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ABSTRACT

In the age of industry 4.0 and smart sensors, continuous mon-
itoring of different machinery produces an enormous amount
of data. Because of that, data centers are now-a-days a very
important asset, not only for large-scale cloud providers, but
also for medium to large enterprises which decide to store
in-house the ever-increasing data collected during business
operations.

An efficient method for the maintenance of the great num-
ber of hard drives housed in data centers is critical to assure
availability in a cost effective manner. Since 2013, Backblaze
https://www.backblaze.com/ has published statis-
tics and datasets for researchers to gain insights on hard drive
performances and their failures, in this paper more than 2.5
million records, following hard drives S.M.A.R.T. readings
for over a year, will be analysed.

The aim and main contribution of the paper is to provide a
real-world example of how to build and evaluate both an on-
line and an offline pipeline which can effectively monitor and
give precursor signals of hard-drive failures. The paper is or-
ganized as follows: after a brief introduction on the problem
the dataset and the experimental setting will be described.
Both the offline and the online pipelines will then be dis-
cussed along with empirical results comparing them to a su-
pervised baseline.

1. INTRODUCTION

Data is being collected at an ever-increasing rate by firms of
every size, as the opportunity cost relation is becoming more
and more clear. Equipping machines with an array of use-
ful sensors has become relatively cheap, data collection and
remotization are also becoming easier thanks to more acces-
sible technology in the form of ready-to-use cloud-based so-
lutions. Whether the data is stored in an in-house data center
or in the cloud, hard drives are the base unit of storage. Effec-
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tive maintenance of a large number of hard drives can as such
decrease costs and reduce unexpected downtime or complica-
tions.

As reported by Vishwanath & Nagappan (2010), hardware
failure can lead to a degradation in performance to end-users
due to service unavailability and can result in losses to the
business, both in immediate revenue as well as long-term rep-
utation. The authors also report that 70% of all server failures
is due to hard disks, 6% due to RAID controllers, 5% due
to memory and the rest (18%) due to other factors. Thus,
hard disks are not only the most replaced component, they are
also the most dominant reason behind server failure. While
the percentages may have changed from 2010, the problem
is still present and requires attention. The already mentioned
Backblaze provider reports a snapshot for 2019 which still re-
ports an annualized failure rate of 1.89%, which means that
a design and strategy that handle failures gracefully is still
needed. Large industries in the tech sector are still commit-
ted to research in this area. A 2016 study from Botezatu, Bo-
gojeska, Giurgiu and Wiesmann, who at the time were affil-
iated with IBM, proposes a machine learning-based pipeline
for predicting disk optimal replacements time, about 10 to 15
days in advance. Moreover, the more reliable SSD technol-
ogy is still at a price range which makes it not viable for data
centers. An official 2018 blog post by Roderick Bauer (Back-
blaze) highlights that HDD will be the storage medium for
large-scale data centers for the foreseeable future.

Datasets extracted from Backblaze data have already been
used for research purposes, such as Nicolas Aussel, Samuel
Jaulin, Guillaume Gandon, Yohan Petetin, Eriza Fazli & So-
phie Chabridon (2017), but there is, to our knowledge, no
standard benchmark on their data. The main contribution of
this paper is to give a clear, real-world use-case study which
combines and compare different approaches to establish the
practical feasibility of a simple unsupervised process. In the
next section, the dataset used in this study will be described
in detail along with the experimental setting for the statistical
analysis.

The objective of this paper is to show that it is possible to
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build a completely unsupervised pipeline that produces an
anomaly score that highly correlates to hard drives time to
failure (TTF), in such a way that a decision to replace them
can be made before failure with minimal waste due to false
alarms. Favourable comparisons with a state of the art super-
vised classifier will be presented in the next sections.

A brief example of how such a pipeline can be extended for
data streams and continuous sensor monitoring will be given.

