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ABSTRACT 

In recent years, Bayesian networks have been drawing 

attention of the industrial and research community 

especially in the field of diagnostics for the reasoning 

capabilities they offer under conditions of uncertainty.  

Given the system of interest, a Bayesian network represents 

a graphical model of the system itself, in which the different 

players are linked to each other through probabilistic and 

causal relations. If the model is queried with appropriate 

statistical techniques, the whole approach can present 

several advantages over other data analysis methods. 

Among the others: 1) the approach can provide outputs even 

if some entries to the model are missing, due to the above 

mentioned dependencies between the players of the system; 

2) the approach represents an ideal environment to include 

prior knowledge during the building up of the model, given 

the causal and probabilistic semantics; 3) a Bayesian 

network provides the possibility to learn causal relationships 

and gives therefore the possibility to improve the domain 

knowledge. 

Airbus Defence and Space has been working on improving 

the aircraft diagnostics capabilities at component, sub-

system and system level in terms of fault detection and 

isolation. The focus has been also to develop means for 

reasoning about the remaining operational and functional 

capabilities of the aircraft. 

The initial outcomes have been tested on a simulation 

platform featuring a Data Acquisition Processing Unit, 

various computing nodes, on which the different aircraft 

systems (like the fuel system, the hydraulic system, the 

actuation systems, etc…) run. The data communication 

architecture of the platform is based on OSA-CBM (Open 

System Architecture for Condition-Based Maintenance). 

Initial objectives of the project are: 1) to demonstrate the 

feasibility of integration of the concept within the above 

described simulation framework; 2) to develop means to 

allow an easy and structured translation of the system 

engineer knowledge in terms of a Bayesian network with 

associated conditional probabilities; 3) to provide a modular 

architecture for the concept facilitating effective 

coordination between the development-departments and 

efficient development and maintenance of the software and 

4) to prove the scalability of the concept (i.e. applicability to 

systems of different sizes and reasoning on different levels 

from component to system level). 

The candidate systems selected for the proof of concept are 

the fuel and the hydraulic systems of a generic aircraft. The 

results obtained so far look promising with respect to the 

above mentioned objectives of the project. 

ABBREVIATIONS 
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BITE Built-In Test Equipment 

BN Bayesian Network 
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OSA-

CBM 

Open System Architecture for Condition-based 

Maintenance 

OSA- 

EAI 

Open System Architecture for Enterprise 

Application Integration 

XFER Transfer 

1. INTRODUCTION  

The sensory system of modern aircraft has been becoming 

more and more comprehensive and widespread. For 

example (Canaday, 2016), Airbus’s A320 generates 15,000 

parameters per flight, the A330 30,000, the A380 250,000 

and the A350 will generate 400,000 parameters. This has 

opened up new opportunities in the field of aircraft 

diagnostics and awareness, and approaches based on the so 

called “Big Data Analytics” and “Internet of Things” are 

trying to make profit out of the immense availability of new 

data (Canaday, 2016). Per definition the conceived 

approaches are mostly data-driven and therefore are built 

upon the existence of such a big amount of data out of 

which trends and patterns are derived by means of the most 

advanced artificial intelligence techniques. 

The present work starts from the very same observations 

and aims at the same results. However, it bases its 

foundations on an extensive usage of Bayesian Networks 

(BNs). The concepts and the mathematics behind the BNs 

will be briefly recalled within the next section. BNs 

represent in our vision an ideal environment in which 

different forms of knowledge can come together and 

collaboratively work. Physical knowledge of processes and 

models, inductively understood patterns and laws coming 

from in-service data, the expert advises of experienced and 

wise engineers, etc… represent all pieces of knowledge 

usually difficult to harmonize but that can find in the 

Bayesian paradigm an homogeneous domain to interactively 

support the reasoning about the aircraft health. 

For the sake of completeness, it has to be recalled the de-

facto existing methods for reasoning: case-based reasoning 

(Kolodner, 2014), rule-based reasoning (Davis & King, 

1984), model-based reasoning (Davis & Hamscher, 1988) 

and data-based reasoning (Schawacher, 2005). Leaving to 

the reader the chance to go deeper into the other topics, the 

reasoning by means of BNs falls back into the model-based 

reasoning, in which one can distinguish the usage of explicit 

model to aid intelligent reasoning processes (in particular in 

this work it has been referred to static modelling). 

Overall objectives of the present work are: 1) to improve the 

current fault isolation capabilities of existing diagnostics 

concepts and 2) to increase the operational and functional 

aircraft capability awareness. The above mentioned ones are 

long-term aims which have been guiding us throughout the 

project; this paper will however bring just limited evidences 

about the achievements of these objectives. As a matter of 

fact, being at an initial stage, the focus has been placed on 

the following topics, whose positive assessment represents 

in our perspective an essential prerequisite for a successfully 

implementation of the technology in future aircrafts: 1) to 

demonstrate the feasibility of the approach by integrating it 

in a relevant environment; 2) to establish a process to 

effectively and efficiently create a BN; 3) to allow a 

modular architecture of the whole framework; 4) to prove 

the scalability of the approach. 

The work is structured as follows. Section 2 will provide a 

brief introduction to the mathematics behind BNs: the topic 

has been treated in many outstanding papers, which will be 

referenced and recommended for the ones who desire going 

deeper into the topic. After having provided the reader with 

the tools to understand the BNs’ capabilities, section 3 will 

comprehensively unveil the details of the developed 

framework, i.e. the approach that has been followed to 

effectively use Bayesian reasoning for assessing aircraft 

functional/operational capabilities and for performing 

improved fault isolation. The general discussion will finally 

find an example in the test case which the section  will be 

focused on: the capabilities of the developed reasoning tool 

will be shown, demonstrated and commented by means of a 

test-case. The paper will finish with a section that will 

summarize the outcomes of the presented work and – above 

all – trace the road-map of the future tasks that will be 

addressed, in order to increase the maturity level of the 

technology under investigation. 

