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ABSTRACT

There is an extensive literature available about condition mon-
itoring relying on multi-dimensional data-driven system mod-
els and mappings, including proposal of new methods and al-
gorithms, comparison of state-of-the-art methods, and state-
of-the-art revisions. But, when practitioners start to imple-
ment their own software to carry out their research, there is a
lack of articles in the literature with detailed documentation
about how to design a framework for repeatable and compa-
rable experimentation. We propose a design for repeatable
and comparable experimentation on the field of Data-Driven
Residual-Based Fault Detection and Isolation. The frame-
work has already been used for several experiments, with suc-
cessful results, eliciting features such as (i) decreasing of de-
veloping times, (ii) facilitating of configuration management,
and (iii) facilitating of collection and comparison of results.

1. INTRODUCTION

Fault diagnosis plays a central part within modern industrial
systems in order to assure condition monitoring and quality
control with high performance capabilities (Iserman, 2011)
(Korbicz, Koscielny, Kowalczuk, & Cholewa, 2004). Several
goals are pursued by the development and installation of such
components. While some goals are product-related, placing
the focus on the assurance of high quality items/parts at the
end of the production chain (Eitzinger et al., 2010), some
others are production-related, mainly aiming for minimal op-
erational downtime due to maintenance, degradation or fail-
ures inside the system (Palade & Bocaniala, 2010) (Chiang,
Russell, & Braatz, 2001). In the ideal case, a zero-defect
strategy is pursued in order to exclude any bad production
parts, thus saving costs and time-intensive posteriori checks.
Human-related factors are vital as well especially within ac-
tive human-machine interaction scenarios (Lughofer et al.,
2009), as operators could be injured when a system suffers
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from any malfunction not properly addressed (Angelov, Giglio,
Guardiola, Lughofer, & Luján, 2006).

Fault diagnostics thereby consists of several steps ranging
from Fault Detection (FD) (Chiang et al., 2001) through Fault
Isolation (FI – location of the fault) (Gorinevsky, 2011) to
fault identification (elicitation of intensity and type of faults)
(Mehranbod, Soroush, & Panajpornpon, 2005) as well as fi-
nally to fault reasoning (identifying the root cause of a fault)
(Wilson, Larry, & Anderson, 1993) and fault correction (au-
tomatic self-healing capacities of the system). Intuitively, it is
clear that the performance of all these components heavily re-
lies on the FD performance, as only upon the correct detection
of faults the remaining steps can be triggered. Thus, the main
intention is usually to maximize the fault detection rates. Fur-
thermore, FI plays an important role especially in large-scale
production systems (with different stages) (Cohen, Avrahami-
Bakish, Last, Kandel, & Kipersztok, 2008) or multi-sensor
networks (Khaleghi, Khamis, Karray, & Razavi, 2013) where
the manual search for the fault location is very time-intensive
and often too slow for omitting severe failure which could
be even dangerous for operators (e.g. a leakage in a pipe for
emission gases) (Angelov et al., 2006).

There is a vast literature of Fault Detection and Isolation (FDI)
methods with the usage of data-driven (statistical) system mod-
els, typically explaining the relationships between sensors and
measurement channels in form of high-dimensional causal
mappings —comprehensive works can be found in (Wang
& Gao, 2006) or (Montgomery, 2008); data-driven models
have the advantage that they can be fully automatically ex-
tracted and thus do not require long development phases as is
the case of specific signal (frequency-based) analysis meth-
ods (Pichler et al., 2016) or observer-based design based on
physical models (Chen & Patton, 1999) (Korbicz et al., 2004).
Also our recent works address this way of performing FDI,
which are based on an on-line analysis of residual signals ex-
tracted from the system models and which have been success-
fully applied to several industrial use cases —for details see
(Serdio, Lughofer, Pichler, Buchegger, & Efendic, 2014.a)
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(Serdio, Lughofer, Pichler, Buchegger, & Efendic, 2014b)
(Serdio et al., 2015).