2. DATASET AND EXPERIMENTAL SETTING

In this paper, more than 5000 hard drives will be followed
through time. More precisely, a set of machines from a single
model has been chosen for analysis, the Hitachi HDS5C30-
30ALA630, followed in a period spanning from May 2013
to December 2014. The dataset constructed in this way con-
tains 2 625 514 records with 53 failures, these failures have
no clear definition rule but are instead reported a-posteriori
by Backblaze as the day before the failure of the equipment
reported by users.

The features used in the analysis are readings from Self Mon-
itoring Analysis and Reporting Technology (S.M.A.R.T.)
recorded from the sensors embedded in the devices both in
raw and normalized form and are recorded at a rate of one
record per hard drive per day. Smart-194, smart-5, smart-1-
raw, smart-197, smart-9 have been chosen as they are temper-
atures, uptime and error counts that are collected by almost
all modern devices by different vendors. As there is no stan-
dard on which S.M.A.R.T. readings are recorded, the analy-
sis on the chosen ones should be the most easily generalized
on other models. Additional details about the chosen fea-
tures can be found in table 1. S.M.A.R.T. features have thor-
oughly studied in the literature for example in the work by
Slad̄ana Ðurašević and Borislav Ðord̄ević (2017) which pro-
vides many statistical details about the chosen features and
some other S.M.A.R.T. indicators. The features are given by
Backblaze both in raw and normalized form; this work uses
them in the raw form as the chosen algorithm do not use dis-
tances and thus their performance is not impaired by the dif-
ference in the scale of the feature’s values.

Some records have been kept as the test set, which has been
used just for performance evaluation. This evaluation set com-
prises records starting from 01-09-2014 to the last day avail-
able on the dataset. This choice, while somewhat arbitrary,
ensures not to mix past and future in the training set and keeps
11 failures in the test set. The experimental setting also mim-
ics a possible real-life scenario, where a solution is studied
using some past data and then deployed for a period before
being evaluated again.

The test set contains 555 707 records, the train/test split fol-
low roughly a 80%-20% split strategy. The total failures are
53, in this way they are distributed evenly in both sets, with

the same 80%-20% split between training and testing.

3. UNSUPERVISED OFFLINE PIPELINE

The objective of this work is to present an unsupervised pro-
cess that can assign a meaningful anomaly score to each data
point. Such a score should correlate well with time to fail-
ure so that it can be used to make informed decisions about
maintenance and/or replacements ahead of failures. The data
analysed here contains some failures examples, but in other
scenarios failures may not have been observed or may be both
rare and of different nature, this makes it hard, if not impos-
sible, to build a supervised system. Even when failure exam-
ples are present, it will be shown that a state of the art classi-
fier does not necessarily produce better results than an unsu-
pervised pipeline. Our example uses only 5 features for ease
of extensibility to other hard drive manufacturers. Nonethe-
less, the chosen method is able, and is even more suitable,
compared to traditional distance-based methods, to problems
with a large number of variables. This is because distances
become less meaningful in high dimensional spaces, where
every point tends to be far away from the others. On the con-
trary the chosen method, which will be described in detail in
the next section, does not use a distance metric but an isola-
tion approach. This characteristic would enable the method
to generalize well to whichever set of attributes is chosen;
it must be noted that the largest superset of S.M.A.R.T. read-
ings available considering all vendors and models could cover
over 70 attributes (even if they could be very sparsely popu-
lated). Such a high number of variables could pose a signif-
icant problem because as data become sparser the true out-
liers can be masked by noise effects of multiple irrelevant
variables. Moreover, the different kinds of meaning of the
variables (counts, real numbers, boolean, possibly even cat-
egories) would require a standardization procedure and one-
hot encoding, complicating the process. Defining the locality
of a point in such a setting becomes a problem and algorithms
that use regular metrics and distances can fail when working
with all the dimensions. For example all pairs of points are
almost equidistant (in the Euclidean sense) in a high dimen-
sional space (Aggarwal, Hinneburg & Keim, 2001).