2. BAYESIAN NETWORKS 

A BN is a compact, probabilistic graphical model of a 

probability distribution, which is used to represent: 1) a set 

of random variables and 2) the corresponding conditional 

dependencies via a Directed Acyclic Graph (DAG). A DAG 

is a graph with no closed chains (acyclic) with edges being 

oriented. BNs are particularly well-suited for modeling 

systems - under the presence of uncertainty - which need to 

be monitored, diagnosed and for which predictions have to 

be performed. For example, a BN can be utilized to model 

the probabilistic relationships between the mechanical 

failures of a pump and the readings of its sensors: once the 

values from the sensor have been read, the network can be 

queried to reason about the probability of occurrences of the 

different modeled failures.  

From a mathematical point of view, BNs are DAGs whose 

nodes represent random variables in the Bayesian sense: 

therefore, they may be observable quantities (in this context 

usually called evidences), latent variables, unknown 

parameters or hypotheses. Edges between nodes denote 

conditional dependencies or typically causal relationship 

(although causality is not a requirement). Variables/nodes, 

that are not connected, are conditionally independent 

variables: more precisely it is usually stated that - given its 

parents - every variable is independent of its non-

descendants. Each variable can assume values among a set 

of mutually exclusive states: it is often the case in which a 
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variable has just two states: true or false. Each node is 

associated with the Conditional Probability Table (CPT), 

that quantifies the local relationships between a variable 

(and each one of its states) and its parents; in other words, in 

a tabular form, a local probability function is given to each 

node/variable. The CPT takes as inputs a particular 

combination of the values of the node’s parents and gives as 

output the probability of each state that the variable can 

assume; this gives the conditional probability distribution of 

a variable X given its parents U. Through this local 

conditional distributions a global probability distribution 

over all network variables X is induced. If it is referred to x 

as a particular instantiation of these variables (in which each 

x component of the x vector represents the value associated 

to each variable X), then the probability associated to the 

happening of x is given by the product of the conditional 

probabilities P(x|u) for each x that was set in x, in which u 

represent the sub-instantiation of x over the parent variable 

U: 
 

 𝑃(𝐱) =∏𝑃(𝑥|𝐮)

𝑋∈𝐗

 (1) 

 

As can be probably thought by the above discussion, an 

important property of the BNs is their capability of 

compactly representing a joint probability distribution in 

term of local conditional distributions. This local 

representation, together with a small number of parents for 

all nodes (a CPT has a size that is exponential with the 

number of variables that are defined in it) is what makes the 

mathematical problem still tractable. 

The computation of the probabilities of the states of selected 

nodes/variables of the network is called inferring, as 

information from some other nodes, acting as evidences, are 

used to derive information at other levels.  

To let appreciate the process of reasoning on a system by 

means of BN is typically considered one of the multiple 

versions of the following example. This version is the one 

published in Wikipedia, and the origin of the “Sprinkler 

Network” can be traced to Darwiche (1993) and Russell and 

Norvig (1995): “Suppose that there are two events which 

could cause grass to be wet: either the sprinkler is on or it's 

raining. Also, suppose that the rain has a direct effect on the 

use of the sprinkler […]. Then the situation can be modeled 

with a BN (Figure 1). All three variables have two possible 

values, T (for true) and F (for false)”. Given the above 

discussion on BNs, one can now distinguish the 

nodes/variables with the corresponding states, the causal 

edges linking them, and the CPTs, that are giving - in 

tabular fashion - the probability distributions of the nodes’ 

states given the parents’ states. The so structured BN can 

then be utilized to answer questions like: “What is the 

probability that it is raining, given that the grass is wet?”, or 

- in other words – which is the value of P(R=T|G=T)?  

 

 

Figure 1. A simple BN with conditional probability tables 

(source: Wikipedia 

https://en.wikipedia.org/wiki/Bayesian_network). 
 

In this section a short overview of the mathematics behind 

the usage of BNs has been provided to the reader. A short 

review of the publications in the last decades reveals how 

BNs have quite impressively established themselves as an 

indispensable tool in artificial intelligence, and are being 

used effectively more broadly in science and engineering. 

The domain of system health management is no exception to 

this trend. As a matter of fact, diagnostic applications have 

driven much of the developments in BNs over the past few 

decades, as shown in the recommended references.  

The following section will discuss the details of the 

conceived implementation, by properly locating the BN 

approach within a reasoning paradigm characterized by 

well-defined requirements and objectives. 

3. HLR BY MEANS OF BNS 

As already stated, main aim of the project is to develop a 

framework in order to 1) improve the current fault isolation 

capabilities of existing diagnostics concepts and 2) to 

increase the operational and functional aircraft capability 

awareness. The framework in object has been called High 

Level Reasoning (HLR). In what follows, selected design 

requirements - to which HLR has to comply - are listed: 1) 

HLR shall have the provisions to accept, as evidences, 

outcomes of BITEs (Built-In Test Equipments), warnings, 

commands, sensors information, etc... 2) HLR shall provide 

as output the most probable failure modes, the remaining 

and lost operational/functional capabilities of selected Line 

Replacement Units (LRUs), sub-systems, systems or 

combination of systems, as well as the health grade of 

selected LRUs; 3) the HLR framework shall be composed 

by a module (System Model Definition) for defining the 

network structure (variables, dependencies and CPTs); a 

module (Model Creator and Validator) to create and validate 

the network and finally the HLR inferring module itself; 4) 

the HLR inferring module (or - in short - the HLR module) 

shall be the only module of the framework to run onboard; 

5) the HLR module shall be real time capable; 6) the HLR 
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framework code shall be open source, multi-platform and 

written in a certifiable programming language; 7) the HLR 

framework code shall be generic and valid for every system 

without software modifications; 8) the HLR Model Creator 

and Validator shall provide the means to easily create 

interfaces among systems; 9) the System Model Definition 

shall be readable as plain-text, in accordance to a specific 

standard to be defined; 10) the HLR framework shall use 

only deterministic algorithms; 11) the HLR Model Creator 

and Validator shall be able to generate out of the System 

Model Definition (High Level Specification) a graph that 

can be processed by the HLR inferring Module; 12) the 

HLR framework code shall meet the requirements of DO-

178B and should meet the requirements of DO-178C. 

