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ABSTRACT 

One of the most significant research trends in the aeronautic 
industry is currently the design and, possibly, build of 
“more electric aircraft”. In this framework, one of the more 
deeply investigated subjects has been, and still is, the 
replacement of the traditional hydraulic/electro-hydraulic 
technology for flight control systems with the electro-
mechanical ones. Although featuring many advantages, 
electro-mechanical actuators still suffer from several 
shortcomings, mainly those related to reliability issues, 
which are still difficult to overcome simply by design. The 
development of an efficient PHM system could instead 
provide the needed increase in reliability without any major 
design variations. This paper addresses, in the first part of 
the study, the design of a comprehensive PHM system for 
EMAs employed as primary flight control devices; the 
peculiarities of the application are presented and discussed, 
while a novel approach based on short pre-flight health tests 
is proposed. The most common electric motor windings 
degradation is addressed in the second part and a particle-
filtering framework for anomaly detection and prognosis is 
proposed featuring a self-tuning non-linear model for 
improved prognostic performance. Features, anomaly 
detection and the prognostic algorithm are hence evaluated 
through state-of-the art performance metrics and their 
results discussed. 

1. INTRODUCTION 

Following the last development of the aviation industry, 
electro-mechanical actuators (EMAs) are slowly replacing 
the traditional electro-hydraulic solution for fly-by-wire 
flight controls since they allow the elimination of leaking 
problems, simplification of installation and maintenance 

while keeping an overall competitive weight (Pratt, 2000). 
However, due to reliability problems, they are still 
struggling to find application outside experimental aircraft 
or UAVs like reported by (Jensen, Jenney & Dawson, 
2000), (Derrien, Tieys, Senegas & Todeschi, 2011), 
(Roemer & Tang, 2015). They are instead more rapidly 
advancing in non-safe critical applications such as flap/slats 
control as described in (Christmann M., Seemann S. & 
Janker, 2010) and (Recksieck, 2012). In order to overcome 
the afore-mentioned reliability issues, one of the possible 
solutions is to build an efficient PHM system able to rapidly 
detect the insurgence of dangerous fault conditions and to 
provide a sufficiently accurate assessment of the Remaining 
Useful Life (RUL) of the degraded component(s). Several 
research efforts can be found in the literature, addressing the 
electric motor (Nandi, Toliyat.& Li, 2005), (Brown and 
others, 2009), and (Belmonte, Dalla Vedova & Maggiore, 
2015), mechanical components (Balaban, Saxena, Goebel, 
Byington, Watson and others, 2009), (Balaban, Saxena, 
Narasimhan, Roychoudhury & Gobel, 2010) and 
(Lessmeier, Enge-Rosenblatt, Bayer & Zimmes, 2014) and 
electronic power unit (EPU) (Brown, Abbas, Ginart, Ali, 
Kalgren, Vachtsevanos, 2010), (Li, Ye, Chen, 
Vachtsevanos, 2014).  
The research presented in this work introduces the 
modelling framework and the enabling technologies for a 
rigorous data mining, diagnostic and prognostic approach to 
the EMA problem and constitutes the first part of a wider 
programme aiming to build, test and evaluate a complete 
PHM system for a primary flight control application. 
Research and experimental studies addressed aspects of 
component modelling, feature extraction and 
diagnostics/prognostics for EMA systems. 