In this paper, we present the detailed software design of our
FDI framework for repeatable, comparable and fully auto-
matic experimentation. In cases when the number of sen-
sors/measurement channels becomes huge and many causal
relations between channels exist, an appropriate handling of
the complex SysId network desires specific requirements re-
garding architecture and software design. Such a careful de-
sign would establish a framework for testing and comparing
different FDI strategies, while minimizing the programming
efforts, and reducing the bug rates.

To our best knowledge and upon our detailed state-of-the-art
researches, we found only one framework of similar nature
as proposed by other authors in (Feldman et al., 2010). The
greatest difference among this work and ours are:

1. Our framework starts from an absolute lack of knowledge
of the system topology, therefore providing interfaces for plu-
gin SysId methods to identify a system network, whereas the
work in (Feldman et al., 2010) stars from a known system
topology and provides a graph-like representation to express
this matter.

2. The work in (Feldman et al., 2010) has a wider goal than
ours, as it reveals agnostic regarding the diagnostic method
used, whereas ours is Data-Driven Residual-Based specific.

3. The work in (Feldman et al., 2010) includes big efforts
on defining metrics of several types, including detection, iso-
lation, computational and system metrics. Such efforts must
be schedule for future work to improve our framework, as
they reveal cornerstone.

The paper is thus structured in the following way: Section 2
describes the previous knowledge needed for a better under-
standing of sequel sections, Section 3 enumerates the frame-
work requirements considered, Section 4 describes the de-
tailed design of the FDI framework proposed, focusing on the
description of the business model entities and on some ser-
vices and interfaces, displaying the framework capabilities,
Section 5 summarizes the cases of study where the frame-
work has been used, and Section 6 concludes the paper.

2. PREVIOUS KNOWLEDGE

The framework was developed following the Domain Driven
Design paradigm. Being familiar with it is recommended,
in order to have a better understanding. It is also recom-
mended to be familiar with Object Oriented (OO) program-
ming (Eckel, 2000), as well as with software design patterns
(Gamma, Helm, Johnson, & Vlissides, 1995). The follow-
ing Section 2.1 introduces the Domain Driven Design (DDD)
paradigm.

Figure 1. Domain Driven Design explained graphically,
reprinted from (Evans, 2006).

2.1. Domain Driven Design

Domain Driven Design (DDD) is a paradigm for software de-
velopment which centers the design on the business domain.
Because it is deeply driven by the domain, its main goal is to
reflect the business concepts with the greatest possible accu-
racy (Evans, 2006). The following explanations about DDD
are extracted from (Evans, 2004) and (Evans, 2006), corner-
stone readings to understand the paradigm.

Entities are objects which are mainly characterized by an
identity. The identity remains the same throughout the states
of the software, therefore making possible to track the en-
tities. Entities in our design are concepts such SCENARIO,
TRAINFILE, TESTFILE, TRAININGBLOCK, METHOD,
METHODTRAINED, EVALUATION, etc.

Value objects are objects describing a certain domain aspect,
but without an identity. The main interesting aspect of a value
object is how we are interested on its attributes, and not on
which object it is (no identity). Value objects in our design are
concepts such TRUEPOSITIVERATE, FALSEPOSITIVERATE,
etc.

Aggregates define object ownership and boundaries. It is ac-
tually a pattern, which groups associated entities and value
objects together, so they are considered as one unit from the
point of view of data changes and consistency. Thus, the ag-
gregate and all the entities and value objects inside its bound-
aries are only accessible through a root entity, which is re-
sponsible for the integrity of all the aggregate as a whole.

Repositories are the components responsible for encapsulat-
ing the logic needed to obtain object references, either to en-
tities or to value objects. They are therefore dealing with
the persistence infrastructure (databases, web services, files,
etc.), so the domain model is decoupled from it. The reposito-
ries must contain the details to access the infrastructure while
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keeping a single interface. The main interface of a repository
is intended for querying objects. When the repositories access
to different types of infrastructure, it is plausible to consider
using an strategy (Gamma et al., 1995).

Services are responsible for actions which do not clearly be-
long to an object. In general they represent important actions
or behaviors in the domain. In our domain, a service is for
instance (i) the training of a particular method for a concrete
scenario, system identification and normalization, (ii) the cre-
ation of a set of artificial faults for a given scenario, (iii) the
run of a FDI experiment given a method, a set of faults, and an
FDI method, etc. Generally speaking, the action or behavior
(concept) encapsulated by a service uses several entities and
value objects, becoming a connection point for all of them.

