
Implementing MIMOSA Standards
Johannes Drever1, Helmut Naughton2, Michael Nagel3, Andreas Löhr4 and Matthias Buderath5

1,2,3,4 Linova Software GmbH, München, 80805, Germany
johannes.drever@linova.de
helmut.naughton@linova.de

michael.nagel@linova.de
andreas.loehr@linova.de

5 Airbus Defence and Space Deutschland GmbH, Manching, 85077, Germany
matthias.buderath@airbus.com

ABSTRACT

A common challenge to Prognostic Health Management (PHM)
systems is the management of data across different organi-
zations based on a standardized format and meaning. The
Open System Architecture for Condition-based Maintenance
(OSA-CBM) and the Open System Architecture for Enter-
prise Application Integration (OSA-EAI) are complementary
reference architectures for domain-independent asset and con-
dition data management. In previous papers, we reported on
our experiences with implementing a data integration layer
based on these two architectures. In this paper, we report
on our experience implementing code generators for binary
OSA-CBM and OSA-EAI Tech-CDE (Compound Document
Exchange), and the utilization of the resulting components
within the OMAHA project. OMAHA aims towards an over-
all management architecture for health analysis, incorporat-
ing manufacturers, operators and maintainers of fleets of air-
craft. The OSA-CBM standard specifies a message structure
but leaves the assembly and disassembly of OSA-CBM data
up to the implementor. Our solution is a builder/reader Appli-
cation Programming Interface (API) for a binary OSA-CBM
message codec which we have implemented under the con-
straints of a real-time computing environment. The required
C code is automatically generated from the provided tech-
nical documentation for OSA-CBM. We discuss the prop-
erties of the resulting codec and point out future improve-
ments for the OSA-CBM binary protocol to improve consis-
tency and to add the capability of streaming. Using the same
generative approach we have implemented a code generator
for a Tech-CDE-compliant middleware system, consisting of
client libraries (currently C++ and Java), a network layer,
a server portion, and a database backend. Analogously to

Johannes Drever et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

OSA-CBM, the code generator processes the documentation
provided for Tech-CDE, creating both productive and test-
ing code. We discuss the properties of the resulting system,
report specific limitations of the Tech-CDE protocol and sug-
gest mitigations. The paper concludes with an experience re-
port from utilizing our work in the OMAHA project. While
Tech-CDE was generally found sufficient, we identified ar-
eas of improvement, including protocol properties and entity
coverage. We were able to make customizations using our
generative coding approach and present these as suggestions
for future standard extensions.

1. INTRODUCTION - MIMOSA STANDARDS

Introducing PHM systems imposes a paradigm shift from pre-
vention of failure towards prediction of failure. Besides the
challenge of creating the enabling diagnostics and prognos-
tics technologies, the management of data is crucial to the
successful application of PHM. What is required is a com-
monly accepted standard for data representation, data com-
munication, and data storage across different organizations
and stakeholders. In our work we focus on data management
middleware based on MIMOSA1 (MIMOSA, n.d.), an or-
ganization which performs standardization work by defining
reference architectures for specific aspects of PHM-related
data management.

1.1. The OSA-CBM standard

The Open System Architecture for Condition-based Mainte-
nance (OSA-CBM) is an implementation of the ISO-13374
functional specification and defines six layers. Each layer
hosts different functions of a data processing chain (see Fig-
ure 1). The standard focuses on the definition and commu-
nication of PHM data in distributed systems, including the
monitored devices themselves. Since the inclusion of a bi-
1MIMOSA: Machinery Information Management Open System Alliance

1



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

nary transmission format OSA-CBM is suited for being used
on embedded systems (Löhr & Buderath, 2014).

Figure 1. OSA-CBM Overview.

1.2. The OSA-EAI standard

The reference architecture OSA-EAI complements OSA-CBM
with a comprehensive data storage architecture for asset and
configuration management. The architecture includes a phys-
ical relational data model called Common Relational Infor-
mation Schema (CRIS) and an XML-based messaging format
called Tech-CDE (Compound Document Exchange). Via the
XML messages, a remote client is able to perform Create,
Retrieve, Update and Delete (CRUD) operations for all en-
tities defined in CRIS, provided there exists a bidirectional
mapping between Tech-CDE XML and SQL.

Figure 2. OSA-EAI Tech-CDE Overview.

2. ENVIRONMENT

The German national research project OMAHA (Overall Man-
agement Architecture For Health Analysis) is a joint effort
of aircraft manufacturers, airlines, aviation industry suppli-
ers and aviation-related research disciplines, such as artificial
intelligence. Motivated by the upcoming increase in air traf-
fic over the next decade, the project seeks to optimize opera-
tional cost by increasing aircraft availability and by reducing
maintenance expenses. A key enabler for this endeavor is the
introduction of system-wide diagnostics and prognostics on

the basis of physical or virtual sensor data. The OMAHA
project specifically focuses on the required system architec-
ture, which shall facilitate data exchange between OEMs2,
operators and MROs3, as well as the necessary process- and
tool chains which have to be deployed. The project partners
have decided to evaluate and use the MIMOSA Standards
(see section 1) for their purpose, and Linova contributes to
the project by providing required middleware stacks and data
modeling skills.

3. OSA-CBM IMPLEMENTATION

In this section we report about our experience from imple-
menting the OSA-CBM binary protocol in the context of the
OMAHA project.

3.1. Motivation and Previous Work

From previous work we have gathered experience with imple-
menting the OSA-CBM protocol XML-based (Löhr, Haines,
& Buderath, 2012) and binary (Löhr & Buderath, 2014), and
continued our work towards OSA-CBM for embedded sys-
tems based on the binary transmission spec. Our previous im-
plementations showed the general feasibility of binary OSA-
CBM but incorporated coding constructs which were cum-
bersome to use for developers, and lacked completeness. In
this paper we present a generative approach for implementing
the full OSA-CBM binary spec and providing a simple to use
API.