After an extensive review of the literature, a BN approach 

has been chosen as a suitable candidate for representing the 

inferring engine of the HLR framework. BNs provide a 

traceable mathematical structure, in opposition to neural 

networks or fuzzy-logic algorithms. Although probabilistic 

outputs are calculated, the behavior of the network itself is 

deterministic, which enables the certification of systems 

based on this technology. The uncertain knowledge is 

moreover explicitly handled and the networks can be 

represented in a graphical and intuitive manner. This 

technology has been already satisfactorily applied to fault 

diagnosis of aerospace systems, as demonstrated in Mack, 

Biswas, Koutsoukos, Mylaraswamy and Hadden, (2011) 

and Mack, Biswas, Koutsoukos and Mylaraswamy (2011), 

for engine applications; Barua and Khorasani (2009) for 

satellites and Ricks and Mengshoel (2009) and Mengshoel, 

Chavira, Cascio, Poll, Darwiche and Uckun (2008) for 

electrical power systems of aircraft. Other common 

applications of this technology are health care, finances, 

artificial intelligence and data mining. Also, the use of 

system trees to improve the performance of the BNs has 

been studied in François and Leray (2006) and Cerquides 

and López de Màntaras (2003), both investigating the tree 

augmented naïve Bayes classifier, with positive results. 

3.1. How to build the model 

Considering the needed level of detail, a typical BN, which 

is modelling the probabilistic behavior of a system, may be 

composed by thousands of nodes. Moreover, given the 

relationships between child- and parents-nodes an even 

bigger challenge is represented by the need of filling out the 

corresponding CPTs. Therefore, manual construction of a 

BN in terms of structure (nodes and edges) and CPTs is 

usually almost impossible.  

In the current work, a different approach has been followed. 

As a matter of fact, instead of manually building the 

network, the meaningful info to create a network is 

communicated and specified through plain text by using a 

set of rules that has been called: “High Level Specification” 

(HLS), similarly to the concept proposed in Mengshoel et 

al. (2008). By means of the HLSs it is possible to specify, 

among the other settings: 1) the type of node and is position, 

2) by how many states the node’s behavior is described, 3) 

the probabilities of its states (in case dealing with leaf 

nodes), 4) how the node is linked to the surrounding nodes 

(which are its parents), and – above all – 5) by means of 

which procedure (as will be more discussed in the next 

section) the CPT (if any) associated to the node can be 

automatically derived. The last mentioned capability 

represents in particular one of the biggest motivations that 

pushed us to deal with the task by means of such an 

approach. The approach follows moreover the concepts 

developed and already presented by other researchers 

Mengshoel et al. (2008).  

In order to provide a hint for the reader, in what follows an 

exemplary set of instructions given to define a generic 

health node is provided: 
 

Table 1. Node definition through HLSs. 

 

 
 

The HLSs have to be filled out using Matlab syntax; the 

engineer responsible for the system in object should specify 

the HLSs with the support of the HLR team. As output, the 

Matlab script will generate a net file (compatible with .net 

format v5.7 of Hugin©) that fully and exhaustively 

describes the BN. This file can also be read by other tools 

available in the Internet, like the well-known software 

SamIam (UCLA Automated Reasoning Group, 2002), a 

comprehensive tool for modeling and reasoning with BNs, 

developed in Java by the Automated Reasoning Group of 

Professor A. Darwiche at UCLA. The mentioned tool was 

actually profitably used during the developing stage of the 

approach, since it provides an intuitively and efficient way 

for handling, editing and finally checking performances and 

results of BNs. At the current development stage, the 

SamIam tool is merely utilized for reading and validating 

the BN generated out of the net file; this procedure is carried 

out with the help of a system engineer, who provides means 

to properly stimulate the created network by means of 

selected scenarios (clamping of evidence) and evaluating the 

corresponding reaction of the network itself (answer to 

selected statistical queries). 
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3.2. Automatic CPT generation 

Some nodes of a BN are associated with a CPT, which 

depicts the conditional probabilities of each state, depending 

on the states of the parent nodes. This information 

represents the core of a BN and defines the relation among 

nodes. A proper definition of these conditional probabilities 

is of crucial relevance for the use of this technology for 

aerospace applications and also to meet the certification 

requirements. The derivation of the conditional probability 

of an event (a certain state of a node), given the conditions 

of other events (certain states of the parent nodes) is not a 

trivial problem and a solution for the generic case has not 

yet been formulated. Therefore an expert or in-service data 

are usually needed to provide these values to the CPT. 

Despite the attempt of maintaining the network compact and 

the numbers of parents limited, the manual filling out of the 

CPTs is not always feasible and different solutions have 

been proposed over the years to make the challenge more 

treatable. As a matter of fact, looking at the literature, 

different papers propose various methods based on the use 

of probability distributions, weights and parameters; 

however, no algorithm is applicable in all cases. Das (2008) 

proposes a weighted sum of probability distributions; 

Kokkonen, Koisuvalo, Laine, Jolma and Varis (2005) 

propose the use of link strength parameters; Barua and 

Khorasani (2009) propose a weighted sum of probability 

distributions made with belief adjustment factors and 

Mengshoel et al. (2008) propose an H-E-C-P-R customized 

algorithm that is different for each type of node. The 

common idea to all the mentioned approaches is to compute 

the CPTs, based on parameters which are predefined by 

experts who are in charge of estimating how relevant each 

relation is. Another solution would be the use of statistical 

(in-service) data to feed the CPTs. As also discussed in Das 

(2008), learning the conditional probabilities out of 

databases is possible, but there is no standard method for 

such purpose and a proper database is usually not available. 

Moving from the very same understanding but recognizing 

also the relevance and above all the opportunity of taking 

profit of existing documentations which could and shall 

further help defining the CPTs (e.g. existing FMECA, FTA, 

etc…), the developed HLSs allow from one side the easy 

translation in terms of CPT of the information contained in 

– for example – a FTA, similarly to Jong and Leu (2013), 

and from another side the flexibility of including expert 

knowledge by means of a relatively simple labelling 

operation of every edge by the corresponding weighting 

factor.  

Therefore, having at hand a FTA of a system could be 

profitably used as starting point to derive an initial network 

for the Bayesian reasoning: the probabilities contained in 

the CPTs will in this case collapse in certain (instead of 

uncertain) values, having to replicate the behavior of logical 

ANDs or logical ORs. Furthermore, a more representative 

OR operation (called “Weighted OR”) has been 

implemented, in which the different edges are labelled with 

weighting factors based on the contribution of parent nodes 

to the subsequent nodes, see Jong and Leu (2013). 