In order to handle both high dimensional cases and low di-
mensional ones the chosen unsupervised method belongs to a
general class of algorithms called subspace methods as they
find anomalies in the data by exploring subspaces of the vol-
ume occupied by them in the feature space. The subspace ap-
proaches thus implicitly limit the problem of having a high
number of variables by effectively using few of them at a
time.
The chosen anomaly detector is Isolation forest, proposed by
Liu, Ting & Zhou in 2008.
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Table 1. S.M.A.R.T features details

Feature code Full name Description

SMART 1 Read Error Rate Indicates the rate of hardware read errors from disk surface.
SMART 5 Reallocated Sectors Count Indicates the number of bad sectors that have been remapped to spare area.
SMART 9 Power-On Hours Shows total count of hours in power-on state.
SMART 194 Temperature Indicates the device temperature expressed in Celsius degrees.
SMART 197 Current Pending Sector Count Indicates the number of unstable sectors which are waiting to be remapped.

Figure 1. Number of partitions needed to isolate two different point.
Image taken from the original paper by Liu, Ting & Zhou in 2008

3.1. Isolation Forest description

Isolation forests are an ensemble method consisting of a set
of isolation trees, which are trees defined and constructed to
separate anomalous data points from normal ones. The basic
assumption is that in a random partitioning algorithm anoma-
lies should be separated (isolated) from the others data points
in its earliest steps. This should happen intuitively because
when partitioning extreme values should be isolated earlier
with respect to subtle differences. In figure 1 a visual exam-
ple of this situation is given.

This method has been chosen as the mechanism under which
it operates is very intuitive and explainable to a domain ex-
pert which has no prior experience of data mining techniques,
moreover it has no explicit assumption about a mathematical
model (i.e. a parametric model) about the data distributions
which is often hard to estimate in practice. As a last remark,
isolation forests use subsampling and do not compute dis-
tances. These are highly desirable characteristics when work-
ing with a large volume of data as it makes the algorithm eas-
ily scalable as it has a low memory requirement and linear
time complexity. A sketch of the algorithm used to build an
isolation tree is in the following:

• randomly select a partition of the dataset e.g. with bag-
ging

• randomly select a variable q and a split value p and split
binarily the dataset according to this rule

• repeat the last step until each node has only one instance
or all data in the node have the same values for all vari-

ables

Note that an isolation tree (iTree) is a proper binary tree,
where each node has exactly zero or two child nodes.
Assuming distinct instances each one is isolated in an exter-
nal node when the tree is fully grown. The path length from
the root to the isolation in an external node can be measured
and is then used as an indication of the susceptibility to the
isolation of the point.

Results from an ensemble of trees can be averaged and nor-
malized, and an anomaly score computed. More precisely the
path length of a point x can be defined as the number of edges
the point needs to traverse in the isolation tree from the root to
the external node it becomes isolated into. With a short path
length the point is very easily isolated and thus is considered
anomalous. A problem arises when translating this idea to a
numeric score as the isolation tree maximum height grows in
the order of n while the average height grows as log (n) The
authors propose a normalization schema to give bounds to the
average path lengths by exploiting the isolation trees’ equiv-
alent structure to the binary search trees’ (BST) one. The full
expression for the anomaly score, as defined in the original
paper, exploits the structure of a BST and in particular the
average path of an unsuccessful search which is:

c (n) = 2H (n− 1)− (2 (n− 1)n)

where H (i) is the harmonic number and it can be estimated
by ln (i) + γ, γ is the Euler-Mascheroni constant. Now, let
h (x) be the number of edges a point x traverse an iTree from
the root node until the traversal is terminated. Since c (x) is
the average of h (x) given n it can be used to normalize it. So
the anomaly score s of an istance x can be defined as:

s (x, n) = 2−
E(h(x))

c(n)

where E (h (x)) is the average of h (x) on the ensemble of
iTrees in the forest. This normalization schema bounds ef-
fectively the score in the interval [0, 1], with 0.5 as a mid-
point, 1 as the most anomalous score and points with an s
much smaller than 0.5 as considered normal. In this work,
the opposite is used, with 0 as midpoint and −1 as the most
anomalous, and number greater than 0 considered as normal.
This ensure the separating point between anomalies and nor-
mal points is 0 which has been found more natural. The BST
structure can also be used to devise strategies based on the
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Figure 2. Anomaly scores vs failures

average height of a BST for pruning or to stop the growing
process earlier.

