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ABSTRACT 

This paper presents an algorithm for determining the State 

of Health (SoH), the End of Life (EoL), and the Remaining 

Useful Life (RUL) of wire-bonded power semi-conductor 

modules. It is hybrid in two senses: a) it combines the 

estimations of physically-inspired models and the on-line 

data acquisition and b) it combines damage accumulation-

based (i.e. stress counting) and condition-based (i.e. Von 

measure) prediction methods.  

More precisely, the algorithm measures the die temperature 

and on-state voltage Von,meas. A degradation model and an 

electrical models convert the temperature cycles into a 

estimation of the on-state voltage Von,est. This estimation is 

confronted to Von,meas and the degradation model is 

corrected based on this confrontation. Thus, the degradation 

model is corrected on-line, which potentially allows to 

reduce the modeling and testing efforts necessary to 

generate an accurate degradation model. 

A key aspect is the analysis, modeling, estimation, 

correction and exploitation of the on-state voltage Von 

evolution. This paper presents a physically-inspired model 

that estimates Von based on the damage estimated by the 

degradation model. 

The algorithm is demonstrated with a particle filter and with 

power cycling experimental tests performed until complete 

wire-bond failure. The paper shows that the algorithm is 

capable of predicting the RUL with an accuracy of less than 

±10% with a prognostic horizon of 50% of the lifetime. 

1. INTRODUCTION 

The internet of things applied to power semi-conductor 

modules would permit to communicate on-line condition 

(e.g. mission profile) and health (e.g. level of degradation of 

wire-bonds) for improved: 

1. Availability  

2. Security  

3. Life-cycle cost 

4. Reliability 

5. Design 

The on-state voltage Von (at high current) is considered as a 

convenient parameter to monitor on-line because it applies 

generically to IGBT, MOSFETs and diodes (Bryant, 2017). 

Von provides information on temperature, current, and 

degradation level (Degrenne et al., 2015). In case of wire-

bonded power modules, a recognized damage sensitive 

parameter is the electrical resistance increase ΔR due to the 

degradation of the top-side connection (i.e. wire-bonds and 

metallization) (Ji et al., 2013) (Degrenne et al., 2015). 

 

),,( RIcTjfVon   (1) 

 

Figure 1 presents a generic approach for health management 

of power semi-conductor modules. It is based on methods 

using Von as a damage sensitive parameter. 

 

 
 Figure 1 The scope of the paper is the processing step for 

generation of information (feature extraction and analysis) 
 

Von sensors were reviewed in 2013 in (Ghimire et al., 2013) 

and several works have been reported since then. 
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Techniques for discriminating temperature, current and 

degradation were reported (Eleffendi et al., 2015) (Singh et 

al. 2017) (Degrenne et al., 2018a), though research is still 

required to develop more accurate sensors and methods with 

a lower cost.  

This paper deals with processing Von data in order to extract 

useful information such as the State of Health (SoH) the 

End of Life (EoL) and the Remaining Useful Life (RUL). 

After this information is generated with a known degree of 

confidence, it can be communicated for action (i.e. health 

management) (Degrenne et al., 2015) which can consist in: 

Reliability enhancement (i.e. stress reduction/redistribution) 

in the case of redundant systems or predictive maintenance. 

The data processing step requires a multi-disciplinary 

approach to combine expert knowledge in the fields of 

power electronics, mechanical failure propagation, and 

signal processing. Almost all methods in the literature 

require models that can either be pre-defined or auto-learned 

(e.g. machine learning). Physics-based models are generally 

preferred because they offer a logical understanding of the 

results and can be modified to adapt to different power 

modules (Yang et al., 2013), though the literature is 

dominated by examples of (exponential) empirical models 

(Saha et al., 2011) (Celaya et al., 2011) (Dusmez et al., 

2015) (Biglarbegian et al.,  2018) such as (2): 

 

 1 teR   (2) 

 

An analysis of the evolution of Von until the End of Life 

(EoL) is proposed in (Degrenne et al., 2018b). The present 

paper focuses on the evolution of Von before the first wire-

bond lift-off to extract information on the RUL (Fig. 2), 

with the purpose of prognostics with long horizon. 

 

 

Figure 2 Generation of Remaining Useful Life (RUL) based on 

Von analysis  
 

After the first lift-off, phase ② represents only 5% of the 

number of cycles to failure criteria (5% Von increase). Thus, 

it could be considered, with no major error on the result, that 

the EoL is largely represented by the time of the 1
st
 wire-

bond lift-off for the purposes of RUL. 