3.2. OSA-CBM Message Builder API

We encountered two major issues while designing the mes-
sage builder API. The first issue is that our target environ-
ment requires C, which prohibits using object-oriented pro-
gramming to represent messages and subtypes. Therefore,
we had to build the API as a large flat set of functions, which
we arranged into groups using name prefixes. The second is-
sue was that the target environment forbids dynamic memory
allocation. Thus, we perform all encoding and decoding op-
erations on a fixed-size buffer that resides either on the stack
or is statically allocated.

Our API for the OSA-CBM subtypes follows a common pat-
tern. For each subtype, there is a function that starts encoding
the subtype, and one that marks the subtype as finished. There
are simple setter functions for primitive attributes (numbers,
strings, etc.). For subtype attributes, we provide functions to
enter and leave the respective subtype attribute, which frame
the start and finish calls for the respective subtype. Arrays
require yet more functions in order to correctly handle the
array counter. The API automatically enforces that subtype
attributes are set in the correct order as defined by the sub-
type specification. The API user only needs to state in ad-

2OEM: Original Equipment Manufacturer
3MRO: Maintenance, Repair and Overhaul

2



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

vance if the subtype length is guaranteed to stay below 255
bytes4. The API manages aspects of the subtype header auto-
matically, including length field and optionality bit mask.

The following listing encodes a minimal DMReal subtype
(mandatory attributes only) using our API.

1 OSACBM_encoder_DMReal_start(encoder,
true);

2 OSACBM_encoder_DMReal_id_set(encoder,
0xAFFF);

3 OSACBM_encoder_DMReal_value_set(encoder,
354.356897);

4 OSACBM_encoder_DMReal_finish(encoder);

3.3. Code Generator

Our OSA-CBM message builder API consists of two parts: a
manually built set of functions that manage the overall mes-
sage structure, header, information blocks etc., and an au-
tomatically generated part that encodes all currently defined
subtypes. The binary encoding specification package con-
tains three machine-readable files that define subtypes and
attributes (all.members), inheritance relations between sub-
types (all.inheritance), and enums (all.enums). Our API gen-
erator reads and processes these files, builds an internal model
of the specification, and flags inconsistencies such as miss-
ing referenced subtypes, unexpected primitives, missing ref-
erenced enums, cyclical structural dependencies etc.
In the next step, the generator writes one .h and one .c file
for each subtype and enum that implement the API described
above. All aspects are generated automatically, including
member order enforcement, optionality bit handling, packing
group management etc. The generated code performs exten-
sive error checking at every step to ensure the encoded mes-
sage is consistent and complete. We also generate test suites
for all subtypes along with JSON encoders/decoders to allow
manual test case specification.

3.4. Lessons Learned

During our work on the message builder API, we noticed
an inconsistency in the spirit of the specification regarding
length fields. Subtype headers are required to specify the
length of their subtype block, while the overall message blocks
are not. The length of a string is impossible to determine
before actually processing it, whereas the length of an array
must be written before the array itself.
There are certainly arguments for both styles: knowing all
lengths in advance makes it easier for recipients to allocate
memory and perform checks on the incoming message; al-
lowing lengths to be unspecified in advance eliminates a con-
siderable part of housekeeping duties and may significantly
lower memory requirements on the encoder side. If lengths

4OSA-CBM defines a different header for subtypes greater than 255 bytes.

do not need to be specified in advance, a memory- and time-
constrained message sender can stream messages instead of
fully assembling them in memory prior to sending. For ex-
ample, a sender that creates long arrays of numeric value sub-
types currently needs to hold the entire message in memory
to continuously update the length field while members are
added. If the length were not required in advance, the sender
could simply send out array element after array element and
eventually finish the message, without having to keep any-
thing in memory in the meantime.
Therefore, we recommend that a future version of the spec-
ification consistently allows both specified and unspecified
lengths for all mentioned instances (headers, strings, arrays).
For example, a length value of 0 (zero) for a subtype length
could indicate that the length of the subtype block must be
calculated from its expected content as per the specification.
Strings could be prefixed with a 1/4 byte length indicator be-
fore the actual string content, where a length value of zero
means that the string is null-terminated.
Getting arrays to not require a length in advance is a bit more
complex, but also manageable. A straightforward option would
be to require a 1-byte indicator before each array element
for arrays with unspecified length. This indicator could be
1 if another array element follows, and 0 if the end of the ar-
ray has been reached. The downside here is the added space
consumption. This can be addressed through a slightly more
complex scheme: an array end marker byte (e.g. 0xFF). If the
array end marker byte is encountered where a new array ele-
ment would begin, it marks the end of the array instead. Of
course, it must still be possible for an array element to begin
with the actual value of the array end marker. An array ele-
ment marker byte (e.g. 0xFE) can be used for that. If an array
element starts with either the end marker value or the element
marker value, an element marker value would be written, and
the actual content afterwards. For example, an element start-
ing with 0xFF would be encoded as 0xFE 0xFF, and an el-
ement starting with 0xFE would be encoded as 0xFE 0xFE.
All other values in the first array element byte (here: 0x00-
0xFC) do not need special treatment and would be handled as
the beginning of an array element.
Another issue that we encountered is that there is no hard
limit for the depth of nested subtype trees. It is theoretically
possible to assemble a subtype tree of arbitrary depth, be-
cause there are many possible cyclical structural dependen-
cies between subtypes. The shortest example is that a Data
subtype contains an array of Data subtypes, which means it is
possible to nest Data subtypes to any depth. In total, our gen-
erator currently detects 758 unique circular structural depen-
dencies, with circle lengths from 1 (Data → Data) up to 9 (e.g.
ExplanationDataSet → ExplanationData → DataEventSet →
PADataEvent → AmbiguityGroup → OrConnector → Not-
Connector → AndConnector → LogicalConnector → Expla-
nationDataSet). If there were no circular structural depen-
dencies, there would be a maximum depth, and our encoder

3



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

could allocate a fixed depth subtype management structure
stack that cannot be exceeded.

