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ABSTRACT 

Rocket engines are complex and critical systems mostly 
relying on simple redlines strategies for monitoring the main 
functional parameters. This approach is typical on 
expendable rockets with non-adjustable valves because in 
case of failure the only possible action is to cut off the 
engine. Anyway years of experiments on engine firings or 
subsystem benches show that there is space for an update of 
the monitoring strategies because this would lead to a 
reduction of false alarm rates and to an improved 
exploitation of test hardware. Moreover real-time diagnosis 
methods will be necessary in case of design of intelligent 
rocket engine controllers for next generation reusable 
launchers. The work presented in this paper is part  of a 
demonstration project of new diagnosis tools for rocket 
engines applied to the cryogenic combustion bench 
Mascotte. This bench developed by ONERA and CNES is 
used to analyze combustion and nozzle expansion 
characteristics of cryogenic fuels such as oxygen and 
hydrogen or methane. Model-based diagnosis tools have 
been developed for the combustion chamber and nozzle 
water cooling circuit. The basis was the setup of simplified 
expressions for modeling the functional behavior of the 
water circuit and then the development of predictive 
strategies such as parameter identification and Kalman 
filters. Anomalous event detection is obtained via residual 
analysis based on a CUSUM test. This paper presents the 
new automatic tuning strategies for the CUSUM threshold 
setting and the detection results obtained on Mascotte firing 
data. 

1. INTRODUCTION 

During the last decades, several research efforts have 
been conducted  to improve the diagnosis methods of  rocket 
engines for applications at test bench or during flight 
(Benoit, Bonert, Legonidec, Supié, 2009), (Iannetti, 2014), 
(Wu, J., 2005). Current monitoring strategies rely mostly on 
redline systems which are set on critical parameters. This 
methodology is easy to put into place but it demands fine 
expertise to correctly tune the physical values of the 
thresholds and it requires sensors at critical locations which 
is not always possible. The process of selecting the feared 
events, defining the sensing locations, deciding the allowed 
thresholds for the engine functioning is critical for a 
successful monitoring (Cicanek, 1984). Errors in thresholds 
assignment may results in unjustified engine aborts with 
mission objectives loss for flight as well as for test bench 
campaigns. This risk is increased when the engine operates 
at various regimes and it is necessary to adapt the 
thresholds. For classical rockets this is especially the case 
for the test bench application but it is an important issue to 
consider for future engines with regulation systems. 

The work presented here is the latest step of a 
development effort (Iannetti, Marzat, Piet-Lahanier et al., 
2015) focused at demonstrating the potential of model-based 
diagnosis algorithms for liquid rocket engine monitoring.   

A cryogenic test bench was selected as benchmark 
application of this research. The previous works (Iannetti, 
Marzat, Piet-Lahanier, Ordonneau, 2015) resulted in the 
development of model-based detection algorithms that have 
been validated for the cooling system of the Mascotte 
bench. Anomalous event detection is obtained via residual 
analysis based on a CUSUM test. After a brief review of the 
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bench and of the algorithms in sections 2 and 3, we describe 
in sections 4, 5 and 6 the new contribution consisting of two 
automatic strategies for the tuning of the detection threshold 
used in the CUSUM test. Detection results on Mascotte 
firing data are presented to support the analysis. 

2. MASCOTTE TEST BENCH 

The Mascotte test bench runs cryogenics oxygen, 
hydrogen and methane. Its main components are the 
combustion chamber with the injector part and cooling 
jacket and the bi-dimensional nozzle called ATAC-HRM 
(Ordonneau, Hervat, Vingert, Petitot, Pouffary, 2013).  

Typical operational pressures in the combustion 
chamber are up to 60bar and mixture ratios up to 6 
(combustion temperature up to 3500K).  

The cooling system is a water circuit inside the chamber 
and nozzle walls. The fluid is water provided by the bench 
feeding system. The good functioning of the circuit is vital 
for the success of each test as it allows keeping safety 
margin on the combustion chamber walls. Pressures, 
temperatures at inlet and outlet of each section of the water 
circuit and mass flow are monitored all along the test and 
whenever a measurement is out of range the test is stopped.  