Intuitively this method explores random subspaces of the data
volume without assuming independence of the features, but
sub-sampling them at random jointly. The authors note that,
while anomaly detectors based on data density, such as Lo-
cal Outlier Factor (Breunig, Kriegel, Ng & Sander, 2000), as-
sume that normal points occur in dense regions to the contrary
of anomalies that occur in sparse regions, and methods based
on distances, such as One-Class Support Vector Machines
(Scholkopf, Platt, Shawne-Taylor, Smola & Williamson, 1999),
assume that a normal point is near its neighbours in some
metric space, the proposed method is more adaptive as, after
each split and in each tree, the subset of the data analysed is
completely different and thus can detect both global and local
outliers.

3.2. Empirical evaluation results

The objective of the first experiment is to explore the links
between the anomaly score outputted by the Isolation forest
and the time to failure of hard drives. All the following results
are on the test set described above.

In order to analyse the behaviour of the anomaly score out-
putted by the algorithm the Isolation Forest has been trained
with the default parameters indicated on the paper. This would
reflect a first approach to the problem, moreover assuming not
to have any example of failures the analyst would not have
any mean of optimizing the choice. In such cases, the usual
procedure is to use a range of parameters and then to average
the resulting anomaly scores. This averaging ensures robust-
ness to possible wrong choices of the parameter, but as it will
be shown later this is not necessary in this case. This evidence
supports the claim by the original authors that the default pa-
rameters should provide satisfactory results in most cases.

The first observation is about raw anomaly scores concerning
the two classes: failure (-1) and non-failure (1). The anomaly
score is unbounded and in a scale such that the lower the
score the more anomalous the point is. The results in fig-
ure 2 boxplot show the score can highlight differences in the
two classes.

The failures in the dataset are tagged as the day before the

ttf_inf 14<ttf 7<ttf<14 3<ttf<7 0<ttf<3
alarm
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Figure 3. Anomaly scores vs time to failure classes

Figure 4. Anomaly scores vs time, in red the score median.

breakdown and it has been shown that on that date the anomaly
score is lower. It is then clear that there is some signal that
something is wrong immediately before the failure, but hav-
ing more time to act would improve the reliability of the data
center, giving more time for backups and/or substitutions.

Using the date information new classes are created to inspect
this problem. Hard drives that do not fail in the period of
observation are given the class ‘ttf-inf’ to mean that their time
to failure is infinite, rows that are more than 14 days away
from failure are given the class ‘14<ttf’, ‘7<ttf<14’ stands for
rows that are less than 14 days from failure but more than 7
and so on.

In figure 3 it can be noted from the boxplots that there are
indeed some differences in the anomaly scores for the dif-
ferent classes. While there is overlap the score is decreasing
w.r.t. the classes in a clear way. A multi-class thresholding
rule could in theory be established to try and classify each
hard drive in a ‘risk’ class. Another strategy is to follow each
hard drive in time with a pre-trained model, without special
updates or time series processing.

This naive approach again highlights, as can be seen in fig-
ure 4, the feasibility of such a simple strategy. There are
clearly identifiable change points in the anomaly scores’ time
series that can be automatically detected and used to give
alarms. An old but effective algorithm for change detection is
CUSUM (CUmulative SUM control chart) first proposed by
Page (1954). An example output of a CUSUM approach to
the same hard drive, searching for changes only in the down-
ward direction, can be seen in figure 5.