3. FRAMEWORK REQUIREMENTS

The following were the gathered requirements, which drove
the framework design.

R1 - Perform quality control on processes where only histor-
ical data is available, and expert knowledge is not available.

R2 - Allow different normalization actions for pre-processing
the available process data.

R3 - Allow different SysId methods for eliciting the system
network hidden behind the data.

R4 - Be agnostic about the methods used as residual genera-
tors, so any Data-Driven residual generator would suit.

R5 - Provide a unified way for inserting different artificial
faults (abrupt and incipient) in test data.

R6 - Provide a unified way for testing different FDI strategies.

R7 - Provide a unified way for repeating the same test scenar-
ios using different FDI strategies.

R8 - Provide a unified way for comparing the results obtained
from the same test scenarios on different FDI strategies.

R9 - Provide a unified way for comparing the results obtained
from different test scenarios on the same FDI strategies.

R10 - Provide a unified way for storing intermediate results,
such as (i) system identification networks, (ii) residuals, (iii) fault
warnings, (iv) isolation candidate sets.

4. DETAILED DESIGN

This section describes the detailed design of the framework
developed, following the DDD paradigm, which arose natu-
rally by creating a model from the FDI concepts whereas the
operations of the framework were born as services. The fol-
lowing descriptions focus on the main business entities, and
in most of the cases the data model supporting the persistence
of the framework is a direct translation from the business en-

tities to (in our choice) a database structure.

Table 1. DDD mapping, showing the aggregate roots and the
entities inside the boundaries of the aggregate.

Aggregate root Entity

Scenario

Scenario
Channels
TrainFile
TestFile
Real Fault

System Identification System Identification
Dependencies

Normalization Normalization

Training Block Training Block
Methods Trained

Methods Methods

Run

Run
Fault Intensity
Custom Fault
Iteration
Evaluation
Residuals
FPRs
FPRs by Channel

FD Algorithm
FD Algorithm
Detections
FD TPRs

FI Algorithm
FI Algorithm
Isolations
FI TPRs

4.1. Scenario

A SCENARIO is a process from where we have historical data
we want to model by Data-Driven methods, to later assess
our FDI methods and algorithms. Therefore, a scenario ag-
gregates the following entities in its structure:

• One TRAINFILE (it could be several, but would compli-
cate the design), which holds the dataset for training the Data-
Driven methods. This dataset is supposed to be fault-free,
therefore the ground-truth of the process to model.

• Several TESTFILES, holding the datasets of the process
which we will use for testing the trained methods. The test
files are the files where we will either (i) have already existing
faults or (ii) will inject artificial faults.

• Several CHANNELS (variables). These channels conform
the training and test files. To such matter, the business model
must support an assertion ensuring that the channels of a given
scenario are the same as the channels of its training and test
files, thus maintaining the integrity of the data.

4.2. System Identification

A SYSTEMIDENTIFICATION, in Data-Driven modeling, is a
process which given a dataset and an specific variable vi, pro-
vides a list of the dataset variables {vj , ..., vs} which better
model vi, and where i 6= j 6= s. In our proposed design, the
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list of variables {vj , ..., vs} are called the DEPENDENCIES of
the variable i. Our system identification methods also pro-
vide the linear quality per variable, so it is possible to rank
the importance of each identified variable, being also possi-
ble to establish mechanisms to determine the optimal number
of variables to use in a model.

Understanding the aforementioned behavior as an interface,
the different system identification processes are suitable to be
hidden behind a virtual factory, therefore allowing for differ-
ent system identification strategies. Both design patterns are
explained in detail in (Gamma et al., 1995).

The system identification concludes in a complete SysId net-
work, as depicted in Figure 2, where the nodes are channels
(variables) and the arrows between nodes are input/output
structures.

Figure 2. System identification network example including
eight channels (sensors), where the arrows indicate the in-
put/output structure of the various models for all channels
(each channel used as target once).

