faults in the valve, i.e., higher RD and lower fm ,
but does not allow identification of Pipe Leaking, as captured
with FMND of size 1.

Table 4. Diagnosability metrics for small system example.

Metric |SC1| = 2 |SC2| = 3 |SC3| = 2

RD 0.15 0.42 0.2
fm 3.40 2.80 3.2

hpSC 2.40 1.80 2.2
MHS 3.00 3.00 4
|FMND | 0 0 1

Combined with knowledge on costs of additional sensors and
diagnosability targets, such comparisons support the system
designer in making decisions regarding sensor placement. Note
that this is a complex decision process and even in this exam-
ple it is not trivial to choose the best sensor configuration.

4.2. Industrial Applications

This section describes two industrial system to which we ap-
plied the methodology. Due to confidentiality, the use case
descriptions are limited to a short summary and their diag-
nosability figures.

4.2.1. Hydraulic System

The first industrial application concerns a hydraulic module
of a lithography machine. This hydraulic system thermally
conditions water and supplies it to several modules within the
machine. Water has to be supplied both at correct temperature
and flow.

The hydraulic components in the system are: pipes, valves,
manifolds and flow silencers. The water temperature is con-
ditioned via cartridge heaters. The system has water flow and
temperature sensors, together with differential pressure sen-
sors and switches, both for pressure and temperature. The
latter ensure safety by switching off the water flow or power
supply to the heaters when outside the required range. The
system has a total of 263 components, of which 77 are sen-
sors.

The BN for this system contains more than 2000 nodes of
which 400 are failure modes. For the diagnosability analy-
sis we consider that the water is supplied to the inlets of the
system at the correct flow and temperature, in spec with the
system’s heating capacity. Further, all the valves are set to
open, as these will only be closed while servicing the module.
Note that our methodology accounts for valves erroneously
left closed after service, via the Evidence n mismatch as in
Table 2.

The SC contains all the output nodes for the 77 sensors to-
gether with software logging from the supplied modules, for
a total of 104 nodes. The diagnosability metrics for the hy-
draulic system are presented in Table 5. According to the
system’s designers, given the complexity the figure for diag-
nosable failure modes is acceptable and the metrics for the hy-
pothetical sensors are low enough. Further, the failure modes
covered by the service action matrix related to MHS have low
impact on the system’s functionality, i.e., not affecting sup-
plied modules but limited to components in the return part of
the hydraulic circuit.

The designers validated the approach by inspection of the
FSM and DFSM . They acknowledged that the methodology
provides them with evidence, otherwise difficult to obtain at
design time, on the efficiency of their diagnostic system. Ad-
ditionally, they investigate the usage of our the model to fa-
cilitate the creation of reliability deliverables such as FMEA.
This is estimated to save them more than 200 man-hours.

4.2.2. Heating System

The second industrial system to which we applied the metho-
dology is a heating system. The heating system is a condition-
ing module that consists of a set of heaters to maintain correct
temperatures. Included in the system are controlled power
supplies, power distribution boxes, power cables, heaters and

Table 5. Diagnosability metrics for the industrial systems.

Metric Hydraulic Heating
RD 0.49 0.072
fm 2.86 3.26

hpSC 2.00 2.51
MHS 9 5
|FMND | 0 4
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temperature sensors. In total, the system contains more than
500 replaceable parts, of which 200 are sensors.

The BN contains more than 6500 nodes, including 900 fail-
ure mode nodes and 150 nodes that provide input to the sys-
tem. Most system inputs cover set-points for power supplies
and safety switches that could cut power in specific parts of
the system. To perform the diagnosability analysis on the
system, the chosen BE expects all set-points to be On and
all safety switches to be On, i.e., all parts of the system are
powered. The SC contains the temperature sensors (80) and
power monitoring sensors (120), i.e. voltage and current mea-
surements. Additionally, the set-points as logged by the soft-
ware are also included in the SC . Altogether, SC contains
240 nodes.

Table 5 shows the diagnosability metrics for the heating sys-
tem. We validated the model by comparing with available
diagnostics procedures for the previous design. Our model
covered all the failure modes presented in the procedures.
The added value was recognized in the fact that our model,
by computing failure signatures on SC at system level, en-
ables service engineers to reduce the size of their procedures,
and thus decrease diagnostic time.

5. CONCLUSIONS

In this paper we showed how applying Model-Based Diag-
nostics (MBD) at design time gives valuable insights into the
diagnosability of a system. Additionally, we presented the
usage of MBD in the creation of input for the service orga-
nization – by computing the possible hypothetical sensors re-
quired to distinguish between failures that present identical
signatures.

The proposed approach provides insight in the diagnosabil-
ity of the system that would otherwise have been difficult to
obtain. The results of the diagnosability analysis are used
to generate reliability deliverables comparable to those cur-
rently manually created, thus saving time during the design
process. The model-based approach ensures completeness of
the deliverables. Finally, the method allows for comparison
of different sensor deployment strategies. These conclusions
were acknowledged by the design-engineers of the industrial
systems for which the methodology was applied.

Currently, for the models created, the method proved scal-
able. However, the size of the model quickly increases when
multiple different subsystems are integrated in one model.
A hierarchical approach to perform the computations on the
model could prove beneficial. At this moment, we experi-
ment with available methods to understand their limitations
and applicability to our methodology.

Furthermore, since our models provide feedback only for a
specific instance in time, we investigate how integrating this
discrete event systems based diagnostic approach will allow

us to perform diagnostics over time and capture dynamic be-
haviour of control system.
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