4. TECH-CDE IMPLEMENTATION

In this section we report about our experience from imple-
menting the OSA-EAI Tech-CDE protocol in the context of
the OMAHA project.

4.1. Motivation and Previous Work

A core goal of the OMAHA project is to build a demon-
strator for physical health management in a real time closed
loop with scheduling algorithms. The demonstrator simu-
lates a fleet of passenger aircraft based on scheduling data
provided by a major airline. The aim is to demonstrate that
the tight loop between real time data monitoring and main-
tenance scheduling leads to more efficient planning. There
are several parties responsible for the simulation of the fleet,
the physical simulation of aircraft parts, and the scheduling of
maintenance activity. These parties work with heterogeneous
data formats in different domains. The OSA-EAI layer is in-
troduced in order to unify this data in the Common Relational
Information Schema (CRIS). Further, the Tech-CDE network
layer is provided to allow data manipulation in CRIS. The
specific domains of the participating parties, in particular the
flight and maintenance scheduling, are mapped to the generic
CRIS schema (4.6). We extended the CRIS schema since it
was not possible to map all scheduling related entities (4.7).

In previous work we have presented an OSA-EAI Client/Server
Application implementation (Löhr et al., 2012; Löhr & Bud-
erath, 2014). The choice of the Tech-XML format brought
several draw-backs. The identification of Tech-XML request
types with numeric values (e.g. mim 5005 req for asset)
imposed additional mental burden on the developer and led
to difficulties in readability and maintainability in the result-
ing client code. Further, Tech-XML does not provide range
queries, grouping, ranking and aggregation queries (Löhr &
Buderath, 2014). The Tech-CDE Client/Server Application
allows using the CRIS schema for data exchange in a more
direct fashion. There are 431 query and write requests for the
431 entities specified in the CRIS schema. We hoped this to
be more suitable than the Tech-XML architecture for the data
integration use case in OMAHA.

The Tech-XML implementation was realized by a genera-
tive approach using the XSD specification. The specifica-
tion was parsed with JAXB (JAXB, n.d.) in order to generate
object representations and XML-serialization methods. This
approach limited the client to Java and only allowed a 1:1
mapping of protocol elements to Java objects. In the cur-
rent work we use a more flexible approach to code genera-
tion. First, since there is a one to one correspondence be-
tween CRIS instances and Tech-CDE read/write requests, we
used the SQL DDL specification of CRIS as the basis for code

generation - not the also provided XSDs. Second, we imple-
mented a whole SQL DDL analysis and Java/C++ code gen-
eration framework (4.5). The code generator allows for more
flexible design choices and the implementation of more com-
plex features such as partial updates in the client API (4.3).
The generated code has entity-specific methods for XML-
serialization. Thus, run time reflection as in the JAXB im-
plementation is not necessary and may lead to better runtime
performance.

4.2. System architecture

The extended CRIS schema is hosted as a MySQL database.
The database is accessible via a server which handles Tech-
CDE read and write requests. The server may be queried
either by standard Tech-CDE messages (cf. 4.9 for limita-
tions) or via a Java or C++ client API. The server can be ac-
cessed via HTTP/S, optionally enforcing authentication via
SSL client certificates. The client API provides factory meth-
ods for a convenient configuration of the HTTP/S connection
using an optional proxy server.

According to the MIMOSA specification, the Tech-CDE client
and server schema was developed as a means of transfer-
ring aggregate, related sets of CRIS data in XML format us-
ing one query schema and one write schema. It is indepen-
dent of specific ”connect” or ”disconnect” methods between
client and server. The server may combine data from different
databases.

4.3. The client side API

The Tech-CDE Client API allows to issue Tech-CDE queries
from either Java or C++5. The API provides data access ob-
ject (DAO) interfaces for each entity, as shown in figure 3.
The DAO interfaces provide CRUD operations for the cor-
responding entity. The provided CRUD operations can be
used with several different parameters, depending on whether
a single object or a bulk of objects is manipulated. Single
object manipulations are specified with primary keys, object
instances or template instances. Bulk manipulations are spec-
ified with lists or entity specific Filters and BaseParams. The
following example illustrates how a list of assets is queried.

1 DaoAsset dao = factory.getDaoAsset();
2 List<Asset> assets = dao.getAssets(
3 Arrays.asList(
4 new AssetFilter()
5 .name(Comparator.LIKE, "aircraft")
6 .criticality(Comparator.MIN, 3L)),
7 new AssetBaseParam()
8 .orderBy(AssetAttribute.ASSET_ORG_SITE)
9 .order(Order.ASC));

5In this section only the Java implementation is presented. The C++ imple-
mentation provides analogous concepts with a similar implementation.