2. EMA CONFIGURATION 

The system configuration used for the analysis is depicted in 
Figure 1. Following the most frequent architecture for 
electro-mechanical flight control units, each actuator 
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features a brushless electric motor (EM) supplied through its 
own EPU and a mechanical transmission composed by a 
satellite gearbox (GB) and a roller screw. Control of each 
actuator is performed by three nested regulation loops 
working on the electric motor currents, driving shaft speed 
and end-user linear position. Feedback signals come 
respectively from current sensors, a resolver positioned on 
the motor shaft and a linear position sensor, usually one or 
more LVDTs, connected to the translating element of the 
power screw. The position command is provided by two 
inter-communicating Flight Control Computers (FCCs). The 
control is performed following the active/active strategy, 
which means that both devices are contemporary actuated in 
position receiving the same command input. This control 
strategy allows to obtain better dynamics response and/or to 
decrease the intensity of the current required by the motors, 
but suffers from force fighting occurrence. When this 
happens, one of the actuators begins to provide a force 
which sign is the opposite of what is expected under normal 
operations, hence requiring the other device to compensate.  
This phenomenon usually happens when the aerodynamic 
load acting on the system is a small percentage of the 
nominal one and it’s due to the inevitable deviation from the 
nominal value of some of the actuators features such as 
friction behaviour, backlashes, inertia and motor parameters. 
It may lead to windings overheating and generally shortens 
the motor operative life. Force fighting can be compensated 
by motor current equalization or, if possible, by monitoring 
the force applied to each actuator using the proper 
transducers: their signal, properly filtered and sampled, can 
then be employed by a dedicated PI controller working 
either on the position or the speed loop (Wang, Maré, Fu, 
2012). For the studied system, force sensors are supposed to 
be available. 

 

Figure 1. EMA configuration 
 
3. FMECA 

Electro-mechanical actuators can be subjected to a high 
number of possible failure modes, involving both the 
hardware components, that is the focus of this research, and 
the control software. In order to have a more precise idea of 
which failure modes needs to be prioritized, a FMECA 
study is recommended (Vachtsevanos, Lewis., Roemer, 
Hess, Wu, 2006). The first step is to establish the FMECA 
rules set, that is to associate a score to each possible 
operating occurrence regarding the fault frequency (F), 
severity (S), testability (T) and failure related replaceability 

(R). Each parameter has been ranked from 1 (worst case 
scenario) to 4 (best case). In example, a frequent fault of 
high severity and little testability/replaceability will score 
(F) = 1, (S) = 1, (T) = 1, (R) = 1, leading to an overall 
minimum of 4 points.  Results of the FMECA study are 
described in table 1. Looking at the severity, the most 
critical failure modes for the system are those involving an 
increase in the jamming probability, which is directly 
associated with the aircraft loss and critical danger for the 
passengers’ life. The interested components are all parts of 
the mechanical transmission. The most frequent failure 
mode affects instead the electrical part of the actuation 
system: the turn-to-turn short failure mode (EMTTS) is in 
fact the most common degradation for brushless motors and 
according to (Nandi and others, 2005) is often the primary 
cause for the inception of other electrical faults that lead to 
the motor loss as well. Contrary to mechanical failures that 
may cause the actuator(s) jamming, motor failure is not 
directly related to flight control loss, even if it causes a 
significant degradation in the system performance. Although 
there are some failure modes which total score is equal or 
inferior to the one associated with EMTTS case, its high 
frequency and overall low score suggest to use it as the 
starting point for the study of a PHM framework for the 
entire actuation system. 
 

Table 1. FMECA results 
 

COMPONENT MAIN FAILURE MODES 
SCORE 

F S T R TOT 

EPU Power MOSFET thermal failure 3 2 4 1 10 

Electric 

motor 

Turn-to-turn short 1 2 4 1 8 

Turn-to-phase short 2 2 4 1 9 

Turn-to-ground short 2 2 4 1 9 

Bearings 

Scoring 3 1 3 1 8 

Indentation 4 1 3 1 9 

Wear 4 4 3 1 12 

Pitting 4 4 3 1 12 

Electric erosion 3 2 3 1 9 

Tracks crack 3 1 3 1 8 

Gears 

Crack 3 1 3 1 8 

Wear 4 4 4 1 13 

Pitting 2 3 3 1 9 

Power screw 

Scoring 2 1 3 1 7 

Wear 3 4 4 1 12 

Return channel deformation 4 1 3 1 9 

Indentation 3 1 3 1 8 

 

4. EMA DYNAMIC MODEL 

A high-fidelity dynamic model built in Matlab Simulink has 
been used to simulate the system under several operating 
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conditions in order to obtain realistic data for the PHM 
system. 

