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ABSTRACT 

Renewable, sustainable energy is an evolving field and will 

soon become a desirable necessity to sustain an ever-growing 

growing population. One viable source is wind power which 

is trending towards large farms with many involved turbines. 

The sheer size of the analytical data derived from these 

sizeable wind farms poses both a challenge and an 

opportunity for farm level optimization. Data driven 

analytics and machine learning are making the larger and 

more useful data sets available to be analyzed. One method 

based on these techniques, pattern detection, is already used 

very successfully in fraud detection and many other big data 

industries. One source of ascertaining the state of a turbine is 

through the appropriate understanding of its status codes. 

Such codes can indicate a myriad of outcomes from 

operational events to alarm conditions. It is expected that 

these codes follow consistent patterns and being able to 

extract these patterns from the data can help us understand 

how certain sequences relate to the turbine behavior and 

subsequently analysis of historically linked patterns can aid 

in predicting certain events. For example if codes A and B 

and C tend strongly to occur within the same time window 

then following an A-B pattern one could confidently predict 

a corresponding C event within the time window. Such an 

understanding enables the error codes to reveal more than 

simply a snippet of information, but a productivity- 

enhancing, cost-beneficial operational regime. These could 

then be used to track and anticipate failure events. For such 

high level computing to occur you must take the data into a 

parallelized environment making it scalable to an entire wind 

farm over the course of several years. In this study the effects 

of a varied time window on how the patterns manifested 

themselves was analyzed by frequency of occurrence and 

subsequently validated by physical insights into turbine 

behavior. This approach and the results extracted are based 

on real data of a full offshore wind farm and could be 

harnessed as a simple yet powerful tool for large scale wind 

farm optimization.  

 

1. INTRODUCTION 

Wind power is a valuable, sustainable source of renewable 

energy. In particular it is of interest to renewable energy 

efforts to cluster turbines densely in offshore locations (Green 

2010). Locating wind farms offshore enables expansion and 

scalability impossible or impractical for land based wind 

farms. This can yield previously unattainable levels of 

energy production, while minimizing ecological and social 

drawbacks. The drawback to having large farms offshore is 

twofold: minimizing maintenance costs, downtime and 

associated loss of revenue/power generation, as well as the 

challenges of remote operations and optimization of such a 

large amount of machinery (Helsen 2015). For wind 

turbines to remain a competitive energy source, every 

measure available should be employed to reduce the 

frequency of maintenance events and operational servicing 

(Herbert 2007). Figure 1 illustrates the many derivatives of 

cost per kilowatt of wind power. Offshore locations present 

some significant advantages, yet travel to the locations 

presents other problems: any maintenance activity will be 

magnified by the remote location. Addressing 
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Figure 1. The Cost of Wind Power 
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and decreasing  maintenance costs for offshore wind farms is 

a significant economic step toward developing wind power 

as a mainstream power generation source (Nelson 2006). For 

this reason remote diagnostics tools are particularly 

appealing for this application. This paper suggests and 

validates a methodology for pattern identification which may 

be used in later work as a prognostic tool. The goal of this tool 

is to reduce the yearly operation and maintenance costs 

with the goal to increase efficiency in wind power 

production and minimize cost per kilowatt-hour. 

Machinery data-driven prognostics techniques attempt to 

track behavior of a particular process or machine, and use 

historical trends and patterns to predict and optimize the 

process. Wind turbines, due partially to their necessarily 

large scale, inherently represent a large upfront capital 

investment. To protect this investment, there already exist a 

myriad of data systems developed to monitor their 

performance and activity. This data can take many forms, but 

commonly present as a system of status codes, used to 

convey recurring operational states. 

Status codes are used to convey a bulk amount of 

information in single number indicator format. Status code 

systems are usually in excess of thousands of codes available 

for the nuances of a single turbine unit, and will range in type 

of data communicated. Examples of such codes may be as 

simple as “Power on”, or reflect an operational status such as 

“Wind speed high” or, more severely, indicate a failure mode, 

such as “Emergency shutdown”.  More generally they can 

be defined as a change in turbine parameter (Kusiak 2011). 