4



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

The list of assets is defined by a filter on the name and on the
criticality of assets, resulting in all assets whose names con-
tain ”aircraft” and which have a minimal criticality of 3. The
result set is ordered ascending by the asset org site.
The API is designed using method chaining (Fowler & Par-
sons, 2010) to facilitate the combinatory build of comprehen-
sive queries. Further properties may be added to the query by
appending further method calls. The example API call results
in the following Tech-CDE request:

1 <mim_query>
2 <mim_query_req>
3 <header include_non_active_rows="0"

session_id="2016-03-30T11:50:17"/>
4 <base>
5 <base_params count_only="false"

order="ASC"
order_by="asset_org_site"/>

6 <base_rows>
7 <asset>
8 <filterTYPE column_name="name"

like_value="OMAHA"/>
9 <filterTYPE

column_name="criticality"
min_value="3"/>

10 </asset>
11 </base_rows>
12 </base>
13 </mim_query_req>
14 </mim_query>

+getGmtLastUpdated()
+setGmtLastUpdated(lu: DateTime)
+toString()
+isDirty()
~clearDirty()
+equals(obj: Object)
+hashCode()
+writeXMLAttributesTo(sw: XMLStreamWriter)
+writeXMLAttributeChangesTo(sw: XMLStreamWriter)
+writeXMLFilterTo(sw: XMLStreamWriter)

 

Agent

+getGmtLastUpdated()
+setGmtLastUpdated(lu: DateTime)
+writeXMLAttributeChangesTo(sw: XMLStreamWriter)
+isDirty()

 

AgentTemplate

+lastNData(value: Long)
+returnFkTables(value: Boolean)
+returnv(value: Boolean)
+orderBy(value: AgentAttribute)
+order(value: Order)
+getOrderBy()
+getOrder()

 

AgentBaseParam +getAgent(orgAgentSite: String, agentId: long)
+getAgents(f: AgentFilter[*], p: AgentBaseParam)
+getAgentCount(filter: AgentFilter[*])
+createAgent(agent: Agent)
+createAgents(agents: Agent[*])
+updateAgent(agent: Agent)
+updateAgents(entities: Agent[*])
+updateAgents(t: AgentTemplate, f: AgentFilter[*])
+deleteAgent(agent: Agent)
+deleteAgents(entities: Agent[*])
+deleteFilteredAgents(filters: AgentFilter[*])
+softDeleteAgent(agent: Agent)
+softDeleteAgents(entities: Agent[*])
+softDeleteFilteredAgents(filters: AgentFilter[*])

 

DaoAgent

+writeXMLFilterTo(sw: XMLStreamWriter)
+orgAgentSite(c: Comparator, value: String)
+agentId(c: Comparator, value: long)
+agentDbSite(c: Comparator, value: String)
+agentDbId(c: Comparator, value: long)
+agentTypeCode(c: Comparator, value: long)
+assetOrgSite(c: Comparator, value: String)
+assetId(c: Comparator, value: Long)
+userTagIdent(c: Comparator, value: String)
+name(c: Comparator, value: String)
+gmtLastUpdated(c: Comparator, value: DateTime)
+lastUpdDbSite(c: Comparator, value: String)
+lastUpdDbId(c: Comparator, value: Long)
+rstatTypeCode(c: Comparator, value: Integer)

 

AgentFilter

Figure 3. The client side API.

Handling of updates to existing entities

In order to let the client library user interact with the entity
objects as they would naturally, we track for each attribute
of the entity object whether it has been changed on the client
since it was retrieved from the server. This way, if the user
wants to transmit the updated entity to the server, we can send
only those attributes which actually need updating, minimiz-
ing the risk of lost updates, which might have happened in the

meantime on the server via another client.

Handling of updates with filtering

To allow for updates to all entities corresponding to specific
filter condition, we need to be able to specify the attributes to
be updated, and their values. The entity classes themselves
cannot be used for this purpose, since they differentiate be-
tween mandatory and optional attributes of the entity and thus
require values for all mandatory attributes.

4.4. Generic Tech-CDE server

Providing a client library that allows to interact with an ob-
ject representation of CRIS entities requires a code generation
approach such as the one described in 4.5 to generate classes
and helpers for each entity.

The server can be structured less complex. Since the XML
representation of objects in the Tech-CDE directly map to
CRIS tables and their attributes, we have implemented a generic
mechanism for translating Tech-CDE XML requests directly
into SQL statements.

 +createContext(context:String,handler:HttpHandler)

HttpServer

+handle(ex:HttpExchange)

«Interface»
HttpHandler +TechCDEHandler(qh:QueryHandler)

+TechCDEHandler(wh:WriteHandler)
+TechCDEHandler(qh:QueryHandler, wh:WriteHandler)
+handle(ex:HttpExchange)

TechCDEHandler

+handleMim(in:InputStream, out: OutputStream)

«Interface»
QueryHandler

+ handleMim(in:InputStream, out: OutputStream)

«Interface»
WriteHandler

+getConnection()

DataSource

Check if query or write
Always send response 

200

 

TechCDEServer

«instantiate»

«
in

s
ta

n
ti
a

te
»

«
in

s
ta

n
ti
a

te
»

«
in

s
ta

n
ti
a

te
»

+ SQLQueryHandler(ds:DataSource)
+handleMim(in:InputStream, out: OutputStream)

SQLQueryHandler

+SQLWriteHandler(ds:DataSource)
+handleMim(in:InputStream, out: OutputStream)

SQLWriteHandler

Figure 4. Tech-CDE Server.

The high-level structure of our Tech-CDE server implemen-
tation is shown in Figure 4. The server communicates with
the clients via HTTP/S and implements separate handlers for
query and write requests. The Tech-CDE Client/Server Ver-
sion Application Specification leaves network layers6 5 and
below up to the implementor. We have chosen to use HTTP
POST requests for querying the server and transmitting the
response back to the client, as most corporate networks allow
for this traffic in and out of their perimeter.