4.1. EPU and brushless motor model 

The dynamic model of the electric actuation is composed by 
several interconnected functional subsystems: the EPU, the 
motor windings and the torque evaluation module. The EPU 
subsystem is used to simulate the control currents in d-q 
axis, the PWM modulation of the voltage signal and a 
functional model of the digital inverter. The other 
subsystems describe the electric motor dynamics for each 
phase, compute the electromagnetic torque and approximate 
the windings thermal behavior. The d-q axis control features 
PI regulators receiving as input the current command and 
the filtered current feedback subjected to Park 
transformation. The controllers’ output is then transformed 
back to the three-phase system and used in a PWM 
modulator based on a triangular bipolar wave carrier that 
generates the vector of the digital control signal for each of 
the three commutation poles, namely q = [q1 q2 q3]

T.  

Neglecting the power MOSFET dynamics and modelling 
the EPU following the approach proposed in (Mohan, 2003) 
and (Hanselman, 2006), we compute the three motor phase 
voltages. The motor dynamics under nominal conditions is 
described by equation (1). 

�������� � ��	 �
�
�
�� � ��� 0 00 �� 00 0 ��� �
������� � ��	 ����� ��� ������ ��� ������ ��� ���� �

������ �� �1� 
Where the three phase voltages va,b,c are function of q. Ri 
and Li are the electric resistance and inductance for the i-th 
phase, while λi is the concatenated flux. 
Given the pair poles number, the electromagnetic torque can 
be obtained. It is finally possible to estimate the windings 
thermal behavior: 

��������
� ��� 0 00 �� 00 0 ��� �

������� � ������ � ��� �����	  �2� 
Where ��� �  !" �  !#�  is the temperature difference 
between the motor windings and the external environment, 
while Hth and Cth are the thermal conductivity and the 
thermal capacity. 

4.2. Mechanical transmission 

The mechanical transmission has been modelled to include a 
non-linear friction law and a customizable elasto-backlash 
following the approach proposed by (Nordin, Gallic, 
Gutman, 1997). Each mechanical element is described 
through its dynamic equilibrium equation. The friction law 
has been approximated through non-linear equations 
depending on temperature, speed and applied load. 

4.3. Control surface model 

The aerodynamic surface has been modelled according to 
the diagram shown in Figure 2. The dynamic equilibrium of 

this component can then be expressed through equation (3): $%�&' � (� � $%�&) � (� � *%�&+' � (+� � *%�&+) � (+�� ,- � .%(/ �3� 
Where ks and cs are the aerodynamic surface stiffness and 
damping factor, respectively, FA is the aerodynamic force 
acting on the actuators and ms the control surface equivalent 
mass.  

 
Figure 2. Control surface scheme 

 
4.4. TTS fault model 

According to (Brown and others, 2009), it is possible to 
model the presence of a turn-to-turn short in one of the 
motor phases by inserting the fault ratio factor wf in the 
electrical dynamic equation thus modifying the motor 
circuit. This parameter may range between 0 and 1 and 
represents the ratio between the number of healthy windings 
over the total number of windings for the selected phase. 
The phase voltage equations may be written as:  

�������� � ��	 �12,�12,�12,�� 4 � �12,�12,�12,��
� 5 �������� � ��	 �67 ��������� �4� 

Where R is the resistance matrix for the healthy state, λ is 
the magnetic flux vector and LF is the inductance matrix for 
degraded conditions defined in equation (5). 

67 �	: 12,���� 12,����� 12,�����12,����� 12,���� 12,�����12,����� 12,����� 12,���� ; 
 

�5� 
Where 12,=> � ?12,=12,>  and the variables follow standard 
notation. The reciprocal index Wf = 1-wf represents the 
number of faulted windings over the total number of 
windings for the phase under analysis. 
The effects of the fault progression on the phase currents 
can be seen in Figure 3. The faulted winding signal tends to 
increase leading to a current asymmetry and torque 
irregularity. Through Fourier analysis, it is also possible to 
notice how the degraded phase current tends to be more 
distorted as the fault progresses, as depicted in Figure 4. 
Turn-to-turn degradation can be triggered and driven by 
several causes, such as mechanical stresses, chemical 
aggressive environment, water ingress or excessive 
humidity (Nandi and others, 2005). 
According to (Brown and others, 2009), the most significant 
and common origin is the insulant’s thermal degradation; 
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the same authors report that it is possible to relate the fault 
length L expressed in [mm] as a function of the operating 
time t, the windings’ temperature Tw and the experimental 
coefficients α and β through an elaboration of the Arrhenius 
law (Gokdere, Bogdanov, Chiu, Keller & Vian, 2006): 