In that example, we can elicit several different cases:

• ’Channel 2’ has a three dimensional model, with inputs
{’Channel 1’, ’Channel 5’, ’Channel 6’}
• ’Channel 8’ is redundant with ’Channel 7’, as it has a one
dimensional model with inputs {’Channel 7’}
• ’Channel 6’ does not have a model, meaning it cannot be
explained by the other channels.

4.3. Normalization

A NORMALIZATION represents a collection of actions used
to pre-process raw data. Among the different possible ac-
tions, the most usual ones are scaling the data to a certain
range, mean centering the data, stretching variances to the
unit, and denoising. As with the system identification, the
normalization is suitable to be hidden behind a virtual factory
(Gamma et al., 1995), therefore allowing for different strate-
gies (single actions or combinations of them). When this is

over-engineered, it is possible to consider storing the datasets
normalized according to the different strategies. There are
three important remarks with normalization actions:

• Some actions, such as scaling the data, must be extracted
from the training data. There are real cases where the test data
is out of the ranges of the training data. The action applied to
this data could magnify even more the range disparity. This
out-of-range situation could be a first indicator about wrong
test data. Reasons are manifold, for instance (i) training and
test data were recorded at different process stages, (ii) the
data was collected after changes in the process, such as main-
tenance, repairs, etc.
• Even when actions such scaling, mean centering or stretch-
ing variances only affect the quality of the trained methods in
case of scale-variant methods (methods affected by the scale
of the data), it must be taken into account how the residuals
of scale-invariant methods would be affected when mislead-
ing or using different factors for these actions during training
and testing.
• In some cases, the actions to apply could be extracted
from the online streaming test data. This is a particular case,
used with, for instance, evolving systems. We do not cover
this situation in our framework design.

4.4. Training Block

A TRAININGBLOCK is an important entity regarding the train-
ing of Data-Driven methods, as it relates the trained methods
(proxies to models) with the scenario and channels they were
trained (created) for, using a particular 3-tuple of {normalization,
system identification, method}. Thus, the business model al-
lows to browse from a given training block to the concrete
method trained associated to a concrete channel of a sce-
nario. The following is the minimal interface proposed for
the Trained Block repository:

Interface 1 Proposed interface for the training block reposi-
tory

1: Input id: the id of the training block
2: Return: the training block with id id
3: function SELECTBY ID(id)
4: Input scn: the scenario of the training block(s)
5: Return: the training block(s) of the scenario scn
6: function SELECTBY SCN(scn)
7: Input scn: the scenario of the training block
8: Input sysId: the system identification of the training block
9: Input nrm: the normalization of the training block

10: Return: the training block of the 3-tuple {scn, sysId, nrm}
11: function SELECTBY SCN SYSID NRM(scn, sysId, nrm)

4.5. Method

A METHOD is an entity to discern among the different method
types. Thus, each type of method for testing would be a sep-
arate method entity. Methods are, for instance, linear regres-
sion, fuzzy systems, neural networks, etc.
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4.6. Method Trained and IModel

A METHOD TRAINED is a wrapper to a model, making it ac-
cessible to the business domain. Hiding the model behind an
interface as proposed in Interface 2, the framework allows to
perform several operations with exchangeable models. Thus,
each model implementing the interface IMODEL could be ex-
changed in operations such as:

1. Training strategies, like Cross Validation (CV).
2. Assessment of model performance and quality.
3. Estimation of online data.
4. Generation of residuals.
5. FDI algorithms.

Algorithm 1 depicts a generic CV implementation, which prof-
its from the abstraction given by the interface.