We use two separate handlers for query and write, because
the Tech-CDE Client/Server Version Application Specifica-
tion allows for servers to implement these features separately,
e.g. a server could only allow for querying but not for writing
data. The Tech-CDE handler is used to read the first 100 bytes
6ISO-OSI Network Model

5



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

of the incoming request stream and determine the Handler to
be used to process the request.

Requests and responses are both handled as streams, so even
for large XML files (e.g. requests inserting many objects at
once into the database, or responses containing a large num-
ber of objects) the server does not keep the entire object hier-
archy in memory.

 

SQLSoftDeleteStatement

setColumn(col)
setOrder(order)
getSQLOrderCondition()

SQLOrderCondition

SQLUpdateStatement

 

addValueForColumn(value, col)

SQLValueForColumnStatement

setSearchCondition(cond)

SQLFilterStatement

setCountOnly(co) 

SQLSelectStatement

addFilter(col, comp, value)
getSQLSearchCondition()

SQLSearchCondition

SQLInsertStatement

 

setTableName(tableName)
getSQLString()

SQLStatement

 

SQLDeleteStatement

Figure 5. SQL statements.

Figure 5 shows how SQL statements are represented. There
are five classes of SQL statements, corresponding to SELECT,
INSERT, UPDATE, and DELETE, as well as a SOFT DELETE,
which just updates a specific attribute of an entity to mark it
as not being in use. Search conditions (WHERE clauses) can
be specified for SELECT, (SOFT )DELETE, and UPDATE.
INSERT and UPDATE can set values for specific columns in
the entity’s table. SELECT can specify an ordering for the
results with an ORDER BY clause.

The query and write handlers each instantiate the appropriate
SQL statement class, and populate the order and search con-
ditions as necessary. After the end of the request is reached,
the SQL statement class is used to create the SQL query string.
The results are directly written into the HTTP response stream.

Consider the following sample DELETE request from the
Tech-CDE Client Server Application Primer (adapted for this
paper by reducing the number of filters to two):

1 <mim_write
2 xmlns="http://www.mimosa.org/TechCDEV3-2">
3 <mim_write_req>
4 <header session_id = "36" />
5 <param action="Hard_Delete"
6 trans_class="Atomic" />
7 <mimosa_rows>
8 <segment_chr_data>
9 <filterTYPE column_name="segment_site"

10 equal_value="000003F900000001" />
11 <filterTYPE column_name="segment_id"
12 equal_value="21" />
13 </segment_chr_data>
14 </mimosa_rows>

15 </mim_write_req>
16 </mim_write>

The server parses the XML as it is streamed to the server.
On encountering the mim write req tag, the stream is for-
warded to the write handler to handle the rest of the query.
The param tag specifies the type of write – in this example
the action is DELETE, so an SQLDeleteStatement is
created. Since the trans class is “Atomic”, the write han-
dler is set to execute the statements atomically, i.e. as a trans-
action. Next, the parser encounters mimosa rows which
signals that the next opening tag defines the name of the table
to be operated on, in our example “segment chr data”. This
tag also contains a list of filterTYPE tags. Each such tag
is parsed and added to the delete statement’s SQLSearch-
Condition via the addFilter method, e.g. for the first
filter:

1 addFilter(Comparator.EQUAL,
2 "segment_site", "000003F900000001");

The search conditions form a WHERE clause, with additional
conditions added with AND. The closing tags signal the end
of the statement. The SQLDeleteStatement now con-
tains all information needed to create a valid SQL statement
performing the delete: the table name is “segment chr data”,
the first part of the where clause is a check for equality of the
“segment site” column and the value “000003F900000001”,
and the second part of the where clause is a check for equality
of the “segment id” column and the value “21”. The resulting
SQL statement is constructed as follows:

1 DELETE FROM segment_chr_data
2 WHERE segment_site =

’000003F900000001’
3 AND segment_id = ’21’;

In order to prevent clients from accessing arbitrary, non-CRIS
tables, we generate a whitelist from the CRIS model which
contains valid targets for any read or write query. This whitelist
is the only piece of server code which contains specific infor-
mation about CRIS entities, the rest is generic.

4.5. New approach to code generation

The CRIS model, and consequentially the Tech-CDE proto-
col, provides 431 different entities. These entities may be
subject to future change or may be extended - for example
with the scheduling extension described in 4.7. In order to
facilitate the tedious work of implementing the communica-
tion infrastructure for the large amount of entities and in order
to be responsive to further change we chose a generative ap-
proach. The generative approach requires parsing of source
data and generation of source code in possibly multiple target
languages. We chose Haskell to implement the code genera-
tor because it has a rich ecosystem of libraries for parsing and

6



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

TechCDEGenerator

Java templates
CRIS schema

(SQL DDL)

Java TechCDE API

Java Server 
(Whitelist)

C++ TechCDE 
Client API

Java TechCDE 
Client API Tests

C++ TechCDE 
Client API Tests

SQL Test Schema 
DDL

SQL Test Data

C++ templates

Figure 6. Tech-CDE code generator.

pretty printing (Gonzalez, 2015).

The overall architecture of the code generation process is shown
in figure 6. The dynamic source code7 is provided as tem-
plates and compiled with the source code generator. The
source code generator parses the CRIS database schema and
transforms it into an intermediate representation. From the
intermediate representation the Java code, the SQL code and
the C++ code are generated. The Java code comprises the
Tech-CDE API, the server whitelist and the test code. The
SQL code comprises the test schema and the test data. The
C++ code comprises the Tech-CDE API and the test cases.