 
 

Figure 3. Effect of fault progression on phase currents: 
healthy (left) severe degradation (right) 

 @� � �ABC� 		D � EBF�G 
�6� 

 
Dividing the first equation of expression (6) by the critical 
length of the defect, we obtain a similar relation for the fault 
rate IJ2 � J2,ABC� 		D � EBF�G 					  �7� 

 
Where Wf = 1-wf and Wf,0 are the instantaneous and initial 
fault rate in the degraded phase. 

 
Figure 4. Fourier analysis of the faulted phase current 

 
5. PHM STRATEGY 

A rigorous and reliable PHM system requires a set of 
features or Condition Indicators (CIs) that characterize the 
fault mode and correlate maximally with the fault signature 
in a reduced dimensionality. For the turn-to-turn short fault 
several possibilities are available in the literature (Nandi and 
others, 2005). Some of them make use of current analysis, 
while others require the phase voltage measure. Since 
voltage measures are not available in the case under 
analysis, current-based features have to be employed.  
In order to overcome the effects of uncertainties due to 
environmental conditions, but also to simulate the actuators 
with a predefined set of commands optimized to extract the 
required features, we employ a preflight test according to 
the approach proposed by (Jacazio, Maggiore, Della 
Vedova, Sorli M., 2010). In this case, a ramp position 

command, with rate equal to 20% of the motor maximum 
speed, is given to the “monitored” actuator, in order to limit 
the influence of the back electromotive force over the 
measured current. The second actuator is force controlled, 
taking advantage of the force sensors already present for the 
force-fighting compensation. The adopted approach allows 
to reduce the influence of friction over the force exerted by 
the second actuator. The commanded force is a ramp 
saturated at 40% of the nominal value that is high enough to 
enhance the current analysis while remaining far enough 
from saturation conditions. The last factor of uncertainty 
coming from the external environment is the random 
aerodynamic load that could affect the system under test due 
to gusts at the airport track. In order to limit its influence, a 
simple proportional compensator operating on the current 
regulation of the force-controlled actuator is employed. As 
shown in Figure 5, without compensation, the external load 
is in an equilibrium state acted by the “monitored” actuator, 
hence affecting the behavior of its currents; while the 
compensator is in use, the disturbance is addressed entirely 
by the second EMA. 
The pre-flight test is 1 second long, while data is acquired 
over the last 0.5 s.  Once completed, the operation is 
repeated inverting the role of the two actuators.  Operational 
scenario 
The TTS fault rate is mainly dependent on the temperature 
of the windings, implying that it is dependent on the 
ambient environmental temperature, as well as on the load 
profile faced by the actuator and on the thermal exchange 
conditions. Moreover, these conditions may vary depending 
on the aircraft class, take-off/landing areas and weather 
conditions. The aircraft class for this study has been 
identified as the regional transport one, designated for mid-
short range travel. Each mission segment conditions, namely 
pre-flight, take-off, cruise, landing and post-flight, are 
approximated as follows: starting and arrival point 
temperatures are drawn from a uniform distribution ranging 
between -40 and 40.  The external temperature at cruise 
regime is considered equal to -54°C; its variation during 
landing and take-off is approximated with a linear law. For 
each flight segment, external loads are estimated through a 
realistic variable percentage of the nominal force affected 
by Gaussian noise 

6. ANOMALY DETECTION 

Fault diagnosis is the first step in the design of a health-
based prognostics and health management strategy.  It 
involves three main tasks: fault detection is the process 
through which the system recognizes any anomalous 
occurrence, fault isolation, addressing the identity of the 
damaged component, and finally identification, that leads to 
the assessment of the fault’s severity (Vachtsevanos and 
others, 2006). Since this paper deals with a single-fault 
scenario, only the first task is described in the sequel. In the 
proposed approach, fault diagnosis minimizes the false



  
Figure 5. Effect of force compensator: no compensation (left), compensation (right) 

 
positive and false negative errors while providing early 
defect detection. Anomaly detection is carried out via the 
application of two approaches: a purely data-driven method 
and a particle filter framework. The addressed feature 
candidates are described in section 6.1, where they have 
been analyzed and compared through proper metrics. In 
section 6.2 the data-driven approach for anomaly detection 
is discussed, while a particle filter solution is provided in 
section 6.3.  