Furthermore, two additional methods of CPT automatic 

derivation have been implemented. The methods in object 

consider the expert judgment and namely are: the “Naïve 

method” and the “Hyperbolic tangent method”. The first one 

is based on the naïve assumption that all events are 

independent and is based on the Bayes theorem. In what 

follows is an example of the conditional probability of an 

event A, given the independent events B and C: 
 

 𝑃(A|B, C) =
𝑃(B|A) ∙ 𝑃(C|A) ∙ 𝑃(A)

𝑃(B) ∙ 𝑃(C)
 (2) 

 

The second method is an empirical one that is following the 

idea of considering weighting factors and the expert 

opinion. More specifically the method has been developed 

following advices coming from the system engineers: being 

a child node depending from several parents, who all 

contribute to generate confidence on definite states of the 

child itself, giving the system engineers’ opinion, a sort of 

saturation of the information has to be modelled, in the 

authors’ opinion. As a matter of fact, if some evidences 

already support the happening of an event, additional 

evidences on the same direction could not increase 

remarkably the probability of the event (this statement is in 

contradiction with the hypothesis on the basis of the naïve 

method). The saturation effect has been implemented by 

conceiving a non-linear sum of the available evidences by 

means of the hyperbolic tangent as non-linear mapping.  

3.3. The inference algorithm 

Many different algorithms are nowadays available and some 

of them are also free and open-source: a complete 

comparison can be seen in Guo and Hsu (2002). Some of 

these algorithms allow an exact inference, leading therefore 

to exact results; in this class, one distinguishes the 

“elimination” algorithms (variable elimination, joint tree 

algorithm), the “conditioning” algorithms (cutset 

conditioning, recursive conditioning) and the “compilation” 

ones (arithmetic circuit evaluation). On the other hand, in 

the approximate inference class, one finds algorithms like: 

the “loopy" belief propagation, the stochastic sampling and 

search and the “vibrational algorithms”.  

After an extensive survey and based also on the above stated 

requirements for the HLR framework, the C++ library Dlib 

(King, 2009) has been chosen: it offers an implementation 

of the “exact inference” algorithm named “Join Tree 

Algorithm” (a.k.a. junction tree algorithm). The library in 

object is multi-platform, open source and free. Being written 

in C++ has allowed an almost straightforward integration 

into the overall framework. Since the primary objective is to 
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prove the feasibility of the approach within a short time-

window, it has been opted for the above mentioned C++ 

based Dlib library, against other toolboxes that would have 

been required code conversion into C or C++ language. It 

has shown however some disadvantages: for example it uses 

- as said - an implementation of the inferring engine “join-

tree algorithm” and the mentioned implementation is such 

that, as long as new evidences are available, the 

computation starts again from the very beginning, losing 

therefore (or at least not taking profit of) the status-

knowledge that was gained up to that time-instant. The 

performances look therefore far away from the “real-time 

capable” requirement stated before. Nevertheless, giving the 

initial stage of the technology project in object and other 

constraints, as remarked before, the solution looked a fair 

compromise. Moreover, having the framework a modular 

architecture, with fixed and defined interfaces between 

modules, the inferring module could be easily swapped in 

the future with a more performing one. In particular our 

interest has been focused on those algorithms which are 

moving off-line most of the computational and resource-

consuming tasks. As a result, these algorithms produce 

secondary structures, known as arithmetic circuits (and the 

approach itself is called Arithmetic Circuit Evaluation - 

ACE), that can be more efficiently processed on-line, see 

Mengshoel et al. (2008).  

3.4. Modularity of the HLR framework 

Modularity has been defined as one of the primary 

requirements of the HLR framework.The “System Model 

Definition” is a module mainly utilized by the system 

engineer responsible for the system under study, who - by 

following predetermined rules (HLSs) – determines: 1) the 

main players (nodes/variables) of the network, 2) the states 

they can assume, 3) causal relations (edges) between the 

above mentioned players to be established, and - most 

importantly – 4) the kind of probability distribution (CPT) 

to be associated with the nodes. This module can be 

considered as the most critical step of the overall 

framework; it does correspond to the translation of the 

system knowledge in structured information that can be 

used within a Bayesian paradigm. A process has been 

established to effectively and efficiently allow the model 

creation. The process is iterative and tries to detail from a 

Bayesian perspective the system content progressively at 

each step. An extensive usage of questionnaires, interviews, 

meetings is pursued with the objective of gaining a 

representation of the system behavior with the desired 

granularity at the end of the definition process. 

The HLSs - as output of the “System Model Definition” 

module - are taken as input by the “Model Creator and 

Validator” module. This is a Matlab-based module which 

will deliver, as output, the already mentioned net file. The 

net file contains the same information contained within the 

HLSs but differently organized and – for example –readable 

by tools like SamIam (this capability is actually used within 

the framework to allow the validation of the network). 

Finally there is the Dlib-based module: it represents the only 

module that will run online and that will be responsible for 

interfacing with the other aircraft systems on which it is 

supposed to reason. Therefore it is located in the Data 

Acquisition Processing Unit (or DAPU) of the aircraft and 

adds capabilities to its Central Maintenance System (or 

CMS). As remarked in a previous section, this module still 

shows lots of margins for improvement. Currently, a C++ 

implementation of the ACE approach is under investigation: 

this will involve an additional module which will accept as 

input the net file and provide as output a precompiled 

version of the network. Therefore, instead of the net file, the 

precompiled network will be loaded in the DAPU and used 

for performing on-line inferring, gaining this way 

computational time and approaching more the real-time 

requirement. The modular architecture of the HLR 

framework is depicted in Figure 2.  

 

 

Figure 2. HLR Modular Architecture 

 

This last section has provided the readers with an overview 

of the main actors playing a role within the developed HLR 

framework and the corresponding mutual relationships. The 

following section will help locating the described 

framework within a bigger system (an aircraft simulation).  