3. MODEL-BASED DIAGNOSIS ALGORITHMS 

The model-based diagnosis strategy (Iannetti, Marzat, 
Lahanier, 2014), (Ding, 2008), (Marzat et al., 2012)  
consists in identifying one characteristic parameter of the 
hydraulic behavior via parameter identification technics 
(Isermann,1984), then to provide a parallel pressure 
estimation based on signals and the prediction of nominal 
model characteristics via an extended Kalman filter (Chow 
and Willsky, 1984). For the thermal behavior one Kalman 
filter was developed as well but this aspect is not presented 
in this paper. The model details can be found in (Iannetti et 
al. 2014, Iannetti et al. 2015) together with validation on test 
bench firings. In the work presented here we focus on the 
hydraulic behavior to test the detection performance when 
different residual analysis approaches are used.  

Starting from conservation laws we derived a simplified 
functional model that could be applied to each section of the 
water circuit where pressure, temperature and mass flow are 
available.  

The expression of the pressure evolution with time in a 
cavity fed by one orifice is provided in Eq. (1). 

 ����� = ���� − ��
� ∙ �� − ���� ∙ ����  

 

(1)  

��: pressure in cavity 1 (Pa) ��: pressure in cavity 2 (Pa) 
� : pressure drop coefficient (non dimensional)  : water density (kg/m^3) 

� : speed of sound in water (m/s) �� : volume of cavity 2 (m^3) 
S : cross sectional area for the orifice element (m^2) � = ��� = ��� : mass flow through the orifice element / outlet 
mass flow from cavity 1/ inlet mass flow to cavity 2 (kg/s) 

A simplified expression for 
�,using Blasius correlation,  
allows to explicit the link with the mass flow which is 
directly measured at the outlet of the “cavity”. 


� = 0.3164 ∙ � ����4 ∙ ��
� .�! ∙ "�� ∙ 12 

 

(2)  

� = dynamic viscosity (kg/(s m)) ��= characteristic dimension cross flow, hydraulic diameter  "  = characteristic length of the flow 
Thanks to Eq. (2) the pressure evolution with time can 

be further simplified by introducing parameter M that only 
depends on the geometry of the setup and on the fluid 
viscosity. 

$ = 0.3164 ∙ � 1���4 ∙ ��
� .�! ∙ "�� ∙ 12 

 

(3)  

The overall expression for the pressure evolution with 
time is given in Eq. (4). 

�%� = ���� ∙ &−�� (�) + �� .��!(�) ∙ � ∙ ��$ ∙ *��(�) − ��(�)+ (4) 

 

 

This expression for the hydraulic behavior of the water 
cooling circuit is used for parameter identification or 
Kalman filter to provide process observer for real time 
detection of faulty behaviors. 

3.1. Parameter identification for hydraulic characteristic 
behavior 

When considering equation (4) in steady state condition and 

introducing parameter, $ = ,-∙./0 12/  , we obtain a further 

simplified expression between pressure and mass-flow 
measurement as given in Eq. (5). ��(�) = 3 ∙ �� .��!(�) ∙ *��(�) − ��(�) (5)  
 

A recursive least-square identification algorithm is used for 
estimating the value of c based on the measurements��	, �� 
and �� , respectively outlet mass flow, inlet and outlet 
pressure. 

3.2. Kalman filter for pressure  estimation 

Considering the time derivative of the pressure as non-

negligible we introduce parameter 5 = 6/7   and parameter 
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� = 5 ∙ 3 . We consider that the evolution of the new 
parameter d with time is negligible in the observed process 
and the dynamic system used for the extended Kalman filter 
is given in Eqs (6). �%� = −5�� (�) + � ∙ �� .��!(�) ∙ *��(�) − ��(�) �% = 0 

(6)  

The Kalman estimation provides the outlet pressure and the 
parameter d based on the input measurements of inlet 
pressure and mass-flow. 