Each is relayed at a particular frequency and duration, and 

often they are sent in groups indicating operational states for 

more than one sub-system within the turbine unit. For 

example, a packet may only send one status code, or it could 

contain multiple status codes such as; 

 Error - a full system indicator 

 Emergency shutdown - a separate, full system indicator 

  High wind speed - an environmental indicator  

 Generator 2 temperature information – an operational 

subsystem 

These dynamic groupings are what gives rise to the 

fundamentals of this paper and the interest in locating 

relationships or patterns within the data. An understanding 

of these codes and their patterns, including temporal 

patterns of the codes, can provide insight to the dynamic 

characteristics of an operating turbine. There exists a data 

analytics opportunity for low cost remote optimization 

(Kusiak 2016). The analytical techniques involved will 

address the comparative status codes from an entire farm of 

turbines and the effect of widening the sampling time 

window to determine how patterns are linked temporally 

and more generally how they evolve over larger time 

windows. Previous work in this area has been limited to 

analysis of a single turbine or a single row. This paper 

presents  for the first time a farm level and even multiple 

farm level analysis. As these patterns rarely manifest in 

normal operational data it is crucial to have input from a 

number of turbines (Kusiak 2006). Realization of the full 

utility of this technique’s predictive ability is realized as the 

input of data from turbines grows. 

 
2. APPROACH 

In order to extract these patterns from the full farm of 

turbines, each contributing to a stream of incoming data, a 

pattern detection process was developed that was based on 

time windows and had no selection bias. When acquiring 

such large amounts of data certain problems immediately 

present themselves. 

 
2.1 Analysis Architecture 

Firstly, simply to accurately record and store this data 

requires advanced data basing tools. For this application No- 

SQL (Not only Structured Query Language) was 

implemented as the tool of choice and was integrated into the 

system. This data basing tool provides excellent accessibility 

and reliability for large data sets. It also provides the security 

of data retrieval even in the event of a node failure. 

Additionally, it provides scalability far beyond traditional 

and well known SQL infrastructure (Helsen 2015). Secondly, 

parsing and processing this data is computationally intensive. 

Non-parallelized querying of related values from these tables 

proved to be far too tedious for reasonably scalable analysis 

to occur. To solve this problem, Apache Spark (Spark) was 

implemented as the parallel coding environment. Spark 

enabled the creation of Resilient Distributed Datasets (RDD) 

which lowers the processing time significantly through 

distributed computing (Zaharia 2010). For this application a 

custom Spark process was created, simply employing 

capabilities of executing many serial RDD transformations 

resulting in a much faster parallel process. On the cluster of 

nodes originally set up on for use of the No-SQL database the 

hardware groundwork was already laid for parallel 

computing. This was an essential step in realizing the desired 

results, as previous attempts proved too slow for reasonable 

analysis times. Using the same framework, but lacking 

parallel computing, which was attempted in proof of concept 

trials, proved to be too slow or required a bias on the data. 

Here, a bias indicates a preselection of code sequences 

(patterns) anticipated to be critical. Applying such a bias 

corrupts the resulting pattern detected as not all combinations 

can be considered. Spark’s parallelized computing 

environment such a bias is not necessary. Spark also 

demonstrates scalability to larger data sets.  More 

specifically, in many parallelized algorithms, the amount of 

data to be processed start to create a bottleneck, such that at 

a certain quantity of data the technique becomes 

computationally impractical. This scope of this work already 

encompasses an entire farm of data and shows promise to 

scale further. The Spark framework was interfaced with a 

python script from which analytical parameters were input. 
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2.2 Methodology and Process Flow 

The status codes are initially received and encoded in the 

No-SQL network. Then, the scope of analysis is defined. 

Each analysis can specify a series of key parameters that 

defines the scope. This is explained in greater detail below. 

Then, the data tables are then broken apart and partitioned 

onto the nodes of the cluster and queried in parallel 

extracting codes and associated information that falls within 

the window defined. These objects are transformed to an 

RDD and the pattern detection algorithms using sorting and 

grouping commands are executed. Through this process a 

set of patterns, turbines affected, and frequency values is 

obtained. To understand how frequently recurring patterns 

develop over larger time scales, a sliding time window was 

employed. This accurately captures and compares patterns 

occurring over different time scales. The sliding time 

window described was constructed by simply defining a 

time gap over which patterns would be considered 

temporally linked. Status code data was organized 

chronologically and each subsequent code was either added 

to create a pattern or lengthen an existing pattern if the time 

gap between patterns is less than the prescribed amount. 

Otherwise the window closes and the assembled group of 

codes is taken to be a complete pattern for that window of 

time. This process is repeated on all turbines over the set 

total length of analysis. Time windows were selected based 

on divisions of standardized sampling rates for operational 

data in SCADA (supervisory control and data acquisition) 

systems. The goals of this work (as follows) are to 

understand three different analysis capable through altering 

the parameters.   