During the degradation phase ①, the thermo-mechanical 

stress provokes:  

1. Reconstruction of the metallization 

2. Crack propagation in wire-bonds 

As illustrated in Fig. 2 and verified in Fig. 3, Von increases 

in the range of 1-1.5% during the degradation phase ①. 

This increase was observed to be proportionately larger in 

other testing conditions. 

 

 

Figure 3 Normalized Von evolution during power cycling for 

the 6 tested modules (zoom on degradation stage ①). The 

sudden voltage drops are measurement artifacts 
 

First, the equipment for generating data and implementing 

the proposed RUL algorithm is presented. Then we explain 

the developed failure models. Next, the algorithm using a 

particle filter for RUL estimation is presented. Finally, 

prognostics results are presented and discussed. 

2. EQUIPMENT AND METHODOLOGY 

2.1. Device under test 

In commercial IGBT power modules, wire-bonds are 

preferred top connections because of cost aspects. They are 

usually considered as the weakest connection that 

determines the end of life (Degrenne et al. 2015). In an 

effort to provide a representative example of the market, 

commercially available 1200V/150A wire-bonded IGBT 

module was selected as a DUTs (device under test). The 

module includes 3 half-bridge legs.  

2.2. Power cycling at ΔT=70°C 

Power cycling tests with reasonably low acceleration factor 

(ΔT=70°C, Tmean=90°C) were realized with a custom test 

bench on the middle half-bridge. The high-side IGBT failed 
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first for all modules (5% Von increase criteria corresponds 

to 100% cycles). Figure 4 shows a picture of its wire-bond 

pattern after failure. The metallization reflectivity is visibly 

reduced and the six long wire-bonds (1-6) are lifted-off. 

 

 

Figure 4 Wire-bond lay-out of the high-side IGBT picture (after 

power cycling, with gel removed) and schematic 
 

The data of Von evolution was measured by the voltage 

sensor of the test bench. The first 10% of the data are 

truncated because they correspond to a settling time where 

current is adjusted to provide the correct ΔTj during the 

power cycling tests. In field condition, this settling time is 

not present and no data needs to be truncated. 

The particular case of DC power cycling simplifies the 

models since the current and the associated stress during the 

measurement are considered constant. 

2.3. General view of the estimation algorithm  

A general view of the algorithm for RUL and EoL 

estimation is proposed in Fig. 5. The inputs to the procedure 

are the measured temperature history Tj,meas(n-1..n) and 

the on-state voltage Von,meas(n) at moment n when the 

procedure is activated. The procedure is activated regularly 

every k thermal cycles. It first estimates the SoH. It then 

estimates the evolution of the SoH in the future (index m) in 

order to estimate the EoL and the RUL.  

The algorithm counts the temperature cycles and uses a 

degradation model and an electrical model to estimate the 

on-state voltage Von,est(n) based on the measured junction 

temperature history Tj,meas(n-1..n) between activations n-1 

and n. Von,est(n) is combined with the measured value of 

on-state voltage Von,meas(n) in the re-sampling block to 

generate the SoH. The SoH consists of the corrected values 

of the resistivity increase of the metallization Rmet,corr(n)., 

of the crack length increase Lcrk,corr(n), and of the on-state 

voltage Von,corr(n). 

For SoH extrapolation at index n+m, the history of past 

temperature cycles ΔTj,meas(0..n)  is used to predict the 

next temperature cycles ΔTj,meas(n+m-1..n+m). These 

temperature cycles are used as the inputs of the degradation 

and electrical models. The output is an estimation of the 

State of Health SoH(n+m) at index n+m. The extrapolation 

is performed iteratively with increasing m until the SoH 

parameters cross a threshold value. This crossing point 

defines the EoL (index n+m) and the RUL (index m). 