4.  RESIDUAL ANALYSIS: CUSUM TEST 

Thanks to the monitoring tools developed, we are able to 
provide a prediction of specific measurement or 
characteristic parameter of the water circuit. To obtain a 
diagnosis flag it is necessary to compare the prediction with 
the measurement or the identified parameter. This is 
performed with a CUSUM test approach, a very common 
test to detect changes in data, where no statistical hypothesis 
are necessary (Basseville, Nikiforov, 1993), (Marzat, 
Walter, Piet-Lahanier, Damongeot, 2010). 
Equations (7) below give the expression of the CUSUM 
sums.  

S1(t) = max (S1(t − 1) + r(t)  − δ, 0) 
S2(t) = max (S2(t − 1) − r(t)  − δ, 0) 

(7)  

The parameter δ is the minimal size of the faulty 
variation that can be detected. The decision rule is if S1 > λ
�δ or S2 > λ�δ decide fault, else decide no fault. The 
parameter λ is a user threshold that allows reducing flag 
sensitivity to small non persistent changes.  r(t) is the 
residual obtained thanks to the model-based algorithm:  it is 
the difference between the identified parameter and its mean 
value estimated over time, or it is the Kalman filter residual 
obtained as the difference between the filter estimation and 
the acquired measure. 

5. TEST DATA AND DETECTION OBJECTIVES 

A number of tests from past Mascotte firing campaign were 
considered for validation of the detection strategies with the 
automatic tuning of δ.  We focus on the following 
monitored variables: pressures, mass flow and temperature 
signals located at the inlet and outlet of a section of the 
water cooling system. The results presented here focus on a 
test from 2014 where some abnormal evolutions in the 
outlet pressure signal were gone undetected by conventional 
bench redlines. During post-test analysis these events turned 
out to be linked to leakages in the water circuit of the nozzle 
and could have potentially led to critical failure of the test. 
Figures below show the evolution of inlet, outlet pressure, 
and mass flow. It should be noted that these faults are of 
very limited amplitude and thus barely detectable. 

Therefore, the results presented and the associated tunings 
should be considered in this context. 

 

Figure 1. Pressure signals for the reference test 

 

Figure 2. Mass flow signal for the reference test 
 

These signals are directly used by the bench control system 
for redlines monitoring. As it can be seen from the pressure 
curves the signal noise is increasing from the beginning to 
the end of the test and in the outlet pressure signals we can 
identify the following main events:  

- Event n°1 : 35s<t<40s start of transient of small 
pressure fluctuations mixed with some increased 
sensor noise 

- Event n°2: 48s<t<49s end of pressure fluctuation 
and signal back t nominal value 

- Event n°3: t=56s beginning of stop transient 
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Figure 3. Pressure signal and main events 
In the next sections we describe the tuning strategies and the 
results of event detection for the parameter identification 
algorithm and the Kalman estimator when coupled with the 
automatic tuning method for the CUSUM test. The 
detection analysis is tested over the ability to adapt to sensor 
noise evolutions and on the detection of the main events. 

6. AUTOMATIC THRESHOLDS TUNING STRATEGIES 

In order to correctly determine the δ for detection two 
methods have been tested: 

- Standard deviation of  estimation residual 

- Maximum deviation of estimation residual 

6.1. Standard deviation of estimated residual 

Here the parameter δ is calculated with the following 
method as expressed in Eqs (8) and (9). 

8(�) = �9�: ∙ ;1< ∙ = (>(?) − >̂):
AB:�C 	

 

(8) 

8(�) =D ∙ 8(� − ��) + (1 − D) ∙ �9�: ∙ E�F ∙ ∑ (>(�) − >̂):AB:�C   

 

(9) 

Where r(t) is the residual and >̂  is the allowed average 
reference value given by the difference between the 
estimated parameter c and its average over the latest time 
interval for the parameter identification method, or the 
Kalman estimation residual for the other algorithm. 

The following parameters have to be tuned:  

- �9�:: for standard noise distribution this parameter 
allows to define a statistical threshold around the 
mean value of the parameter. For example for �9�: =3 we cover 99.7% of probability of noise 
behavior. 