3.3. Comparison with a supervised method

The previous sections focused on establishing a link between
TTF and the anomaly score, but did not provide quantitative
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Figure 5. Anomaly score change detection

Table 2. XGBoost confusion matrix

actual/predicted fail ok
fail 9 2
ok 3770 551937

F1 0.0047
Recall 0.8182
Precision 0.0024
False Alarm Rate 0.0067

results. In this section, since class labels are available, a su-
pervised algorithm (a classifier) will be used and compared
with a simple thresholding strategy on the anomaly score.
The chosen classifier is XGBoost, first proposed by Chen
Tianqi and Guestrin Carlos in 2016, a state-of-the-art clas-
sifier which is currently widely used in industry and to win
Kaggle competitions. XGBoost (eXtreme Gradient Boosting)
is a very versatile algorithm that can optimize any twice dif-
ferentiable objective function via gradient descent in a tree
boosting setting. The idea behind functional gradient descent
is quite old with the first very successful algorithm being AD-
Aboost (Freund & Schapire, 1997). The dataset is extremely
imbalanced for a classifier, accuracy is then not the right met-
ric to optimize and to check. The chosen metric is then the
F1 score. The F1 score is defined as follows:

F1 =
2 · precision · recall
precision+ recall

(1)

where
precision =

TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

Both algorithms used the training set to choose their hyperpa-
rameters via a 3-fold cross-validation. In this case, there are
two more choices to optimize in the same cross-validation,
namely the threshold on the anomaly score threshold for the
IF and the classes prior sample probability for XGBoost. The
optimal value for all these choices has been chosen to opti-
mize the F1-score.

The results on the test set can be seen in tables 2 and 3.

It can be noted that the performances are quite similar with
the same detection rate and a very small difference (w.r.t. the
number of records) in false positives. This suggests that when

Table 3. Isolation Forest confusion matrix

actual/predicted fail ok
fail 9 2
ok 3100 552607

F1 0.0058
Recall 0.8182
Precision 0.0029
False Alarm Rate 0.0055

the classes are so imbalanced and the anomalous class, even if
known, is not representative of the anomalous population (be-
cause not every failure condition has already been observed),
while a classifier can and do work well, an unsupervised al-
gorithm can be a better choice.

4. UNSUPERVISED ONLINE PIPELINE

The scenario analysed up until now assumes to have a signifi-
cant amount of data from which starting a training procedure
that defines the normal behaviour is possible. It also ignores
the possibility of having a continuous data stream that is im-
possible to actually store. Moreover, it ignores the problem
of concept drift which highlights that the process under ob-
servation can evolve and change over time. This may be a
natural occurrence in the phenomenon and not an anomaly,
or it can be anomalous as it first happens but it then becomes
the new ‘normality’. It can be interesting to be able to detect
and report the change, especially if is an abrupt and massive
one, this is the aim of change-detection algorithms. But after
the first occurrence, it would be best if the online anomaly
detection algorithm could be able to automatically adapt, and
if necessary stop reportinh as anomalous the changed data
stream. This can involve, for example, a new training step or
a revision of the algorithm or/and its parameters.

While examples of this kind of problem can come from the
most diverse domains, such as when an industry acquires a
new client which requires an increase of production, or in
user-modelling applications where the goal is to check for
abnormal behaviour the user might just change habits, in the
context of a data center it can occur when the underlying pro-
cess which generates the data being stored changes.

Some algorithms can handle data streams and online learn-
ing natively by having an update mode with a memory mech-
anism and a fixed memory requirement. An example of a
very efficient algorithm of this kind is Randomized Subspace
Hashing (Sathe & Aggarwal, 2016). Alternatively, algorithms
that are offline in nature can be adapted to the online case by
a higher-level strategy.

4.1. A general strategy to move from offline to online

A possible general strategy to adapt an offline algorithm is to
set a window length in which data is stored to later update
the model, while this is not the only option, it is quite easy to
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implement. The general pipeline could be:

• collect enough data to do a first comprehensive training
phase, as if the algorithm was to operate in an offline
mode

• choose a window length w and store new arriving data
until it is filled, output an outlier score for each new da-
tum as soon as possible

• once the window is filled, erase the first arrived w data
from the current dataset (the oldest ones), add the newest
w points and start a new training procedure on the up-
dated dataset, until the new model is ready continue stor-
ing new points in the (now empty) window and output
anomaly scores with the old model

• once the new model is trained delete the old one

The window acts basically as a temporary storage area where
new points are accumulated until there are enough to start
a new training procedure by deleting the same number of
points starting from the oldest in the dataset. This procedure
allows the model to keep up with concept drift by always be-
ing updated with new data while forgetting the oldest, it also
manages the infinite length by storing and using a fixed-size
dataset plus a fixed-size window. The window length and
the starting dataset set size are critical parameters that must
be chosen with care as to allow the model to be trained in
time between each collection phase while having enough data
to always model the non-anomalous class. Some algorithms
may not require a full new training phase but could allow a
partial update on just the new data.