 

 

Figure 5 General view of the algorithm for SoH and RUL 

estimation 

3. DEGRADATION MODEL 

The objective of the degradation model is to estimate the 

crack length increase Lcrk,est(n) and the resistivity increase 

of the metallization Rmet,est(n) based on the temperature 

cycles between indexes n-1 and n and on the corrected crack 

length increase Lcrk,corr(n-1) and corrected resistivity 

increase of the metallization  Rmet,est(n-1) at index n-1. The 

temperature cycles are estimated with a rainflow algorithm 

and are presented in the form of a histogram of temperature 

cycles. This algorithm is typically used for damage-

accumulation based prediction of power modules (Mainka et 

al., 2011). In the case of RUL estimation, the temperature 

cycles at instant n+m are extrapolated by the mission profile 

generation block. This block estimates the future 

temperature cycles Tj,est(n+m) based on past temperature 

cycles Tj,meas(1..n) and SoH at instant m-1. 

3.1. General model for on-line implementation 

The general implementation of the degradation model is 

described in Fig. 6. The damage law converts cycles of 

temperature into damage values (expressed in %). This law 

is either fitted to Nf=f(ΔTj) curves provided by the 

manufacturer or established by a previous power cycling 
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campaign. In this paper, a Coffin-Manson law is used with 

arbitrary (and optimistic) constants. 

nTjANf   (3) 

 

After the damage law is used to compute the damage 

associated with each temperature cycle, a linear damage 

accumulation rule (i.e. Miner rule) aggregates the damage 

generated by each temperature cycle into a single damage 

value Dam(n-1..n) between indexes n-1 and n. The value 

Dam(n-1..n) may be used to activate the procedure, for 

example when Dam(n-1..n)>100/k.. 

Finally, Damage(n-1..n) is translated into an estimation of  

the states Lcrk,est(n) and Rmet,est(n) at instant n knowing 

also the corrected values of the states and of their derivative 

at instant n-1. To perform this translation, Lcrk and Rmet are 

assumed to increase linearly with damage. 

In (Yamada et al., 2007), thermal cycling profiles of 

different amplitude and duration (number of cycles) were 

performed on a large number of wire-bonded samples. 

Then, the samples were sectioned, observed with a 

microscope and crack lengths were measured, indicating an 

almost linear crack propagation rate independent of the 

amplitude of the thermal cycles. In this paper, we therefore 

assume linear crack length propagation in the weakest wire-

bond. 

The values of Lcrk and Rmet at the EoL (i.e. for a damage of 

100%) are considered to be equal to 1. The states Lcrk and 

Rmet can thus be considered as normalized physical 

parameters. These values at the EoL are used to estimate the 

initial value of the derivatives of the states. 

 

Figure 6 General implementation of the degradation model in the 

generic case valid for on-line implementation 

3.2. Simplified model for power cycling 

In this paper, the algorithm is tested with power cycling data 

at constant ΔI. In practice, the current cycles are defined to 

reach certain values of initial temperature cycles (70°C in 

our case), and the amplitude of the temperature cycles 

increases as the device ages because of increased 

conduction losses and thermal resistance (Degrenne et al. 

2015). With the assumption of a constant ΔTj (i.e. constant 

losses and constant thermal performances), the general 

implementation of Fig. 6 can be simplified as described in 

Fig. 7, and the mission profile generation function is not 

required since the temperature cycles are considered 

constant anyway. 

 

Figure 7 Simplified implementation of the degradation model in 

the case of power cycling with constant ΔTj 

 

The number of cycles to failure is estimated based on the 

Coffin-Manson damage law (3) and the initial temperature 

cycles of 70°C. The input of the degradation model is the 

number of temperature cycles between indexes n-1 and n. 

The damage is simply expressed as the ratio between the 

numbers of cycles at instant n divided by the total number of 

cycles until failure. The translation of the damage into an 

estimation of the states is performed as previously described 

for the general case by the state equation (4) where all 

parameters are normalized: 
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(4) 

 

The error e1 corresponds to the error in the linear state 

propagation block. It represents both the error for the states 

themselves, and for their derivative. The error is thus a 

vector of 4 rows. In the particle filter implementation, the 

values of the vector are generated randomly for each particle 

with a normal distribution of standard deviation σ1=1 at the 

EoL for Lcrk and Rmet and of σ1’=10 for their more noisy 

derivatives.  
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4. ELECTRICAL MODEL 

The objective of the electrical model is to convert the 

physical parameters Lcrk,est(n) and Rmet,est(n) into an 

estimation of the on-state voltage Von,est(n). 

4.1. Resistivity of metallization 

The die Aluminum metallization is few micro-meters thick. 