- λ: this parameter is linked to the CUSUM sums and 
allows to tune the algorithm detection sensitivity 

- D : this parameter allows to provide a first-order 
temporal filtering of δ during online calculation to 
reject random fluctuations 

- θ: this parameter corresponds to a time window 
and depending on the calculation frequency it gives 
the number of samples used to estimate the 
reference 8 . In the analysis shown here the 
acquisition rate is 1000Hz and the value of θ is 
given in number of samples. Its value has an 
impact on the mean calculation and a good 
compromise has to be selected to improve 
algorithms implementation for real time 
application. A bigger buffer of data will require 
larger memory allocations and thus overall 
calculation time. 

6.2. Maximum variation of estimated residual 

Another possible strategy is to identify the maximum 
variation of the residual over a nominal period of the test 
run. 8 = �9�: ∙ maxAB:�C::||>(?)|| (10)  8(�) = D ∙ 8(� − ��) + (1 − D) ∙ �9�: ∙M�N?=�−O:�||>(?)|| (11)  

The definitions of the residual and parameters to be tuned 
are the same as for the standard deviation method with the 
difference that �9�: in this case does not have an indication 
of probability of detection. 

7. RESULTS FOR PARAMETER IDENTIFICATION 

7.1. Adaptive threshold based on standard deviation  

Figure 4 shows the results of the automatic calculation with �9�: = 3, corresponding to a statistical probability of 95.5% 
of detection, α = 0.97 and θ= 500 pts. 

 

Figure 4. Evolution of threshold δ (dotted line) and 
detection residual (solid line) for standard deviation method 
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At main event n°1 the residual approaches the upper 
threshold but no important violations are seen. Event n°2 is 
clearly visible around 48s and the estimated residual 
violates the lower limit. In this case the automatic δ 
calculation filters enough the residual variation so that the 
induced increase of the threshold is limited and stays within 
the range of the allowed nominal variations. 

Figure 5 shows the detection results with the indicated 
setting for the threshold calculation and λ=2. 

 

Figure 5. Detection flags for standard deviation threshold 
 

To reduce sensitivity to small events it is necessary to 
increase the λ factor or the minimum size of the δ. This 
choice is a compromise for the detection accuracy. 

With an increased size of δ, for example 4 times the 
standard deviation and the same λ we obtain detection of 
events n°1 and 2, corresponding to the main “abnormal” 
fluctuations between. Detection flags are shown in Figure 6. 

 

Figure 6. Detection flag for standard deviation δ 
 

Increasing the size of θ allows filtering out parameter 
evolutions linked to noise levels but it also reduces 
detection sensitivity. 

7.2. Adaptive threshold based on maximum variation  

The maximum variation is by definition the largest residual 
allowed during the latest nominal operations so the size of δ 
should not be modified. The only tuned parameter is thus λ. 

Results of the automatic calculation of δ with �9�:=1 are 
shown in Figure 7 (other settings are λ=7, α = 0.97 and 
θ=500). 

The adaptive threshold follows the residual variations and as 
for the standard deviation method it allows to detect clearly 
main event n°2 but the faulty variation has an important 
impact on the threshold itself and results in a temporary 
increase of the upper and lower limits just after the event. 

 

Figure 7. Evolution of threshold δ (dotted line) and 
detection residual (solid line) for maximum variation 

method 
 
This behavior might be improved by introducing a delay on 
the threshold evaluation after the detection but it would in 
turn result in a loss of sensitivity. 
 
The detection flag is provided in Figure 8  with a �9�:=1 and 
λ=7, α = 0.97 and θ=500. These are the settings that 
provided the most accurate detection flags. 

 
Figure 8. Detection flag with maximum variation δ 

 
To reduce the number of false alarms, such as the flag 
between 50s and 55s, a very large λ up to 7 times the 
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minimum fault size is needed, which puts into question fault 
sensitivity 

When calculating the maximum variation, the buffer length 
considered can have an impact on the detection sensitivity 
as there could be transient effects. With a smaller buffer of 
10 points, a similar detection performance is obtained by 
setting a smaller λ = 4. This implies that a variation of lower 
intensity could also be detected. As shown in Figure 6, 
detection flags are raised in coherence with the events in 
Figure 3 and with no false alarm.  