If an anomaly is tagged by the described procedure it can
either be added anyway to the window for further training,
flagged and discarded, or flagged and stored in a separate win-
dow. A mix of these strategies can be used basing the choice
on thresholds on the anomaly score. If all anomalies are trans-
ferred into the training set the algorithm can be made almost
immune to concept drift, but it can also stop detecting use-
ful anomalies, while if anomalies are tagged and discarded,
the algorithm, while handling the infinite sequence length, is
prone to be afflicted by the consequences of concept drift.
Human experts can inspect flagged anomalies and decide if
they should be incorporated in the training set. Mixed strate-
gies based on automatic thresholds can, for example, allow
points with a score that make them suspicious but not really
alarming to be included in training, while excluding points
with a really extreme score. Such a strategy, while being
naive and having numerous critical choices involved in us-
ing it, makes virtually any offline algorithm able to operate in
an online mode. An example of this approach for the Isola-
tion Forest algorithm can be found in the work of Ding & Fei,
2013 or more recently in the work by Zhang, Wang & Zhang
(2019). In the next section, an example of such a pipeline will
be given.

Table 4. Sliding window with educated guess for the threshold

actual/predicted fail ok
fail 7 4
ok 1643 544876

F1 0.008
Recall 0.636
Precision 0.004
False Alarm Rate 0.003

Table 5. Sliding window, default

actual/predicted fail ok
fail 11 0
ok 54919 491600

F1 0.0004
Recall 1.00
Precision 0.002
False Alarm Rate 0.1

4.2. Empirical evaluation results

A pipeline similar to the one described above has been used
on the same test set of the offline pipeline. More precisely
all data points from the week before the day to be tested are
used to fit an Isolation Forest which is then used to compute
an anomaly score for the data collected at the present day
(for which a label of 1 means that tomorrow the hard drive
will fail). This represents a sliding window with a seven-day
length and a look-ahead period of one day. The model is fitted
on the whole population instead of on a per-hard-drive basis
as the throughput is not high enough with a datum per day per
hard drive.

The confusion matrices obtained day per day are cumulated
for the whole test period. Using an informed decision for
the anomaly score threshold of the Isolation Forest, based on
failure occurrences in the training period, the sliding window
approach is able to obtain results comparable to the offline
case, albeit with a different trade-off between false positives
and false negatives, as seen in table 4. If instead, the default
parameters are used, simulating a situation where absolutely
no information is available, the online procedure produces a
lot of false positives, as can be seen in table 5, but with a
detection rate of 100%. It must be noted that in a real-world
scenario it is unlikely that no action would be taken to adjust
the threshold for giving an alarm in more than three months
and at the same time that absolutely no history is available to
have at least a rough idea of how to set it.

5. CONCLUSIONS

In this work, it has been shown how an unsupervised method
can be used to monitor a set of more than five thousands hard
drives for more than a year and particularly how it compares
in a favourable manner with respect to a state of the art clas-
sifier. Moreover, a general pipeline on how to adapt an offline
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anomaly detection algorithm to the online case has been pre-
sented and tried in a simple way to the same dataset.

In general the possibility of using a whole population of dif-
ferent objects of the same type, in this case, hard drives, to
monitor the single parts in an online fashion, without spe-
cific, per-object, training, has been studied and proven possi-
ble providing that sensible parameters choices can be made.

An interesting possibility for future work would be to start
in an unsupervised setting and start to use labels as soon as
they are available in order to fine-tune the parameters of the
algorithm and explore the optimal policy to do so, moreover,
it would be possible to combine a classifier trained on labels
and an anomaly detector that works in an unsupervised way,
again the optimal policy on how to combine the two outputs
should be studied.
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