Its role is to spread the current across the die cells and to 

offer an interface for wire-bonding. One consequence of its 

reconstruction is the increase of its resistivity during power 

cycling (Lutz et al., 2011). In this paper, we assume that a 

linear increase in the resistivity of the metallization leads to 

a linear increase in the resistance of the electrical 

connection. Thus, the on-state voltage at high current is 

related to the resistivity of the metallization with the 

following equation: 

 
,, RmetmetVon    (5) 

where α and β are constants characteristic for each die type. 

4.2. Cracks in wire-bonds 

During power or passive cycling, crack propagation occurs 

near the joint interface (Lutz et al., 2011). Assuming 

unidirectional crack propagation L (Fig. 8), the joint area S 

is linearly reduced.  

 

 

Figure 8 Crack length in the joint of a wire-bond 
 

The resistance of a wire-bond subject to a linear crack 

length can therefore be expressed as (6): 

 

WB
WB

Lcrk
R

1
1

1 





  (6) 

where γ, δ and ε are constants depending on the stitch 

process. 

 

This relation (6) is also valid to represent the equivalent 

resistance of an interconnection composed of multiple intact 

wire-bonds in parallel with a single wire-bond subject to a 

linear crack length of with several wire-bonds subject to a 

linear crack length at variable growth rate. The voltage drop 

across the wire-bonds in the degradation phase can therefore 

be expressed as (7): 

 

estLcrk
estVon

,1
,









  (7) 

 

where γ’, δ’ and ε’ are constants. 

4.3. Overall electrical model 

Finally, the overall on-state voltage Von is the sum of the 

voltage drops across the metallization and wire-bonds plus 

other voltage drops considered constant during the 

degradation phase: 

1. Across the IGBT die (i.e. no degradation of the die, 

no dependence on Tj as implemented in (Degrenne 

et al., 2018a)) 

2. Across the low-side interconnection  

3. Across the DBC tracks, lead-frames and external 

connectors 

The combination of equations (5) and (7), plus other 

constant voltage drops, results in an overall physically-

inspired model: 

 

estLcrkd

c
estRmetbaestVon

,1
,,


  (8) 

where a+c is the initial Von value, b defines the linear 

increase of Von caused by the linear resistivity increase of 

the metallization, and c and d define the increase caused by 

crack propagation in the wire-bond joints. 

The parameters a, b, c and d were identified (curve fitting) 

during the degradation phase ① of the power cycling tests 

for each of the 6 DUTs. Boundary conditions for each 

parameter were defined to allow fast convergence. The 

experimental and modeled curves are presented in Fig. 9 

and the alignment between the curves before the first bond 

lift off is very good indeed. Figure 9 therefore demonstrates 

the validity of equation (8) to describe the evolution of Von 

during the degradation phase ①. 

4.4. Parameter Identification 

Unlike the above validation and the prognostics method 

presented in (Degrenne et al., 2018b) where the parameters 

a, b, c and d are identified with curve fitting to the 

experimental measurements, the present algorithm uses the 

model (8) with parameters pre-defined based on the 

following analysis of typical on-state voltage curves as 

presented in Fig. 3. 

 

Initially, when the power module is new (n=0), the 

normalized Von equals 1. Thus, equation (8) simplifies into: 

 

1)0(  canVon  (9) 

 

Figure 10 shows the contributions of the metallization and 

of the wire-bonds at the EoL for the DUT 1. The normalized 

Von increase attributed to the metallization Von,met(EoL) is 

approximately 0.75%, and the normalized Von increase 

attributed to the wire-bonds Von,wb(EoL) is also 

L
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approximately 0.75%. These values are typical for the 6 

DUTs. 

 

 

Figure 9 Comparison between Von during power cycling and 

the model for the 6 tested modules. 
 

 
Figure 10 Contribution of the metallization (red curve, 0.75%) 

and of the wire-bonds 0.75%) on the on-state voltage at the EoL 

for DUT 1. 
 

At the EoL, the normalized increase in the resistivity of the 

metallization Rmet(EoL) and in the crack length Lcrk(EoL) 

are assumed to equal 1. This leads to the following 

equalities: 

 

)(, EoLmetVonb   (10) 

 

)(,
1

EoLwbVon
d

c



 (11) 

 

In addition, the contribution of the wire-bond resistance at 

n=0 is considered to be one tenth of the one at the EoL. This 

ratio was found realistic after electrically modeling the wire-

bonds. 