6.1. Feature selection 

As assessed in section 3, the main effect of TTS degradation 
is the progressive worsening of currents unbalance. 
Consequently, features for this failure mode should be able 
to efficiently mirror this symptom. Three features have been 
preliminary selected by combining in different ways the 
RMS of the three currents signals: 

LMM
NM
MOP=' � 13QRMS=U

=V' 																																	
P=) � 13Q∆RMS���U

=V' 																										
P=U � max�∆RMS� � min�∆RMS�

 �8� 
 

  
Where RMSi and ∆RMSi are respectively: 
 

RMS= � ^ 1_%Q�>)`a
>V'  �9� 

  

∆RMS � :|RMS' � RMS)||RMS' � RMSU||RMS) � RMSU|; �10� 
 

 
The current samples number is ns, while each of their values 
is designated as ij. Each feature behavior has been 
preliminary investigated by performing several simulations 
at a constant environmental temperature of 0°C without any 
external load applied. Observing the results reported in 

Figure 6, it is noted that each feature candidate presents a 
clear dependence on the degradation rate Wf. Additional 
simulations were run in the presence of external 
disturbances, parameter variations while the external load 
was simulated as a step signal occurring in a random 
moment during the pre-flight test. 
Features performance are hence analysed through two 
specific metrics. The first is the accuracy measure, defined 
as the linear correlation between the feature candidates and 
the fault ratio. The second one is the precision measure, 
defined as the relative mean error of the interpolation lines 
used for each feature candidate. 

 
Figure 6 – Feature candidates behaviour – no disturbance 

 
The candidate fi

1 has better performance, averaging an 
accuracy index equal to 0.932 and a precision measure of 
3.94%. For the other two candidates, the accuracy measure 
is of 0.925 and 0.921, while the precision one is 9.82% and 
9.03% respectively.  

6.2. Data-driven approach 

A statistical deviation method is adopted for anomaly 
detection. A baseline representing the feature behavior 
under healthy conditions is built upon the first 100 samples 
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of data. An automatic, customizable threshold is set on the 
feature value covering 95% of the baseline probability 
distribution. New data are then streaming in and the 
computed feature is   compared to the initial baseline; when 
the new distribution differs from the baseline with a 
specified confidence level equal to or superior to 95%, the 
fault is declared as having been detected. After repeated 
trials, feature fi

1 gives a better mean detection time, while 
providing more stable performance in response to parameter 
variations and external disturbances, as shown in Figure 7. 
The average fault ratio at detection for the selected feature is 
12.71%. 
An example of the anomaly detection algorithm output 
making use of the chosen feature fi

1 is provided in Figure 8. 
The Type I error is defined by the user and it is fixed at 5%; 
the Type II error under these conditions has a value of 5%. 
 

 
Figure 7. Fault detection for different features candidates 

 

 
 

Figure 8. Fault detection framework output 
 
6.3. Particle filter for anomaly detection 

Particle filter is a powerful Bayesian estimator that allows to 
approximate non-linear processes affected by non-Gaussian 
noise and is recognized as the current state of the art for 
prognostics (Arulampalam, Maskell, Gordon, Clapp, 2002). 
The particle-filter-based diagnosis framework aims to 

perform the anomaly detection, under general assumptions 
of non-Gaussian noise structures and nonlinearities in 
process dynamic models, using a reduced particle 
population to represent the state pdf (Orchard M, 2007). A 
compromise between model-based and data-driven 
techniques is accomplished by the use of a particle filter-
based module built upon the nonlinear dynamic state model, 
 

d&e�	 � 1� � P�f&e�	�, _�	�g											&��	 � 1� � P�f&e�	�, &��	�, h�	�gPi �	� � j�f&e�	�, &��	�, k�	�g						 �11� 
  