Parsing input data

The CRIS database schema is provided in the form of a SQL
DDL, i.e. as CREATE TABLE statements. The CRIS schema
is published by MIMOSA with the OSA-EAI in ORACLE
format. The parsing library8 is agnostic to the SQL format,
since the main differences are related to the data types. We
map the ORACLE data types to internal data types. Addition-
ally we map MySQL types to the internal data types. Thus, it
is possible to convert ORACLE to MySQL entities and vice
versa.

Source code generation

Most of the Java and C++ code is static code. The remaining
dynamic code is represented in the form of templates. The
templates are actually Haskell code which is compiled as part
of the generator. The Java code is represented as an abstract
syntax tree (AST) which ensures that only syntactically cor-
rect Java code is generated. This eliminates errors in the Java
code during the compilation phase of the generator. However,
it is still possible to generate Java code with compile errors,
e.g. by using variables which are not in scope. The represen-

7We refer to code which is generated as dynamic code. Code which is stored
in static files is called static code.

8HsSqlPpp: https://hackage.haskell.org/package/hssqlppp

tation of the Java code as an AST provides additional benefits
since it is possible to manipulate this data structure. The gen-
erator adds import statements to the source code, similar to
Eclipse’s ”Organize Imports” feature.

4.6. Mapping of OMAHA data model to CRIS

In order to ensure interoperability with existing domain mod-
els, we had to map OMAHA domain entities to their corre-
sponding CRIS entities. For this purpose, we created tooling
to ingest the domain model and the CRIS model both in the
form of SQL create statements. We then let domain experts
map domain entities to their closest corresponding CRIS en-
tity, and the domain entity’s attributes to the CRIS entity’s at-
tributes. Any attributes not mappable to CRIS columns were
mapped via the CRIS data attachment mechanism shown in
Figure 7.

entity_org_site
entity_id
en_db_site
en_db_id
en_type_code
user_tag_ident
name
gmt_last_updated
last_upd_db_site
last_upd_db_id
rstat_type_cod

entity

data_value
gmt_last_updated
last_upd_db_site
last_upd_db_id
rstat_type_cod

entity_num_data

entity_org_site

entity _id

en_db_site
en_db_id
en_type_code
user_tag_ident
name
gmt_last_updated
last_upd_db_site
last_upd_db_id
rstat_type_cod

en_num_dat_type

en_db_site

en_db_id

en_type_code

eu_db_site
eu_db_id
eu_type_code
mult_fact_to_ref
refer_off_to_ref
user_tag_ident
name
gmt_last_updated
last_upd_db_site
last_upd_db_id
rstat_type_cod

eng_unit_type

eu_db_site

eu_db_id

eu_type_code

ref_unit_type
name
physics_descr
gmt_last_updated
last_upd_db_site
last_upd_db_id
rstat_type_cod

ref_unit_type

default_ru_type

ru_type_code

Figure 7. The CRIS data attachment mechanism.

The tooling then maps any domain attribute which cannot be
mapped directly to a CRIS entity to one of the CRIS entity’s
attached data tables instead (* num data, * chr data,
or * blob data). The name of the attribute is saved in
the * * dat type table, while the value is stored in the
* * data table itself. The entries of the * * dat type
tables, which consist of the attribute names and unique type
codes, can be generated by our tooling.

At all times, the tooling can provide a report, which domain
entities have already been fully mapped, which are still miss-
ing some attribute mappings, and which are still entirely un-
mapped. For the OMAHA domain, we found that CRIS was
sufficient to represent a majority of the domain entities, how-
ever, a significant amount of entities or attributes was left un-

7



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

mapped. OMAHA is a project within the aviation domain
and one group of unmapped entities deals with the scheduling
and allocation of aircraft to flight plans. In order to provide
suitable data storage for the project we designed a scheduling
extension to CRIS, presented in the following section.

4.7. CRIS scheduling extension

For the analyses to be performed as part of the OMAHA
project, it is necessary to collect information about the usage
of assets, in particular with regards to their scheduling. Since
the CRIS data model does not provide entities for this type of
information, we propose a scheduling extension to CRIS.

asset_org_site
asset_id
user_tag_ident
name
long_description
criticality
serial_number
gmt_last_updated
last_upd_db_site
last_upd_db_id
rstat_type_code

asset

sortie_assignment_site
sortie_assignment_id
name
allowed_start_delay
start_plan
end_plan
gmt_last_updated
last_update_db_site
last_update_db_id
rstat_type_code

sortie_assignment sortie_plan_site
sortie_plan_id
valid_from
valid_to
start
end
tag
repeat_interval
gmt_last_updated
last_update_db_site
last_update_db_id
rstat_type_code

sortie_plan

spg_site
spg_id
name
valid_from
valid_to
gmt_last_updated
last_update_db_site
last_update_db_id
rstat_type_code

sortie_plan_group

sortie_site
sortie_id
actual_start
actual_end
gmt_last_updated
last_update_db_site
last_update_db_id
rstat_type_code

sortie
sst_db_site
sst_db_id
sst_type_code
user_tag_ident
name
gmt_last_updated
last_update_db_site
last_update_db_id
rstat_type_code

sortie_status

asset_org_site
asset_id

sortie_plan_site
sortie_plan_id

sst_db_site
sst_db_id
sst_type_code

spg_site
spg_id

sortie_plan_site
sortie_plan_id

asset_org_site
asset_id

Figure 8. The CRIS scheduling extension.