3.5. The Simulation Framework 

Airbus Defence and Space has been focusing along the 

years on the realization of a comprehensive simulation 

framework to be used as research and virtual V&V platform 

in the area of PHM: the framework includes airborne 

functions, hosted on embedded systems, as well as ground-

based functions, hosted on PC-based systems. The primary 

objective is to interconnect both airborne and ground-based 

systems using a uniform data management philosophy and, 
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as far as possible, uniform communication protocols. In this 

context, data management includes the entire data set life 

cycle: from initial instantiation of a sensor value, 

transportation to the data processor, downloading to the 

ground-based environment, to final storage and further 

processing. In recent technical papers, experiences from the 

task to define and implement the data management 

backbone for such a simulation framework (Löhr, Haines 

and Buderath, 2012 and Löhr and Buderath, 2014) have 

been reported. In order to have additional information on the 

actual implementation, the interested reader could refer to 

the mentioned papers, in which experiences while 

implementing a data management backbone based on OSA-

CBM and OSA-EAI (Open System Architecture for 

Enterprise Application Integration) for a simulation 

environment supporting PHM systems in the aerospace 

domain are reported. 

The simulation environment consists of an air segment and a 

ground segment, connected by the OSA-CBM and OSA-

EAI based data management backbone. Leaving apart the 

ground segment, that would not be of interest for the current 

discussion, the air segment of the simulation framework 

models those systems and associated sensors for which 

ISHM (Integrated System Health Management) capabilities 

are intended to be developed. At the core of the framework 

is a central ISHM Data Processor (Figure 3) unit: sensors 

push their data to the ISHM Data Processor” via an OSA-

CBM compliant implementation. 

 

 

Figure 3. Air Segment of the Simulation Framework. 

 

The ISHM Data Processor unit, that is located in the aircraft 

DAPU, is where the application responsible for the HLR on-

line inferring is hosted: the environment is a real-time 

operating system (VxWorks). ISHM data instantiated by the 

corresponding aircraft systems and made available by the 

communication backbone will be then sent to specific inputs 

of the HLR inferring module. 

General systems (e.g. hydraulic system, actuation system, 

fuel system, etc…) have been designed by means of 

Simulink and further deployed in the simulation framework, 

as C code: the C code has been automatically generated out 

of the Simulink models by means of the combined use of 

the Simulink Coder/Embedded Coder applications. An 

additional module to the simulation framework provides the 

capability of injecting selected failures into the system: the 

module in object has been developed in close cooperation 

with the system engineers in charge of issuing the 

FMECA/FTA documents for the system under 

consideration. 

In the next section, a test-case for demonstrating the 

capabilities of the HLR framework will be presented and the 

corresponding results displayed and commented.  

4. THE SELECTED TEST CASE 

Aerospace systems usually share interfaces among each 

other: typical examples could be the Electrical Power 

Generation and Distribution System (EPGDS), sharing 

interfaces with all equipment that is connected to it, and the 

fuel system, sharing interfaces with the propulsion system. 

This makes the diagnostic of each system on its own more 

complicated and therefore it is critical that the “health” 

information generated in one system can “flow” to other 

systems. 

The usage of fuel as a heat sink for the hydraulic oil among 

others, by means of a Fuel Cooled Oil Cooler (FCOC) as a 

heat exchanger, represents a current state of the art in the 

aerospace industry. This particular situation has been 

selected as the test case to demonstrate the capabilities of 

the proposed HLR framework, due to the following reasons: 

1) it consists of relevant general systems found in many 

A/C, and 2) the interface among systems is a real example 

of how a failure in one system can affect the operation of 

another one. Therefore a BN model for the fuel system (FS) 

and the hydraulic and actuation system (HYD) used in the 

simulation framework has been developed and its interfaces 

defined, so that the diagnostic information can flow from 

one system to the other. 

4.1. Generation and Validation of the Model 

The model was generated and further validated as described 

in section 3: it was structured as an Operational-Functional 

Tree (OFT). An OFT is a graph representation of the system 

behavior, in this case using BNs. It considers the operational 

and functional characteristics of each node to define the 

logic of the distribution of edges. Typically this is 

completely different from a physical tree, which just 

considers the physical relations or from a safety tree, which 

just considers the safety relations among components. A tree 

is understood in graph theory as an undirected graph in 

which any two nodes are connected by exactly one path. 

However, in complex systems, nodes are typically 

connected to many other nodes at the same time. Therefore, 

the OFT will be in reality a network, in order to allow 

multiple linkages of the nodes, and the word “tree” is in this 

context used due to project-related historical reasons. 

Although the generation of the model is part of the HLR 

framework, it is not under the scope of this work to report 
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about the details of the model definition for this particular 

test case.  

An extract of the FS/HYD network is represented in the 

following Figure 4. A simplified version of the network is 

displayed also for taking into consideration the readability 

of the information, beyond also other applicable company 

directives with regards to sensitive information. The amount 

of kept information has been considered enough for the 

purpose of the present paper. 

The following sections will focus on the capabilities of the 

HLR module to perform diagnostic, within the simulation 

framework, using the below displayed FS/HYD BN model.

 
Figure 4. Extract of the FS-HYD/ACT network. Blue denote fuel system nodes, orange denote hydraulic and actuation 

system nodes and dotted lines denote edges not represented in this figure. 

 

4.2. A coupled FS/HYD simulation 

As previously described, the HLR on-line inferring module 

has been deployed into the ISHM Data Processor unit; this 

module together with the other modules responsible for the 

simulation of the FS and the HYD set up a virtual test bench 

by means of which the concept has been tested. The test 

bench has been equipped with two additional BIT modules 

belonging to the FS (FS_BIT) and to the HYD (HYD_BIT). 

The FS_BIT and HYD_BIT modules work as interfaces 

sending “evidences” to the HLR module. In this particular 

case, the data pushed to the HLR module within the ISHM 

Data Processor unit by the above mentioned two interfaces 

modules are all Boolean data. However, the flexibility of the 

Bayesian approach is such that the concept can in principle 

accept also other type of inputs, i.e. sensor data, enhanced 

health monitoring data, health grades of LRUs, etc. 

Depending on the input type and on the way in which the 

network’s nodes are coded, the information should then be 

preprocessed as evidences triggering states or defining the 

percentage of a state of the root nodes. 

This setup will prove that the on-line inferring HLR module 

is able to read the evidences of other modules inside the 
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simulation framework and perform diagnostic in accordance 

with an Operational Functional Tree based on BNs. 