Where fb, ft and ht are non-linear mappings, xd is a collection 
of Boolean states associated with the presence of a 
particular operating condition in the system (normal 
operation, fault type #1, #2, etc.), xc is a set of continuous-
valued states that describe the evolution of the system given 
those operating conditions, fp is a feature measurement, ω 
and ν are non-Gaussian distributions that characterize the 
process and feature noise signals, respectively. The function 
ht is a mapping between the feature value, fp(t), and the fault 
state xc(t). At any given instant of time, this framework 
provides estimates of fault detection only when customer 
specified confidence and false alarm metrics are met.  
Furthermore, pdf estimates for the system continuous-
valued states may be used as initial conditions in failure 
prognosis resulting in a swift transition between the two 
modules (FDI and prognosis).  
This approach has been employed only for the selected 
feature fi

1. The ft expression is derived from theoretical 
considerations while the ht mapping has been investigated 
through symbolic regression, leading to the polynomial 
expression (12). 

P=' � l12U � m12) � *12 � � �12� 
For non-disturbed data, the R2   is 0.9983, the mean squared 
error is 0.027 and the mean absolute error is 1.052. The 
average fault ratio associated with the detection time, 
computed over 20 data sets, is reduced to 10.48% while 
using the same percentage thresholds applied to the data-
driven case, indicating superior performance of the 
algorithm used. 

7. PROGNOSTIC FRAMEWORK 

Once an incipient failure or fault is detected with specified 
confidence, the prognostic algorithm is initiated to predict 
the fault’s time evolution. The final fault state acts as the 
initial condition for prognosis. We pursue a health-based 
approach to prognosis in this paper. A usage-based approach 
is useful in reliability studies with prognostic information. 
Figure 9 depicts the prognostic framework. 
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Figure 9. The Prognostic Framework 

7.1. Particle filter for failure prognosis 

The prognostic framework takes advantage of a nonlinear 
process (fault / degradation) model, a Bayesian estimation 
method using particle filtering and real-time measurements 
(Vachtsevanos and other, 2006). Prognosis is achieved by 
performing two sequential steps, prediction and filtering. 
Prediction uses both the knowledge of the previous state 
estimate and the process model to generate the a priori state 
pdf estimate for the next time instant, 

n�&A:�|(':�p'� � qn�&�|(�p'�n�&A:�p'|(':�p'� �&A:�p' �13� 
Unfortunately, this expression does not have an analytical 
solution in most cases. Instead, Sequential Monte Carlo 
(SMC) algorithms, or particle filters, are used to 
numerically solve this equation in real-time with efficient 
sampling strategies. Particle filtering approximates the state 
pdf using samples or “particles” having associated discrete 
probability masses (“weights”) as,  n�&�|(':�� r 1s�f&A:�= gtf&A:� � &A:�= g�&A:�p' �14� 
where xi

0:t is the state trajectory and y1:t are the 
measurements up to time t. The simplest implementation of 
this algorithm, the Sequential Importance Re-sampling 
(SIR) particle filter, updates the weights using the likelihood 
of yt as  1� � 1�p'n�(�|&�� �15� 
Long-term predictions are used to estimate the probability 
of failure in a system given a hazard zone that is defined via 
a probability density function with lower and upper bounds 
for the domain of the random variable, denoted as Hlb and 
Hup, respectively. The probability of failure at any future 
time instant is estimated by combining both the weights 
w(i)

t+k of predicted trajectories and specifications for the 
hazard zone through the application of the Law of Total 
Probabilities. The resulting RUL pdf, where tRUL refers to 
RUL, provides the basis for the generation of confidence 
intervals and expectations for prognosis, 

n̂�vwx �QnfFailure|~ � &��vwx�=� , ���, ��ig`
=V'  �16� 

These novel diagnostic and prognostic technologies have 
been applied to a variety of systems ranging from ground 

vehicles to rotorcraft, UAVs, and other industrial/military 
application domains. 