Figure 8 shows the entities used to represent scheduling in
the context of CRIS. A Sortie is a concrete usage of a spe-
cific Asset (defined as part of CRIS). It specifies an actual
start and end date, as well as an SortieStatus. SortieStatus is
a user definable success or failure status. A Sortie is associ-
ated to a specific SortiePlan, which specifies the scheduling
of the Sortie. It has a time interval, during which it is valid,
specifies scheduled start and end of the Sortie, as well as a
repetition interval. Multiple SortiePlans can be grouped into
a SortiePlanGroup, which also has a period of validity. Fi-
nally, rotation planning can be represented via a SortieAssig-
ment, which connects a Sortie to a SortiePlan. The SortieAs-
sigment specifies an allowed start delay as well as start plan
and end plan.

The domain specific entities from the scheduling context were
mapped to a more generic representation in the CRIS ex-
tension. For example, a Flight represents the flight connec-
tion between two airports. This entity is mapped to a Sor-
tiePlan. The start and end times can be mapped directly to
the attributes actual start and actual end. However, the de-
parture and destination airports are not represented in the Sor-
tiePlan, because we followed the domain-agnostic spirit of

CRIS. These attributes are mapped with the attached data
tables, e.g. the departure airport is mapped to SortiePlan-
NumData with the code 16003 and the user tag identifier DE-
PARTURE SITE.

4.8. Testing and evaluation

We generated several integration tests for each entity. The
test cases cover the CRUD operations for all entities and their
attributes extensively. We deployed a randomized testing ap-
proach, inspired by QuickCheck (Hughes, 2007). The code
generator generates arbitrary data which is compliant to the
database schema. This data is available during code genera-
tion time. Thus, it can be used to generate assert statements
for the test cases and INSERT statements for data used dur-
ing testing, as illustrated in figure 9. This approach made it
easy to generate a high number of diverse test cases (about
30000). The broad coverage helped to identify edge cases
- such as problems induced by the CRIS entity Test - early
and greatly increase the confidence in the correctness of the
implementation.

TechCDE Generator

Testcases (jUnit) Test data (SQL)

Agent agent = getAgent(10);
assertEquals("XYZ32", agent.getOrgSite()) 

INSERT INTO agent VALUES (10, "XYZ32")

Figure 9. Test generation.

Our middleware was field-tested involving some of our part-
ners in the OMAHA project. We deployed the Tech-CDE
server at our company, secured with an Apache Web-Server
enforcing SSL client certificates. We distributed both the Java
and the C++ library, including client certificates. Two part-
ners required to setup our client libraries with an authenticat-
ing HTTP proxy. While this setup was qualitatively feasible
we hope to generate qualitative test results, especially regard-
ing performance and scalability.

4.9. Limitations of the OSA-EAI Tech-CDE specification

We came across a number of ambiguities and areas of missing
information.

Missing protocol specification

MIMOSA does not specify the protocol to be used when trans-
mitting the XML. Possible solutions include HTTP GET or
POST requests, socket communication, or file transfer to name
a few. In order to better facilitate interoperability between
Tech-CDE client and server solutions by different vendors, it
would be beneficial if MIMOSA specified the protocol to be
used. We chose to implement HTTP using POST to cater for

8



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

large payloads. Also, HTTP connections can be secured via
SSL, and can be routed through complex proxy chains.

Specifying primary keys for entities

The Tech-CDE Client/Server Specification does not specify
whether the client or the server defines the primary keys of
the entities. A comment in the XML schema seems to suggest
that it is the client, since it has to provide all required fields
when performing an insert request. It is unclear, however,
how the client should determine, which keys to use. There
is no way of querying the server reliably for this sort of in-
formation, so the only possible solution seems to be for the
client to try with a certain key and try again with a different
key in case of an error, until the insert request succeeds.

On the other hand, it also does not seem feasible to let the
server define the keys, since the protocol does not allow to
communicate them back to the client. Because of this, the
client would have no way to know the keys of the entities it
just inserted.

Handling of base attributes

The four attributes gmt last updated, last upd db site,
last upd db id, and rstat type code are present in
all CRIS objects. Their purpose seems to suggest that they
should be set automatically by the server, but no such require-
ment can be found in the Tech-CDE Client/Server Specifica-
tion.

Handling of null values for strings

Some attributes can be set to null, but there is no concept of
null in XML. This leads to a problem with strings, since the
empty string is a valid value for string, so it cannot be used
to substitute for null. For update requests, the client has
to send all updated attribute values to the server, so omitting
a string attribute which was set to null is also not possible,
since this would be the same as not updating it at all. Since the
Tech-CDE Client/Server Specification offers no guidance on
this, we chose to disallow the empty string as a valid value for
strings and instead treat it as null. In order to allow updat-
ing only some optional values, we generate template classes
in addition to the entity classes themselves, which allow set-
ting an arbitrary combination of values, regardless if they are
optional or mandatory.

Error handling

The Tech-CDE Client/Server Specification is very sparse on
details on error handling. It defines a list of example error
messages, but does not specify the corresponding error codes.
The range of responses for the server is also very limited, it
can only signal success or failure, or the result set in case
of a query. More detailed information on successful writes

cannot be communicated. If HTTP is used as communication
protocol, it is also not specified, whether HTTP error codes
are also used to communicate failure.

4.10. Summary and Future Work

We implemented an OSA-EAI Tech-CDE client/server Ap-
plication with a generic Java server (4.4) and an entity spe-
cific, generated C++/Java Client API (4.3) as a middleware
solution for data integration of the OMAHA demonstrator.
Further, we mapped aviation related entities to CRIS (4.6)
and extended the CRIS schema with entities where neces-
sary (4.7). Our automated integration tests and the deploy-
ment for project partners (4.8) show that we have provided
a usable and scalable solution for data integration based on
the OSA-EAI standard. However, the Tech-CDE standard is
not yet fully implemented. Recursive queries of compound
structures are not implemented and foreign key tables are not
returned when the return fk tables attribute is set. We
plan to implement these on the server in order to be fully com-
pliant with the Tech-CDE specification, and for performance
and usability reasons. A minor security improvement on the
server side would be to introduce an additional whitelist for
entity attributes. We motivate the addition of JSON or a bi-
nary format to the standard, instead of XML, for decreasing
communication overhead. We plan to evaluate JSON with our
architecture, knowing that it would break the standard com-
pliance.