4.3. Tests descriptions 

The physical systems models have been coded with fault 

injection capabilities; as a matter of fact, a comprehensive 

set of injectable FS failure-modes has been set-up and used 

for the V&V activities on the current investigation. In order 

to test the performance of the HLR module, several test 

cases have been created; they are briefly summarized in 

Table 2. However, in agreement with what stated in section 

4 related to the flowing of diagnostic information between 

systems and to the proper exploitation of such information, 

in what follows results related just to the injection into the 

coupled FS/HYD simulation of the test case coded as TC 08 

will be presented.  

 

Table 2. Test Cases description (look at the “Abbreviations 

table” for the corresponding meanings). 

 

Test Case Failure Mode Triggered 

TC 01 Main XFER Leakage 

TC 02 XFER LH Leakage 

TC 03 XFER Pump LH #1 Failure 

TC 04 ACFC Bypass LH Fail Open 

TC 05 Jet Pump # 2 Failure 

TC 06 Fuel Gauge Probe LH #1 Failure 

TC 07 Defuel Isolation Valve Fail Open 

TC 08 Motive Flow Blockage 

 

Injecting such a failure within the FS will cause the firing of 

a subset of the monitored BIT values by the mentioned 

FS_BIT module, as showed in . No further information can 

be given regarding the meaning of the singular elements that 

are building up the pattern shown in the mentioned table. 

This Boolean information will be then pushed to the HLR 

Module, which will analyze the evidences and perform the 

inference. 

The failure will be triggered on the FS side, as said, but the 

diagnostic task will be performed on the entire FS/HYD 

model, reaching operational level. 

Before commenting in detail on the inference process of the 

HLR module,  a few words will be spent in the next section 

regarding the scalability of the proposed diagnostic 

framework by defining for the term “scalability” in this 

context. 

Table 3. BIT Definition. Depending on a “Limit Checking” 

approach and on the current values of the monitored 

physical parameters, some BITs are triggered (TC 08). 
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4.4. Initial Proof of scalability 

Scalability is the capability of a system, network, or process 

to handle a growing amount of work, or its potential to be 

enlarged in order to accommodate that growth. Two 

concepts are addressed in this work: 1) inference towards 

higher levels, 2) increase of complexity (nodes / edges / 

states). 

The scalability of this concept for the inference towards 

higher levels, e.g. system level, operational level or fleet 

level, will be demonstrated by means of the test case under 

study for the FS and HYD (see section 4.5 for results).  

The main advantage of the use of BNs for this concept is 

that they can be used at very different levels, as far as the 

logic of the model is properly translated into the BN 

structure and the CPT of each node is properly defined.  

Regarding the scalability, as the complexity (nodes / edges / 

states) increases, it has to be highlighted that the used 

library and algorithms are not the one that are better 

performing, as already stated, and that a benchmarking that 

compares different software products is needed and already 

scheduled. Where Dlib takes several seconds to infer, other 

tools perform the same inference in a fraction of a second. 

It is believed that the reason for such a time difference lies 

on how the inference is performed. In the case of Dlib, the 
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processing of new evidences means a new complete 

inference. In the case of other tools, new evidences produce 

a propagation of such information through the network, 

resulting in less computational time.  

Some research has also been performed with ACEs and 

other algorithms like Recursive Conditioning which 

promises a much better performance. Chavira and Darwiche 

(2005, 2007) demonstrated that a considerable performance 

improvement can be achieved with ACEs and Variable 

Elimination algorithms. 

Other solution would be the parallelizing of the inference 

which also improves greatly the inferring performance, as 

Namasivayam, Pathak and Prasanna (2006) discuss in their 

work. 

However, some tests have been performed by means of the 

utilized Dlib library in order to understand the scalability 

limitations of such approach. This is a preliminary 

benchmarking of the computational resources that will be 

later on performed. 

 

 

Figure 5. Example with binary nodes, using Dlib to perform 

inference. 

 

Figure 5 shows that there will always be a limit in the size 

of the network (or complexity), due to the fact that the exact 

Bayesian inference is a NP-hard problem. If an A/C network 

is created by connecting different system trees, the number 

of nodes would raise easily to thousands. 

Taking this into account plus the huge potential for 

improvement, e.g. the implementation of other algorithms 

and inferring approach (like ACE) and parallelizing, the 

diagnostic task for aircraft systems using BNs in a 

reasonable time can be achieved, if certain guidelines are 

followed: 

• Minimum number of nodes,  

• Minimum number of states, 

• Minimum number of edges, 

• Separate trees, when possible. 

In other words, the network shall be as simple as possible 

without detriment to the inferring capabilities. 

4.5. Results and comments 

The initial state represented in Figure 4 is perturbed by the 

clamping of a set of evidences in accordance with the BIT 

pattern displayed in , as a consequence of the injection of 

the failure whose code is: TC 08 (see ). The final state is 

analyzed below and the network is depicted in Figure 6. 

This triggers on the other hand the failure of the node MFB 

which represents a “Motive Flow Blockage” in the FS. As a 

consequence, that also triggers the “cooling capability” 

failure and the node “FCOC”. Other capabilities are also 

affected; however they are not important to analyze the 

influence on the HYD/ACT system.  

The node “FCOC” represents the interface between both 

systems, and due to its state’s change, the cooling capability 

in the HYD/ACT system is also lost. It is relevant to 

highlight that these two systems are modelled separately 

(two different HLSs definitions and therefore also two 

different system engineers’ teams have worked on it) and 

merged with the FCOC interface with the Model Creator 

and Validator. 

This test case demonstrates that the transfer of information 

among systems is possible, enabling therefore a cross-

system diagnostic, and diagnostic at system-level. 

The test case shows high probabilities for several failure 

modes (DIV, JP2). This is due to several failure modes 

sharing the same evidences. In order to get a more accurate 

diagnostic, the CPTs should use also the evidences that 

allow this difference. In the end, the quality of the 

diagnostic relies directly on the quality of the CPTs. 

In case a failure mode is properly modelled, it will show a 

high probability in comparison with the others, see Figure 7, 

considering of course the assumption that the failure modes 

are not happening together. Otherwise the probabilities 

would be similar, meaning that further differentiation nodes 

are necessary.  

The System-Level diagnostic has also been tested with 

satisfactory results, although the inference time has to be 

improved with the use of other algorithm. 