7.2. Model tuning 

The parameters in the non-linear mappings f(t)and hx(x(t)) 
describe efficiently the system state whatever the 
environmental conditions or the external disturbances are.  
In this particular case, the function associating the fault rate 
to the operating time depends heavily on external 
conditions, such as temperature or corrosive agents, that 
may critically accelerate the degradation process (Nandi and 
others, 2005).  In order to bring the model behavior closer to 
the real system, prediction is performed through a third 
time-dependent tunable model, following an approach 
similar to that described in (He, Li, Vachtsevanos, 2015). 
Again making use of symbolic regression powered by 
Eureqa software, it is possible to obtain a model linking the 
feature under analysis to operating time: P='�	� � 5.94 � 1.57 ∙ 10p�	) � 6.47 ∙ 10p'AB�� �17� 
The model parameter D is then tuned as more data is 
streaming in, following an iterative procedure featuring a 
recursive least square algorithm. Results of the fitting 
performed via Eureqa software for a possible degradation 
feature R2 equal to 0.9964, mean squared error of 0.848A 
and mean absolute error of 1.432A. 

7.3. RUL 

The prediction algorithm makes use of 5000 particles and 
each prediction step is equal to a 4 hours’ time interval. 
Prediction is terminated when all particles reach the 
threshold, set at 24 A, that is almost four times the average 
value for healthy conditions. 
Taking advantage of the estimated end of life, tEOL, for the 
electric motor, with tp the prediction time, i.e. the instant at 
which the RUL prediction takes place, the RUL is computed 
as: RUL � 	 	��� � 	� �18� 
A result example featuring a slow degradation is reported in 
Figure 10; the particles starts from an initial uniform 
distribution between 0 and 1 A. The algorithm quickly 
converges towards the real distribution, tracking the fault 
progression and providing the RUL estimate. The average 
RUL after fault detection for this case is equal to 415 flight 
hours. The value corresponding to a safety margin equal to 
95% is 388 hours, while the required maintenance, 
corresponding to 95% rate of failures, is estimated at the 
latest in 509 hours. 

7.4. Prognosis performance 

The prognostic algorithm performance is evaluated through 
the metrics proposed by (Saxena, Celaya, Balaban, Goebel, 
Sasha & Schwabacher M, 2008) that are frequently adopted 
in the literature: the prognostic horizon H, the relative 
accuracy RA and the cumulative relative accuracy CRA. 
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Figure 10. Prognosis results 

The α−λ analysis has been used as well in order to visually 
display and verify that the RUL prediction remains (or not) 
inside the accuracy limit a for a generic time instant 	 � 	� � 
�	��� � 	��, where tD is the first prediction time 
and λ a scale factor ranging between 0 and 1.assess in the 
best possible way the system performance. The prognostic 
horizon H is derived through the same α−λ analysis by 
setting the accuracy limit equal to 20% of the RUL. Its 
average value over the considered datasets is 243 flight 
hours. The relative accuracy, a measure of the algorithm’s 
capability to estimate precisely the RUL at a generic time 
instant t, is equal to 83.96% and the cumulative relative 
accuracy is 87.13%. 
Repeated evaluation procedures confirm that the 
performance metrics remain within acceptable bounds and 
the prognosis performance is stable over every data set 
considered, consistently achieving an RCA value higher 
than 80% for λ higher than 0.2.  

8. CONCLUSIONS 

The most significant fault for an electric motor employed in 
EMAs for primary flight control has been assessed through 
the analysis of FMECA results. A novel set of pre-flight 
commands able to excite the system while enhancing the 
fault features and reducing the possible external 
disturbances has been proposed and discussed. A non-linear 
model has been built in order to study the effects of the TTS 
fault growth and extract a feasible feature, chosen among a 
few possible candidates based on performance metrics. A 
particle-filtering framework for anomaly detection and 
prognosis featuring a self-tuning non-linear model has been 
developed and employed. The system has proven to be 
precise and robust, achieving consistent performance for 
several initial data sets. 
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