5. CONCLUSION

Our generative approach to implement a simple builder API
for binary OSA-CBM messages revealed protocol inconsis-
tencies regarding the specification of length fields, for which
we presented a solution that makes binary OSA-CBM streaming-
capable. We further showed that the protocol specification al-
lows for assembling message subtrees of infinite length due to
the presence of 758 unique circular structural dependencies.
We recommend to add a maximum depth definition. Other-
wise, implementations for real-time systems have to add an
artificial (i.e., non-standardized) maximum depth to prevent
memory or stack overflows.

We implemented a network layer for data integration follow-
ing the specification of the Tech-CDE client/server applica-
tion. Deviating from our previous implementation of the Tech-
XML specification we found advantages in the simple map-
ping from CRIS entities to Tech-CDE requests. The direct
representation of CRIS entities on the protocol layer lead to
an easier association of requests to entities and more read-
able client side code. The generative approach with a custom
generator allowed to develop a flexible client API for which
correct Java code translates to correct Tech-CDE requests.
Further, the generative approach made it possible to cover a
broad range of test cases. These tests and the usage of the

9



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

Client API by our project partners suggest that the Tech-CDE
client/server application is ready to be tested in a realistic and
challenging environment. The roadmap for further improve-
ments of the server is clear. In the following years we will be
able to report on production usage of the system.

Our attempts to map the scheduling related tables to the CRIS
schema show that it does not follow naturally how this do-
main should be mapped. Further, we introduced new tables in
order to map this domain, because our analysis suggested that
a mapping to existing tables was not possible. We tried to fol-
low the philosophy of CRIS by only introducing domain ag-
nostic entities and by retaining the soft attribute mechanism.
This extension is a suggestion and could be used as a starting
point to incorporate the scheduling domain into CRIS.

ACKNOWLEDGMENT

Financial support from the German Federal Ministry of Eco-
nomic Affairs and Energy through project OMAHA, contract
20Y1302G, was essential for enabling the work, and is grate-
fully acknowledged.

REFERENCES

Fowler, M., & Parsons, R. (2010). Domain-specific lan-
guages. Addison-Wesley Professional.

Gonzalez, G. (2015). State of the haskell
ecosystem. Retrieved 2016, from
https://github.com/Gabriel439/
post-rfc/blob/master/sotu.md

Hughes, J. (2007). Quickcheck testing for fun and profit.
Practical Aspects of Declarative Languages, 1-32.

JAXB. (n.d.). Jaxb project website. Retrieved 2016, from
https://jaxb.java.net/

Löhr, A., & Buderath, M. (2014). Evolving the data man-
agement backbone: Binary osa-cbm and code genera-
tion for osa-eai. In Second european conference of the
prognostics and health management society.

Löhr, A., Haines, C., & Buderath, M. (2012). Data manage-
ment backbone for embedded and pc-based systems us-
ing osa-cbm and osa-eai. In First european conference
of the prognostics and health management society.

MIMOSA. (n.d.). Mimosa organization website. Retrieved
2016, from http://www.mimosa.org

BIOGRAPHIES

Johannes Drever received his M.Sc degree in Computer sci-
ence from the Technical University of Munich in 2009 (In-

formatics, Diplom) and his PhD at the medical faculty of
Ludwig-Maximilians-Universität in 2011. He worked for 4
years at Linova Software GmbH. His interests are functional
programming in Haskell, data visualization, randomized test-
ing and source code generation.
Helmut Naughton received his M.Sc. degree in Mathemat-
ics from Ludwig-Maximilians-Universität of Munich (Math-
ematik, Diplom) in 2005, and his M.Appl.Inf. degree in Ap-
plied Informatics from Technical University of Munich (TUM)
in 2008. He worked at the Chair for Applied Software Engi-
neering at TUM as a researcher in the field of software en-
gineering for 6 years. Today, he works for Linova Software
GmbH where he specializes on requirements engineering and
developing information systems.

Michael Nagel received his M.Sc. degree in Computer Sci-
ence from the Technical University of Munich in 2003 (Infor-
matics, Diplom) and earned his PhD degree in Computer Sci-
ence from Technical University of Munich in 2013. Today,
he works for Linova Software GmbH with a focus on mo-
bile application architecture and wireless hardware/software
interfaces.

Andreas Löhr received his M.Sc. degree in Computer Sci-
ence from the Technical University of Munich in 2001 (In-
formatics, Diplom) and earned his PhD degree in Computer
Science from Technical University of Munich in 2006. For 6
years he worked as a software engineer at Inmedius Europa
GmbH in the area of interactive technical publications and
researched in the field of wearable computing. He founded
Linova Software GmbH in 2008 and at his current post as
managing director he focuses on development of maintenance
information systems and data management architectures.

Matthias Buderath Aeronautical Engineer with more than
25 years of experience in structural design, system engineer-
ing and product- and service support. Main expertise and
competence is related to system integrity management, ser-
vice solution architecture and integrated system health moni-
toring and management. He is member of international Work-
ing Groups covering Through Life Cycle Management, In-
tegrated System Health Management and Structural Health
Management. He has published more than 50 papers in the
field of Structural Health Management, Integrated Health Mon-
itoring and Management, Structural Integrity Programme Man-
agement and Maintenance- and Fleet Information Manage-
ment Systems.

10