 

Figure 9. Detection flag with reduced buffer 

8. RESULTS FOR PRESSURE KALMAN ESTIMATION 

8.1. Adaptive threshold based on standard deviation  

Figure 10 shows the results of the automatic calculation 
with �9�: = 3, α = 0.97 and θ= 500 pts. 

 

Figure 10. Evolution of threshold δ (dotted line) and 
detection residual (solid line) for standard deviation method 

 

The behavior of the Kalman residual is different from the 
one of parameter identification. By definition the Kalman 
filter is able to adapt to transients and it takes into account 
the noise level. As a consequence the algorithm is less 
sensitive to the level of fluctuations of the reference test. 
The most important parameter to define the detection 
sensitivity is the ratio of the fluctuations to the average 
noise level. 

With a �9�:=3, λ=2, α = 0.97 and θ = 500 no detection is 
achieved. 

With a smaller threshold �9�:=1, see Figure 11, the results 
are not improved. Beside the detection of the stop transient, 
flags are raised at 30s and 50s in relations to noise increase 
and can be considered as false alarms. 

 

  

Figure 11. Detection flags with standard deviation δ 

8.2. Adaptive threshold based on maximum variation 

The results for the automatic calculation of δ based on the 
maximum variation with �9�:=1, λ= 2, α = 0.97 and θ =500 
are shown in Figure 12.  With these settings no detection is 
achieved. To improve this, we reduced the buffer as θ=10. 
This has a direct impact on δ. The detection results are not 
much improved with �9�:=1, λ=2 and θ =10 as shown in 
Figure 13. 

 

Figure 12. Evolution of threshold δ (dotted line) and 
detection residual (solid line) for maximum variation 

method 
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Figure 13. Detection flag with maximum variation δ 
 

9. DISCUSSION 

The results obtained show a good detection performance 
with the parameter identification approach and a standard 
deviation method for the tuning of the CUSUM threshold. 
Figure 6 shows that detection of the two main abnormal 
events is obtained. To improve this behavior, the maximum 
variation type helps by providing detection of the stop 
transient as well. Figure 9 shows that flags are raised as 
expected. The standard deviation method is still preferable 
as it is more robust to the sample size and in case of 
detection is less impacted by the residual variation. The 
downside is an increased calculation load with respect to the 
maximum approach. 

Detection with the Kalman filter of these very small faults is 
more difficult as the level of fluctuations with respect to the 
sensor noise is too low. With both methods of threshold 
calculation the detection flags cannot isolate the events. 
With a standard deviation method and �9�:=3 no detection is 
possible and with decreased �9�:  only the stop transient is 
detected. This result is nevertheless encouraging with 
respect to detection robustness and further analysis on larger 
faults shall be performed.  

10. CONCLUSIONS 

Adaptive tuning strategies are at the basis of any model-
based diagnosis system. The algorithms developed in 
previous works (Iannetti, Marzat, Piet-Lahanier, Ordonneau 
2015), allowed calculation of detection residuals that have 
to be analyzed via a decision logic. The CUSUM test was 
chosen but it requires setting of a detection threshold. To 
automatically choose its value  two tuning strategies were 
developed and presented in this paper. The remaining 
parameters to set are mainly generic and do not depend on 
the test targets. For the standard deviation approach the 
settings also implicitly provide a statistical meaning to the 
detection threshold. The maximum variation method is 

supposed to be more reliable against false alarms but it 
proved to be more difficult to tune. The impact of the tuning 
methods also depends on the specific algorithm: the tuning 
settings are not the same for parameter identification and 
Kalman filters, which are based on different models of the 
system. 

The objective of the new tools with respect to the classical 
redline monitoring is to detect small changes within shorter 
reaction time but also to provide generic tools that do not 
need a threshold setting dependent on the engine operating 
point. This has been obtained thanks to the proposed 
strategies.  

The results over the test case have shown good overall 
potential to detect very small events. Although the main 
parameters have to be tested and thoroughly analyzed before 
going into application for run time operation, once they are 
set they are independent from the specific engine operating 
point. 
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