 

100

)(, EoLwbVon
c   (12) 

 

Finally, these assumptions lead to the estimation of the 

parameters a=0.99925, b=0.0075, c=0.000075, and d=0.99. 

 

The parameters of the electrical model are constant in the 

algorithm, and they are not corrected. The electrical model 

is considered exact and no error is added to its output.  

5. RE-SAMPLING 

The objective of the re-sampling block is to combine the 

estimated Von,est to the measured Von,meas. More 

precisely, the likelihood of the particles of Von,est knowing 

Von,meas is used to decide whether the particle should be 

duplicated or not. 

First, the probability density function of the measured on-

state voltage Von,meas(n) is generated by adding the error 

e2 to the value measured by the sensor. The error e2 is 

assumed to have a normal distribution (e.g. domination of 

thermal noise) with a standard deviation of 0.1% (e.g. 2mV 

when Von=2V). This is achievable in DC power cycling 

environment where the constraints (e.g. isolation, speed, 

cost) on the sensor are low, and where the measurement is 

performed at constant current and temperature. 

 

2)(,)(, ensensorVonnmeasVon   
(13) 

 

The measured and estimated particles of Von,est(n) and 

Von,meas(n) are compared one by one. For simplicity, the 

likelihood of the estimated value knowing the measured 

value is computed with the assumption of a normal 

distribution. The likelihood  is expressed by: 

 
    













 


2

2

2

,,
exp

2

1



nmeasVonnestVon
nLkhd  (14) 

where σ is the standard distribution arbitrarily set equal to 

the standard deviation on the measurement of Von 

(σ=0.1%). 

In order to re-sample the particles based on the likelihood, 

the normalized cumulative sum of the likelihood is 

computed. As illustrated in Fig. 11, Npart numbers are 

randomly generated and compared to the cumulative sum in 

order to determine the particles that will be duplicated or 

removed. 
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Figure 11 Illustration of the re-sampling method with an example 

with 8 particles 

  

6. THRESHOLD COMPARISON 

The SoH is compared with threshold values in order to 

detect the EoL and the RUL. The parameters Lcrk,corr and 

Rmet,corr are normalized such that their value should be 1 

at the EoL. The associated threshold value is therefore 1. 

The parameter Von,corr is normalized such that its value is 

1 initially. The threshold is defined to equal 1.01 based on 

the experimental curves in Fig. 3. It was observed that 

power cycling with higher ΔTj lead to higher threshold 

values. This increase of the threshold value was also 

observed to be larger in PWM power cycling tests where 

more heat is generated in the device due to switching losses. 

7. RESULTS AND DISCUSSIONS   

The algorithm was simulated using Matlab. It was activated 

k=50 times before EoL. The number of particles was set to 

Npart=100. These relatively low values were chosen to 

demonstrate that an intermittent and low processing effort is 

sufficient to accurately estimate the EoL and RUL. 

The SoH and RUL estimated at each activation of the 

algorithm are plotted in Fig. 12. The initial predictions 

(n=1) correspond to the estimation predicted by the Coffin 

Manson model. When the algorithm is run (n increasing), 

the EoL estimates are corrected with measured Von,meas, 

and the EoL values estimated by Rmet,corr and Von,corr 

tend to converge towards to real value. Based on Fig. 12, it 

seems that Rmet,corr and Von,corr are the best parameters 

to follow for estimating the EoL and the RUL. On the 

contrary, Lcrk,corr non-linearly impacts the on-state voltage 

mostly at the very end of life (equation (7)), and does not 

contribute to providing an early prognostics. 

 

 

Figure 12 Mean estimation of the EoL and RUL as a function of 

number of cycle. 

 

The detail of the SoH parameters for a long prognostic 

horizon (i.e. after 2% cycles only, n=1) is shown in Fig. 13. 

In this case, the extrapolation of the SoH states mainly relies 

on the initial values of the degradation and electrical models 

because only one correction was performed. The deviation 

observed on the EoL estimates is large because the errors 

propagate without correction. The particles which did not 

cross the threshold after 300% cycles are not represented in 

the histograms. Since the used optimistic Coffin Manson 

parameters tend to predict a higher EoL, the estimations 

after 2% cycles predict a higher EoL as well. The 

distributions of the estimates show that the error e1 of the 

degradation model is correctly estimated considering that 

the parameters of the Coffin-Manson model represent a 

worst case. 
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Figure 13 Details of the algorithm activated after 2% cycles. 