1. Pattern differentiation across turbines in the same 

farm, but in different locations 

2. Pattern   evolution   and   growth   with   widening 

detection window 

3. Detection of patterns associated with particularly 

critical status codes 

For this analysis normal operation of turbines will be the 

focus. The primary goal in summary is to validate that 

they do indeed follow an intuitive pattern based on 

physical insight. Secondly, understanding the status 

code patterns as they represents an action the controller 

takes to an event. Identifying sequential events helps to 

characterize how the controller is responding to events. 

Analysis of historical data and current incoming 

streaming can then be used in future work to examine 

abnormal patterns and more complex associative 

techniques to analyze failure data and do supervised 

learning. 

 

3. EXPERIMENTAL CASE 

The dataset being analyzed in this work is based on data from a wind 

farm consisting of over 50 offshore turbines. The status codes were 

reported from a set of approximately 150 codes. For a list of codes and 

their meaning refer to appendix 1. It was proven that the methodology 

was capable of generating analysis for the entire farm with the support of 

a cluster of 3 high performance computing machines. Key variables that 

were adjusted based on the particular analysis were; the set of turbines 

which were being analyzed, the set of error codes to be considered, and 

the time gap between patterns from a single turbine. Additionally an 

overarching time span was set; in this case, 2 years of collected data from 

each turbine was analyzed. While an analysis of all turbines with all 

status codes was possible, it was computationally intensive and often 

obscured subtleties that lay in analyzing a subset. 

By not pre-selecting particular patterns and tracking them, a selection 

bias was avoided. The patterns generated by the algorithm were a direct 

result of temporally related patterns for this analysis in all cases the farm 

was considered and the visualization was selected for clarity.   Adjusting 

the selection of turbines allowed insight into row- or column- specific 

patterns. This allowed for the detection of location specific problems. For 

example, using a spatial analysis one could detect if an emergency related 

error pattern occurred on only on the edge of the wind farm, or was most 

often found in a particular location of a group of turbines. Expanding and 

collapsing the time window gave insight into the extended patterns that 

only manifest over longer time intervals. Using the above example, both 

A-B and A-B-C patterns may have very high frequencies of occurrence, 

however A-B-C may only occur on time windows longer than one 

minute. 

 

4. RESULTS 

 For this analysis, normal operation of turbines will be the 

focus. The primary goal is understanding normal turbine 

behavior through use of readily available status codes, while 

layering in temporal-linked filtering, a technique made 

possible with this methodology. The visualizations presented 

below display the most frequently occurring status code 

patterns occurring within the specified time window (eg 1s) 

and identical time spans.  ‘String’ indicates a row of turbines 

in a wind farm; the following number represents the turbine’s 

columnar position, yielding its place in a relative, rectilinear 

grid. Thus the leftmost column in the figure 2a represents 

turbine A1 exhibiting the sequence (443, 461, 447), where each 

code occurs within a second of the next, a total of 150 times 

over the 2 year time span. Turbines rows were selected 

arbitrarily for each visualization and while code definitions are 

accurate code identifier number is obscured to protect 

manufacturer secrecy. 

Validation of the methodology and developed tool will take the 

form of discussing the physical significance of particular status 

code and their relevance to what pattern sequences are 

developed, compared to what could be expected. The results 

also confirm the feasibility of this methodology on larger data 

sets, as generation for each set included input data from every 

turbine over a two year time selected. Every analysis run 

amounted to less than 3 minutes of computational time, which 

was not previously possible without parallel computing. For 

this work, isolation of particular codes will be considered 

briefly, although only in an attempt to once again validate that 

such a technique produces results which are intuitive based on 

knowledge of the observed meaning of the status codes. 
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4.1. Goal 1: Comparative analysis of turbine status 

code patterns in different locations 

Displayed in Figure 2a is the visualization of turbines 3 rows in a wind 

farm. It is clear that while status codes differ slightly from turbine to 

turbine, all exhibit patterns that occur more frequently, indicative of a 

successful analysis.  Notably, 443 (“Error”), then  447 (“Stop”)  is 

almost an intuitive pattern, and appears in every turbine as one of the 

most frequent patterns. Given the narrow time window of only a second, 

which prohibits the recognition of more complex patterns, this seems 

logical; these code combinations are common occurrences. In fact, in 

such a small time window, nearly all codes or code patterns are limited 

to the basic level. Codes 445, 449 are “Emergency”, and “Pause”, 

respectively. Codes 443, 445, 447, and 449 make up the bulk of the top 

patterns in every string, which again makes sense as this short time 

window only detects virtually concurrent patterns. Such simple codes 

are logical to be grouped. More interesting is the emergence of the 203 

(emergency stop) status code patterns occurring more frequently for 

turbine A5. This clearly indicates an operational imbalance or recurring 

malfunction in turbine A5, which would indicate an escalating need for 

timely intervention or maintenance.  Also interesting to note is that while 

all turbines should be environmentally experiencing the same wind, they 

do not exhibit uniform status code feedback. 