Interface 2 Proposed interface IMODEL, to be implemented
by the different model types

1: Input params: variable list of parameters
2: Constructor for an empty model parameterized by params
3: function MODEL(params)
4: Input inputs: matrix of inputs of the model
5: Input targets: vector of targets of the model
6: Creates a model given the inputs and targets
7: function CREATE MODEL(inputs, targets)
8: Input inputs: matrix of inputs to evaluate
9: Input targets: vector of targets to evaluate

10: Return output: the evaluation given by the model
11: function EVALUATE(inputs, targets)
12: Input inputs: matrix of inputs to assess the performance
13: Input targets: vector of targets to assess the performance
14: Return performance: the performance of the model
15: function CHECK PERFORMANCE(inputs, targets)

4.7. Run

A RUN represent an experiment. The entity aggregates the
following entities in its structure:

• Several FAULTINTENSITIES, intended for testing the sen-
sitivity of the methods to the magnitude of the faults occur-
ring inside the system. Concerning this design, our proposed
framework includes a component able to introduce faults on
the fly, given a test dataset, a channel, a custom fault (fault de-
scription) and a fault intensity –see more detail in Section 4.9
and in Algorithm 2.
• Several ITERATIONS. An iteration is a repetition of the
experiment, with a different set of faults. Thus, the faults
are introduced in the test data whereas being associated to a
particular iteration –see Section 4.8.
• Several CUSTOMFAULTS, associated to the iterations, as
described in Section 4.9.

4.8. Iteration

As already introduced, an ITERATION is a repetition of a run,
with a different set of custom faults. Therefore, each itera-

tion must test its set of faults for all the fault intensities of the
run the iteration belongs to. This behavior is suitable to be
implemented as a service of the business model, and would
compute the indicators for the statistics about the FDI perfor-
mance of the methods, i.e. how much faults were properly
detected and properly isolated. One more time, this behavior
is understood as a service –recall Section 2.1.

4.9. Custom Fault

A CUSTOMFAULT is an entity describing a fault. Our design
includes two main categories for faults: {abrupt, incipient}.
These faults are introduced on the fly, by a
FAULTBUILDER component, as described in Algorithm 2.
The incipient faults (drifts) are parameterized by a slope, al-
lowing for different shapes (logarithmic, constant or expo-
nential), reflecting different possible malfunctions. We didn’t
consider combinations of faults into a single pattern, as the
aforementioned fault types are the most common ones (Luo,
2006), and the most studied along the literature as well (Zhang,
Polycarpou, & Parisini, 2000) (Zhang, Polycarpou, & Parisini,
2002) (Parlangeli, Pacella, & Corradini, 2007) (Serdio, Lughofer,
Pichler, Buchegger, & Efendic, 2014.a) (Serdio, Lughofer,
Pichler, Buchegger, & Efendic, 2014b) (Serdio et al., 2015).

4.10. Real Fault

A REALFAULT is a fault which is contained in the recorded
data of a test file. There are several remarks about real faults,
and mixing them with custom faults, in our design:

• Generally speaking, unless the opposite is properly docu-
mented, we do not know the ground-truth of the data where a
real fault is happening.

• When the ground-truth data where a real fault occurs is
unknown, the real fault is not reproducible at different fault
intensities.

• When the ground-truth data where a real fault occurs is
known, these authors encourage to model that fault as a cus-
tom fault, therefore making possible to reproduce it at differ-
ent fault intensities, thus allowing to determine at what inten-
sity the fault is properly detected and isolated.

• When performing a run with custom faults in a scenario
in which test files also have real faults, the regions where real
faults occur must be considered, such that detections happen-
ing there are not counted as False Positive (FP).

• These authors discourage mixing real faults and custom
faults in a run.

4.11. Evaluations

An EVALUATION is the result of applying a method trained
(the model behind it) to a test file. Given a method trained, the
business model allows to identify the dependencies used for
training it (see Figure 3), and by using these dependencies,
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Figure 3. Design of SCENARIOS and TRAININGBLOCKS. A scenario is composed of one training file, and several test files,
all containing the same set of channels. The training blocks are the joint entities keeping together the methods trained for the
channels of a scenario, given a concrete pair of {system identification, normalization} strategies.