Identification and extrapolation of the SoH states (left) and 

corresponding EoL estimates (right). On the left, the particles and 

their mean are yellow and black, the real value is red, dashed 

curves show the activation time (magenta) and the threshold 

(green). 
 

The detail of the SoH parameters for a medium prognostic 

horizon (i.e. after 50 cycles, n=25) is shown in Fig. 14. For 

Rmet,corr and Von,corr, the deviation on the EoL estimates 

is reduced. The average of the EoL estimates corresponds to 

the real EoL with a ±10% error.    

 

 

Figure 14 Details of the algorithm activated after 50% cycles. 

Identification and extrapolation of the SoH states (left) and 

corresponding EoL estimates (right). On the left, the particles and 

their mean are yellow and black, the real value is red, dashed 

curves show the activation time (magenta) and the threshold 

(green). 
 

The detail of the SoH parameters for a shorter prognostic 

horizon (i.e. after 75% cycles) is shown in Fig. 15. The 

deviation on the EoL estimates is narrow (less than 20%), 

especially for Rmet,corr and Von,corr. The average EoL 

estimate based on these parameters slightly under-estimate 

the real EoL. This is because the real EoL is defined based 

on a 5% increase of Von (i.e. after several wire-bonds lifts-

off), while the EoL estimated by the algorithm is defined as 

corresponding to the first wire-bond failure. This difference 

can be considered as a security margin.   

 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 

9 

 

Figure 15 Details of the algorithm activated after 75% cycles. 

Identification and extrapolation of the SoH states (left) and 

corresponding EoL estimates (right). On the left, the particles and 

their mean are yellow and black, the real value is red, dashed 

curves show the activation time (magenta) and the threshold 

(green). 
 

8. DISCUSSIONS AND PERSPECTIVES 

The evolution of Von can thus be used not only for health 

assessment but also for RUL estimation. This has important 

implications since it would typically enable health 

management strategies such as predictive maintenance. 

The algorithm demonstrated in this paper is a proof of 

concept that can be adapted and/or perfected in a number of 

ways. The major challenge is the adaptation to realistic 

mission profiles (as opposed to DC power cycling at 

constant ΔI). In the case of complex mission profiles, Rmet 

and Lcrk propagation rates are not a linear function of the 

number of cycles and the algorithm in Fig. 6 must be 

considered instead of the one in Fig. 7. Furthermore, several 

assumptions need to be revisited. 

First, the degradation model relies on several strong 

assumptions used in the state-of-art (e.g. linear metallization 

resistivity (Rmet) and crack length (Lcrk) increase, Coffin-

Manson model). Given the small amount of papers dealing 

with these physical phenomena, working on a stringent 

experimentally-validated physical degradation model is 

necessary.  

Then, the electrical model also relies on strong assumptions 

(e.g. homogeneous current in metallization and wire-bonds, 

independence of temperature). The performance of finite 

element multi-physical modeling should help improve the 

electrical model. 

Next, some parameters such as the error distributions and 

the threshold values were empirically or arbitrary defined 

without strong scientific justification. Their definition may 

influence the EoL estimation results and would require more 

investigation. In particular, PWM power cycling tests run in 

our lab indicate higher threshold values. It is therefore likely 

that a model generating the threshold value based on the 

measured temperature cycles will be necessary. 

Finally, this algorithm relies on a Von measure/estimation 

with high precision/accuracy in the mV range, with low 

stability drift over the life time of the product, and without 

temperature or current dependency. This is achieved easily 

in accelerated ageing power cycling at constant ΔI with a 

measure performed at the beginning of the heating phase, 

but presents a challenge for on-line and at low-cost 

implementation for all power semiconductor devices of a 

converter switching at several kHz. 

9. CONCLUSION 

In next generation power modules, it is likely that data 

relative to condition and health will be monitored. 

Processing this data with physical knowledge allows 

generating the information in a comprehensive way with 

confidence. This paper demonstrates how it is possible to 

generate useful information based on Tj and Von sensors. 

Experimental validation is performed using power cycling 

data.  

One outcome of the work is that the evolution of Von prior 

to first wire-bond lift-off can be used to estimate RUL with 

long prognostic horizon. One example illustrated by this 

work is by using the model with a particle filter for 

identification and extrapolation. 

Future works will validate the algorithm in a more realistic 

PWM test bench operating with realistic mission profiles. 
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