Finally, these results show that the HLR framework can be 

used to perform cross-system diagnostic, reaching 

operational level, and that the HLR module can be run 

within the simulation framework together with other already 

developed system models. What was discussed and 

presented so far represents a very promising result for the 

future stages of this investigation. In particular our next 

work will focus on the improvement of performance of the 

HLR Framework, that is required to reach real-time 

diagnosis, and on the certification aspects of this new 

technology. 

 

 



 

 

Figure 6. TC 08 Final State. Orange shadow represents evidences. 

 

 

 

 
Figure 7. Examples for properly modelled and not properly modelled failures. 

 



5. CONCLUSIONS AND WAY AHEAD 

In this paper, the initial results related to the usage of BNs to 

improve aircraft diagnostics are reported.  

A BN represents a graphical model of a system, in which 

different players are linked to each other through 

probabilistic and causal relations. This approach could 

present several advantages over other data analysis methods: 

1) it can provide outputs even if some entries to the model 

are missing; 2) it represents an ideal environment to include 

prior knowledge during the building up of the model; 3) it 

gives the possibility to learn causal relationships and 

therefore the possibility to improve the domain knowledge. 

Given the above reasons, Airbus Defence and Space has 

been working on this topic with the main objectives of 1) 

increasing the aircraft diagnostics capabilities at component, 

sub-system and system level, and 2) providing means for 

reasoning about the remaining operational and functional 

capabilities of the aircraft. 

The initial outcomes have been tested on a simulation 

platform featuring a Data Acquisition Processing Unit, 

various computing nodes, on which the different aircraft 

systems (like the fuel system, the hydraulic system, the 

actuation systems, etc…) run. The data communication 

architecture of the platform is based on OSA-CBM. 

The major gained achievements have been: 1) the 

demonstration of the feasibility of the integration of the 

concept within the relevant environment represented by the 

simulation framework; 2) the development of means in 

order to allow an easy and structured translation of the 

system engineer knowledge in terms of a BN with 

associated conditional probabilities; 3) the provision of a 

modular architecture for the concept, in order to facilitate 

the effective coordination between different development-

departments, as well as the efficient development and 

maintenance of the software and 4) the proof of the 

scalability of the concepts (i.e. applicability to systems of 

different sizes and reasoning on different levels from 

component to system level). 

The investigations conducted have particularly regarded the 

fuel and the hydraulic/actuation systems: these systems, 

characterized by fault insertion capabilities, have been 

designed by means of Simulink and further deployed in the 

simulation framework, as C code. The corresponding 

designed Bayesian models - for reasoning about the systems 

under investigation - have been hosted into the ISHM Data 

Processor unit, located in the aircraft DAPU. A proper set of 

test-cases has been conceived and utilized to fully test the 

performance of the HLR framework, in terms of fault 

isolation and detection capability and ability to reason on 

the remaining operational and functional capabilities. The 

results related to a particular test-case have been here 

reported: in it, a failure injected into a system (the fuel 

system) has caused the trigger of a set of Boolean BIT. This 

set, used as evidence within the inferring logic of the HLR 

module, has allowed – on the other hand - assessing the 

reduced cooling capability of the hydraulic/actuation 

system. This has then proved that the transfer of information 

among systems is possible enabling a cross-system 

diagnostic, and diagnostic at system-level. 

Obtained results are considered promising and Airbus 

Defence and Space will continue investing resources on this 

topic, in order to improve the performances of the so far 

developed HLR Framework, considering also the important 

certification aspects linked to this technology. 

ACKNOWLEDGEMENT 

The authors are very thankful to Mr. Madhuraj Harisankaran 

(Airbus India, Bangalore) for stimulating discussions with 

regards to the architecture of the High Level Reasoning 

Framework and the definition of the High Level 

Specifications. 

REFERENCES 

Barua, A. & Khorasani, K. (2009). Hierarchical Fault 

Diagnosis in Satellites Formation Flight. Annual 

Conference of the Prognostics and Health Management 

Society. 

Canaday, H. (2016). Predicting Failures – Using Big Data 

to solve the most expensive problems. Aviation Week & 

Space Technology, January 4-17, 2016, p137. 

Cerquides, J. & López de Màntaras, R. (2003). Tractable 

Bayesian Learning of Tree Augmented Naïve Bayes 

Classifiers. TR-2003-04 CSIC. 

Chavira, M. & Darwiche, A. (2005). Compiling Bayesian 

Networks with Local Structure. Mark Proceedings of 

the 19th International Joint Conference on Artificial 

Intelligence (IJCAI-2005). 

Chavira, M. & Darwiche, A. (2007). Compiling Bayesian 

Networks Using Variable Elimination. Proceedings of 

the 20th International Joint Conference on Artificial 

Intelligence (IJCAI-2007). 

Darwiche, A. Y. (1993). Argument Calculus and Networks. 

Uncertainty in Artificial Intelligence: Proceedings of 

the Ninth Conference on Uncertainty in Artificial 

Intelligence, The Catholic University of America, 

Washington, D.C., p420-427. 

Das, B. (2008). Generating Conditional Probabilities for 

Bayesian Networks: Easing the Knowledge Acquisition 

Problem. Cornell University. 

Davis, R. & Hamscher, W.C. (1988). Model-Based 

Reasoning: Troubleshooting. A.I. Memo No. 1059, 

Massachusetts Institute of Technology.  

Davis, R. & King, J.J. (1984). The Origin of Rule-Based 

Systems in AI, reprinted as Ch. 2 of Rule-Based Expert 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016 

13 

Systems: Edited by Bruce G. Buchanan and Edward H. 

Shortliffe, Addison Wesley Publishing Company.  

François, O.C.H. & Leray, P. (2006). Learning the Tree 

Augmented Naive Bayes Classifier from incomplete 

datasets. Third European Workshop on Probabilistic 

Graphical Models, Prague, Czech Republic. 

Guo, H. & Hsu, W. (2002). A Survey of Algorithms for 

Real-Time Bayesian Network Inference. AAAI 

Technical Report WS-02-15. 

Jong, C.G. & Leu, S.S. (2013). Bayesian-Network-Based 

Hydro-Power Fault Diagnosis System Development by 

Fault Tree Transformation. Journal of Marine Science 

and Technology, Vol. 21, No. 4, pp. 367-379 367. doi: 

10.6119/JMST-012-0508-3. 