Figure 4. Design of the RUNS of an FDI experiment, where it is seen how a run in composed of several iterations, and how
each iteration contains its own set of custom faults, which are reproducible in all the fault intensities of the run. The methods
trained are, later on, evaluated on the test files containing the custom faults, computing the residuals which serve as the starting
point for the Residual-Based FDI algorithms to be tested.
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Algorithm 1 Generic Cross Validation algorithm, training models which implement the IMODEL interface

1: Input inputs: matrix of inputs for training the model
2: Input targets: vector of targets for training the model
3: Input model params: parameters of the model
4: Return model final: the trained model
5: Return perf final: the model performance on the whole data
6: Return perf training: the model performance on the training folders
7: Return perf testing: the model performance on the test folders
8: function CROSS VALIDATION(inputs, targets, model params)
9: folders← SPLIT(inputs, targets) . Split is a function to create the CV folders

10: for all folder fi in folders do
11: in training i← INPUTS TRAINING(fi) . A CV folder is divided in training and test
12: in testing i← INPUTS TESTING(fi)
13: out training i← TARGETS TRAINING(fi)
14: out testing i← TARGETS TESTING(fi)
15: model i← MODEL(model params) . Parameterized empty model
16: CREATE MODEL(model i, in training i, out training i) . Model the training data of the CV folder
17: perf training(i)← CHECK PERFORMANCE(model i, in training i, out training i) . Performance assessment
18: perf testing(i)← CHECK PERFORMANCE(model i, in testing i, out testing i)
19: end for
20: model final← MODEL(model params) . Final model
21: CREATE MODEL(model final, inputs, target)
22: perf final← CHECK PERFORMANCE(model final, inputs, target)
23: return model final, perf final, perf training, perf testing
24: end function

Figure 5. Design of FD performance rates.

it is possible to extract (from the test file) the inputs to the
model and the target to estimate.

There are two types of evaluations:

• Evaluations not linked to a pair {iteration, fault intensity}.
These evaluations are performed on the test files without cus-
tom faults built-in. These are the evaluations used to calculate
the FP rates, as they represent the behavior of the running FDI
system during the normal operation, i.e. when no faults occur.

• Evaluations linked to a pair {iteration, fault intensity}.
These evaluations are performed on the test files with custom
faults built-in. These are the evaluations used to calculate the
True Positive Rates (TPRs), as they represent the behavior of
the running FDI system during the operation with faults.

4.12. Residuals

A RESIDUAL is directly linked to an evaluation by a 1-1 re-
lation, so the residual could be an attribute of the evaluation
it belongs to. Our design explicitly separate both entities be-
cause of performance, as the residuals of an evaluation must,
at least, hold one signal as large as the channel the residuals
were computed for. Therefore, when separated, it would be
possible to retrieve one or several evaluations from the reposi-
tories without uploading into memory the whole residual sig-
nals calculated. The residual entity is also suitable to store
(i) the estimation of the target from where it was extracted, to
avoid browsing the business model to look for it, (ii) some
metrics about the residual signal, such are error measures
of the estimation, correlation measures between the residuals
and the target, etc. Departing from the residuals, practitioners
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Algorithm 2 Introduction of custom artificial faults on the fly

1: Input dataset: the dataset to introduce the fault in
2: Input channel name: the name of the channel where the fault must be inserted
3: Input custom fault: the custom fault to introduce
4: Input intensity: the fault intensity
5: function INSERT CUSTOM FAULT(dataset, channel name, custom fault, intensity )
6: channel← GET CHANNEL(dataset, channel name)
7: start← GET START(custom fault)
8: end← GET END(custom fault)
9: fault type← FAULT TYPE(custom fault)

10: switch fault type do
11: case abrupt
12: . Introduce the abrupt fault in the channel
13: channel[start, end]← channel[start, end] + (channel[start, end] * intensity / 100)
14: case incipient
15: . Get the drift shape to modify the channel. Log.: {1/5, 1/4, 1/3, 1/2}. Cons.: {1}. Exp.: {2, 3, 4, 5}
16: slope← GET SLOPE(custom fault)
17: fault size← (start - end)
18: step← (fault intensity / fault size) . Step of the drift
19: drift← ([step : step : intensity]slope)/(intensityslope/intensity) . Increasing intensity of the fault
20: . Introduce the incipient fault (drift) in the channel
21: for i step = 1→ fault size do
22: channel[start + i step]← channel[start + i step] + (channel[start + i step] * drift[i step] / 100)
23: end for
24: end switch
25: end function

can extend the business domain to incorporate, for instance,
features extracted by a sliding window after processing the
residual signal, so incorporating that line of research.