 

 

 

 

4.2. Goal 2: Analyzing the change in patterns with a 

widening time window 

In Figure 3 the patterns include codes not previously included 

in patterns corresponding with a widening time window, and 

predictably, the status code groupings lengthen as a less 

selective filter is applied. Also notably, we recognize that 

common operational patterns (229-231) are thoroughly 

dominant at larger time scales. This is the transition from star 

to delta configuration which is a feature of the controller to 

optimize power harvesting. For this particular group of 

turbines it occurs over a duration of less than one minute. It is 

indicative of normal functioning and is a very common 

controller operation. From this we conclude that indeed logical 

patterns are being mined from the algorithm even at longer 

time scales For this reason this first pattern was excluded for 

the 5 minute trial to show greater detail of latter codes. 

Furthermore, the 229 and 231 codes manifest themselves in 

many other common operational code patterns. Again, while 

redundant, this validates that the patterns developed through 

the technique follow intuitively from physical understanding 

of the system, bringing credence to the methodology as a 

whole. As the window widens we can see which turbines or 

single turbines are exhibiting problematic patterns.  

 

 

 Figure 3. C-string at different time windows Figure 2. Top patterns from strings A-C 
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4.3. Goal 3: Patterns containing critical status codes 

In beginning to realize the predictive capabilities of this tool, 

we examine a pattern of critical interest; 203 or “Emergency 

stop”. Emergency stops have the potential to not only diminish 

power output of turbines, but more critically to magnify and 

progress internal existing flaws. Based on the data above 

from a 5 minute window, C4 can be clearly recognized 

as a turbine with recurring issues.  Other components to the 

pattern are again primarily operational data which is normal 

for this low of a time window where basic operational codes 

tend to dominate.

 

 

 
5. DISCUSSION AND CONCLUSION 

We find that the pattern detection via parallel processing of 

temporal influenced code sequences algorithm is assumed to be 

valid, as patterns that are known to occur based on physical insight. 

It is also observed, based on the results that the patterns detected 

can logically expand to include progressions of status codes that 

are not intuitively apparent. It should also be noted that only 

sequential patterns were noted and no pattern partitioning was 

integrated. This will also be a topic for future work with more 

advanced algorithms. Indeed the expansion of patterns was by 

design in hopes to draw out a pattern long enough as to suggest a 

“unique signature” for a particular event. Understanding of the 

progressions of these error codes and signatures can be used in 

future work as an early indicator for potential failure modes.  

Prognostics techniques can combine data from a particularly 

troublesome string or row, with other forms of data (SCADA, 

weather information, maintenance records, etc) and the origin of 

flaws can be inferred. While 203 was highlighted here, clearly other 

operationally limiting patterns could also be identified and more 

closely managed.  Another pattern of particular interest is patterns 

which include the code 289, “High wind speed”. It is intuitive that 

as wind speed increases so too, does the maximum power output of 

the farm. This is a desired outcome. Kusiak (2016) found that 

current management and maintenance practices, as well as control 

methodologies of wind turbine farms are falling far short in realizing 

maximum potential output. Maximum wind speed where power is 

being generated is a desirable outcome, yet it then becomes critical 

to track turbines where high wind speed status code is associated 

with error or emergency code.   This tool also addresses the 

interesting variability in patterns between individual power 

producing units in the same farm, or even the same row.  While the 

degree of variation is relatively slight, it continues to provide 

evidence to the theory that taking data from all turbines in the wind 

farm can yield new and interesting information about the 

operational and maintenance status of the wind farm. 

Implementation of this tool is low cost and supported. Future work 

can delve further into examining relationships between codes 

related to critical fault and pattern family development. It seems 

likely that expansion and further work with this tool presents an 

effective and efficient solution to the problem of remote 

optimization in offshore wind farms. This techniques is already used 

in genome sequencing and fraud detection, but based on the results 

of this work has applicability in an industrial context not limited to 

wind turbines 
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APPENDIX 

Appendix 1. List of status codes included and their 

meaning 

 201 – Too many Auto restarts 

 203 – Emergency stop  

 229 – Generator 2 in 

 231 – Generator 2 out 

 289 – High wind speed 

 279 – Engage brake 

 379 – Error 

 443 – Emergency 

 445 – Stop 

 447 – Pause 

 451 – Run 

 461 – 60 second auto -restart 
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