King, D.E. (2009). Dlib-ml: A Machine Learning Toolkit. 

Journal of Machine Learning Research 10, pp. 1755-

1758. Dlib C++ library v18.16. http://dlib.net/ 

Kokkonen, T., Koivusalo, H., Laine, H., Jolma, A. & Varis, 

O. (2005). A method for defining conditional 

probability tables with link strength parameters for a 

Bayesian network. MODSIM 2005 International 

Congress on Modelling and Simulation. Modelling and 

Simulation Society of Australia and New Zealand, pp. 

428-434. ISBN: 0-9758400-2-9. 

Kolodner, J. (2014). Case-Based Reasoning. Morgan 

Kaufmann.  

Löhr A. & Buderath, M. (2014). Evolving the Data 

Management Backbone: Binary OSA-CBM and Code 

Generation for OSA-EAI, European PHM Conference 

Nantes, France 

Löhr A., Haines, C. & Buderath, M. (2012). Data 

Management Backbone for Embedded and PC-based 

Systems Using OSA-CBM and OSA-EAI, European 

PHM Conference Dresden, Germany  

Mack, D.L.C., Biswas, G., Koutsoukos, X.D. & 

Mylaraswamy, D. (2011). Using Tree Augmented Naive 

Bayes Classifiers to Improve Engine Fault Models. 

Uncertainty in Artificial Intelligence: Bayesian 

Modeling Applications Workshop. 

Mack, D.L.C., Biswas, G., Koutsoukos, X.D., 

Mylaraswamy, D. & Hadden, G. (2011). Deriving 

Bayesian Classifiers from Flight Data to Enhance 

Aircraft Diagnosis Models. Annual Conference of the 

Prognostics and Health Management Society. 

Mengshoel, O.J., Chavira, M., Cascio, K., Poll, S., 

Darwiche, A. & Uckun, S. (2008). Efficient 

Probabilistic Diagnostics for Electrical Power Systems, 

NASA/TM-2008-214589 NASA Ames Research 

Center. 

Namasivayam, V.K., Pathak, A. & Prasanna, V.K. (2006). 

Parallelizing Exact Inference in Bayesian Networks. 

10th Annual Workshop, HPEC 2006 Proceedings 

Ricks, B.W. & Mengshoel, O.J. (2009). Methods for 

Probabilistic Fault Diagnosis: An Electrical Power 

System Case Study. Annual Conference of the 

Prognostics and Health Management Society. 

Russell, S.J. & Norvig. P. (1995). Artificial Intelligence – A 

Modern Approach. Prentice-Hall Inc.  

Schwabacher, M.A. (2005). A Survey of Data-Driven 

Prognostics. AIAA 2005-7002.  

UCLA Automated Reasoning  Group. 2002. Samiam: 

Sensitivity analysis, modeling, inference and more. 

SamIam 3.0, http://reasoning.cs.ucla.edu/samiam 

BIOGRAPHIES  

Borja Sanz López was born in Madrid, Spain, in 1987. He 

received his Aerospace Engineer degree from the 

Universidad Politécnica de Madrid, Spain in 2012. During 

2011 he performed a research on applications of neural 

networks on aerodynamics at Airbus Operations S.L. in 

Madrid, Spain. In 2012 he collaborated on a research on 

numerical simulation of boundary layer interaction of 

crossflow jets at Institut für Aerodynamic und Gasdynamic 

in the University of Stuttgart, Germany. Currently, he works 

as Fuel System Engineer at the Airbus Defence & Space 

“Fuel, Inerting and Fire Protection Systems” Department, 

and he supports the Integrated System Health Management 

project performing research on High Level Reasoning 

Diagnostics. 

Antonino Marco Siddiolo was born in Agrigento, Italy, in 

1976. He received his M.S. and Ph.D. degrees in mechanical 

engineering from the University of Palermo, Italy, in 2000 

and 2006, respectively. From 2004 to 2005 he was a 

Visiting Scholar at the Centre for Imaging Research and 

Advanced Materials Characterization, Department of 

Physics, University of Windsor, Ontario (Canada). Then, he 

worked as a researcher and Professor at the University of 

Palermo and as a Mechatronic Engineer for Sintesi SpA, 

Modugno (Bari), Italy. His research activities and 

publications mainly concern non-contact optical three-

dimensional measurements of objects and non-destructive 

ultrasonic evaluation of art-works. His main contributions 

are in the field of signal processing to decode fringe patterns 

and enhance the contrast of air-coupled ultrasonic images. 

Currently, he works as Health Management System 

Engineer at the Airbus Defence & Space “Fuel, Inerting and 

Fire Protection Systems” Department, supporting the 

Integrated System Health Management project. His research 

activities are mainly focusing on the maturation of failure 

detection and prediction capabilities for electrical, 

mechanical and hydraulic aircraft equipment. 

Partha Pratim Adhikari has more than 17 years of 

experience in the field of IVHM, Simulation of Aircraft 

Systems and Avionics. Partha has Bachelor’s degrees in 

Physics (H) and B. Tech in Opto-electronics from Calcutta 

University and a Master’s degree in Computer Science from 

Bengal Engineering and Science University.  In his tenure 

across various aerospace organizations, Partha made 

significant contributions in the fields of IVHM, Navigation 

systems, Avionics and Simulation technologies. Partha 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016 

14 

published several papers in the fields of estimation, signal 

processing and IVHM in national as well as international 

conferences and journals. Partha, in his current role at 

Airbus Group India, Bangalore is working on devising 

ISHM technologies for aviation systems with focus on 

complete vehicle health, robust implementation and 

certification of the developed technologies. 

Matthias Buderath - Aeronautical Engineer with more than 

25 years of experience in structural design, system 

engineering and product- and service support. Main 

expertise and competence is related to system integrity 

management, service solution architecture and integrated 

system health monitoring and management. Today he is 

head of technology development in Airbus Defence & 

Space. He is member of international Working Groups 

covering Through Life Cycle Management, Integrated 

System Health Management and Structural Health 

Management. He has published more than 50 papers in the 

field of Structural Health Management, Integrated Health 

Monitoring and Management, Structural Integrity 

Programme Management and Maintenance and Fleet 

Information Management Systems. 

 

 

 

 

 