4.13. Fault Detection Algorithms

A FAULTDETECTIONALGORITHM is an algorithm which an-
alyzes a stream of residuals, requiring (i) to raise an alarm, as
soon as possible, when a fault is happening in the system and
(ii) to remain silent (do not raise an alarm) when a fault is not
happening in the system.

In our proposed design, the FD algorithms satisfy an inter-
face, so as it happened with the models, FD algorithms are
exchangeable. The interface is described in Interface 3:

Interface 3 Proposed interface IFaultDetection, to be imple-
mented by the different FD algorithms

1: Input params: variable list of parameters
2: Constructor for an FD Strategy parameterized by params
3: function FD STRATEGY(params)
4: Input residuals: a stream of residuals
5: Return fd indicators: a stream of FD indicators
6: function RUN FD(residuals)

4.14. Detections

A DETECTION is an indicator, associated to a custom fault,
stating whether a fault has been detected given a combina-
tion of {FD algorithm, method, fault intensity}. This is il-
lustrated in Figure 5, which shows all the links among the

entities. Thus, given the set of custom faults of a run and
considering how each custom fault relates to a detection indi-
cator, it is straightforward to compute the FD capabilities of
a particular FD strategy.

4.15. FD True Positive Rates

A FD TRUE POSITIVE RATE (FD TPR) is a percentage
in [0-100] indicating how plausible is, for an FD strategy, to
detect a fault. The FD TPRs are to be reported for a given
combination of {FD algorithm, method, fault intensity}.

4.16. False Positive Rates

A FALSE POSITIVE RATE (FPR) is a percentage in [0-100]
indicating how plausible is, for an FD strategy, to raise an
alarm indicating a fault when there is not such a fault hap-
pening at the system. Similar to FD TPRs, FPRs are reported
for a combination of {FD algorithm, method}.

4.17. Fault Isolation Algorithms

A FAULTISOLATIONALGORITHM is an algorithm which,
given a FD indicator, analyzes the state of the system requir-
ing (i) to provide a candidate list of variables responsible for
the fault, and (ii) to associate a confidence to each variable
into the candidate list. Following the same line of reasoning
as with FD algorithms, FI algorithms must satisfy an inter-
face, in order to become exchangeable.
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4.18. Isolations

An ISOLATION is an indicator, associated to a detection, stat-
ing whether a fault has been isolated given a combination
of {FI algorithm, method, fault intensity}. The combination
{FI algorithm, method, fault intensity}, in our design, is indi-
rectly associated to the isolation by the (previous) detection.
Please recall Figure 5 for a better understanding.

4.19. FI True Positive Rates

A FI TRUE POSITIVE RATE (FI TPR) is a percentage
in [0-100] indicating how plausible is, for an FI strategy, to
isolate a fault. As it was the case for detections, the FI TPRs
are reported for a combination of {FD algorithm, method,
fault intensity}.

5. CASE STUDIES & LESSONS LEARNED

5.1. Case studies tested

We have successfully evaluated the whole framework together
with the interplay of all components based on industrial use
cases in rolling mill and engine test bench applications, in our
previous works in (Serdio, Lughofer, Pichler, Buchegger, &
Efendic, 2014.a), (Serdio, Lughofer, Pichler, Buchegger, &
Efendic, 2014b) (Serdio et al., 2015).

From the case studies tested, we want to highlight that a nice
example regarding our claims for an easy usage of the frame-
work with decreasing development times and advantages for
configuration management is underlined by our work in (Serdio,
Lughofer, Pichler, Buchegger, Pichler, & Efendic, 2014). It
tested different filters applied to the residual space, with dif-
ferent configurations, aiming for checking whether it was pos-
sible to reduce FPR and increase TPR rates significantly (which
was finally the case). Each filter and configuration was devel-
oped by creating a different preprocess for a given FD strat-
egy (µ + nσ tracking), and the filter with its configuration
was provided by factory. In average, only 5 additional lines
of code (plus the factory) were required for each combination
of filter+configuration, whereas the processes of (i) residual
generation, (ii) test of faults, (iii) computation of FPR and
TPR rates and (iv) ROC curves remained untouched.

5.2. Compatibility

The realizations of all the framework components have been
implemented in a MATLAB 2010b environment, using for
persistence MySql Server 5.5.50. Hence, the framework can
be directly used without any modifications under operating
systems supporting the combination of both tools, what is
mostly true in all recent versions of Windows, Linux and
Macintosh.

5.3. Resources

Concerning computational and memory demands (using an
Intel Core i7-2600K processor at 3.4GHz, 8 cores, with 12GB
of RAM), a bottleneck could be observed during training the
large variety of models (e.g., 145 in sum for rolling mills)
when using a non-linear model structure and carrying out a
detailed cross-validation procedure based on 10-folds.

Such was the case with SparseFIS (Lughofer & Kindermann,
2010), which is a Takagi-Sugeno fuzzy systems automatically
extracted from data: it lasted several days up to one week
when performing it sequentially for each channel based on a
parameter grid over the essential learning parameters. How-
ever, the usage of the non-linear model structure was nec-
essary to assure a higher FD performance due to the non-
linearities contained in the system to meet the companies goals,
and could not be circumvented by linear or quasi linear meth-
ods (Serdio, Lughofer, Pichler, Buchegger, & Efendic, 2014.a).

Therefore, parallelized threads for training the models for the
different channels helped to reduce the computational burden
significantly. This parallelization is straightforward due to the
independent treatment given to the channels.

5.4. Lessons Learned

We can not conclude without mentioning some important lessons
learned from the design and development of this framework,
including the open lines where the framework still needs ef-
forts and future extensions.

One important extension line is the inclusion of a mechanism
to simulate a data acquisition component, so the framework
could provide functionality for dealing with (i) missing data,
(ii) noisy data and (iii) data recorded at different rates, coming
from different subsystems. At its current state, the framework
does not provide a mechanism allowing this pre-processing
to adequate the data, so it must be carried out outside the
framework. Once carried out, the resulting datasets can be
used to create an Scenario and test the FDI algorithms, but
functionality to integrate these data-adquisition steps would
considerably improve the framework.

As it was stated in Section 4.9, the most common fault types
are {abrupt, incipient} (Luo, 2006), and there are the ones
the framework can introduce on-the-fly. Future versions must
also include intermittent faults and multiple faults (faults over-
lapped on time), therefore expanding the testing casuistry.

Another important extension line is to incorporate other mea-
sures enriching the set of FDI capabilities assessed inside the
framework. When the most important ones are perhaps Fault
Detection Time (Mfd) and Fault Isolation Time (Mfi), CPU
Load (Mcpu) and Memory Load (Mmem) are to be consid-
ered as well. These and other metrics for future extensions of
the framework can be found in (Feldman et al., 2010).
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Finally, once the framework provides support for repeatable
and comparable FD and FI experimentation, support to test
fault severity estimation algorithms seems necessary as well,
so the framework could provide full FDI support.

6. CONCLUSION

The paper presents a detailed design of a FDI Software Frame-
work for repeatable and comparable experimentation, which
design was guided by its business model following the Do-
main Driven Design paradigm. The proposed framework was
implemented and tested in two real use cases, which related
works are already published and available. The article con-
sidered software-related aspects, bringing the importance of
an architecture to the discussion.

Future work must go in the direction of providing expandabil-
ity of the framework by the use of public interfaces, consid-
ering to make the implementation available for the research
community, aiming for the framework maturation.

The main lines for future work are data-acquisition compo-
nents, inclusion of intermittent and multiple faults and en-
richment of the set of (general purpose) FDI measures of the
framework.

Finally, a more ambitious extension would consider support-
ing fault identification, fault severity estimate and fault rea-
soning algorithms, thus having a full diagnostics system avail-
able, which may increase users’ attention and understandabil-
ity of fault alarms. On the other hand, identification and rea-
soning usually requires significant input from experts (e.g., in
form of fault signatures, fault patterns, root-cause rules for
fault back-tracing etc.), which would make the framework
less generically applicable.
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Algorithm 3 Service to perform a Run and compute the Evaluations and Residuals
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3: function PERFORM BY RN MT(run, method )
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