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ABSTRACT

For diagnostics of variable speed machines such as wind
turbines, it is essential to have a measure of instantaneous
speed, preferably extracted from the response signal to avoid
the need for a tacho signal. The Teager Kaiser Energy
Operator (TKEO) was first proposed by Teager, and refined
by Kaiser. It is analogous to the total (kinetic and potential)
energy of a simple oscillator. A discrete version of the TKEO
can be estimated from three adjacent samples of a signal, so
it is very efficient to calculate from a sampled time record in
real time. It can be used to obtain estimates of amplitude and
frequency modulation. A previous paper showed it can also
be calculated simply as the squared envelope of the derivative
of a signal, using Hilbert transform techniques via the
frequency domain. The differentiation can be very efficiently
performed by jω operations in the frequency spectrum, at the
same time as the bandpass filtration, which can be achieved
with ideal, zero phase shift filters, using FFT techniques. It
cannot then be done in real-time, but this is rarely a problem
in machine condition monitoring where information is
typically being sought days, weeks or months in advance. The
TKEO equals the product of the squared envelope of the
signal and the square of the instantaneous frequency, so the
latter can be obtained by dividing the squared envelope of the
derivative by the squared envelope of the signal. In this paper
it is shown that this can be applied to the determination of the
instantaneous speed of a machine, as long as a harmonic of
one of the shaft speeds is isolated in the frequency domain
from interference by adjacent components. This approach is
applied to a couple of practical cases, and in particular
compared with the results from another more complicated
approach on a wind turbine signal, based on phase
demodulation of the same carrier, followed by phase
unwrapping and differentiation. Virtually the same results
were obtained. In both cases the differentiation gave some
high frequency noise, but this could easily be smoothed using
various techniques.

1. BACKGROUND

The Teager Kaiser energy operator was first proposed by
Teager as a means of tracking the “energy” in speech signals,
and then formalized by Kaiser (1990), who attributed it to
Teager in (Kaiser, 1990) as a “private communication”. It
was said to combine the total energy, both kinetic and
potential, in an oscillating signal, where energy is
continuously transformed between the two types. Kaiser
(1990) draws an analogy with the energy in a vibrating
mass/spring system, where the kinetic energy is proportional
to the square of the velocity of the mass, and the potential
energy is proportional to the square of the extension of the
spring, in other words the displacement of the mass if the
other end is fixed. In any such oscillating system, the two
parameters, in this case velocity and displacement, are in
quadrature, and in fact Hilbert transforms of each other when
scaled to be the square root of the energy. With no gain or
loss of energy to/from the system, the sum of squares of the
instantaneous values of these components is constant, and in
fact equal to the squared envelope of either. With slow input
or decay of energy to/from the system the total energy will
vary accordingly, as will the (identical) squared envelope of
the two quadrature components.

2. FORMULATIONS AND EQUATIONS

The TKEO is defined in both continuous and discretised
forms, as given in Equations (1) and (2), respectively.
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Kaiser (1990) showed that Eq. (2) gives an error < 11% if the

frequency of oscillation 8sf< , where sf is the sampling

frequency. He also showed that for the example of the
mass/spring oscillator, whose displacement is given by

( ) ( ) sin ( )x t A t t tω= (3)
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Since the Hilbert transform of ( )x t is ( ) ( ) sint A t tω ω , the

squared envelope of ( )x t is equal to the sum of squares of

the velocity and its Hilbert transform (the parameter whose
square gives the instantaneous PE), which is seen to be the
same as the TKEO.

Thus, if ( )( )Envsq x t is the squared envelope of ( )x t , ie
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where ˆ( )x t is the Hilbert transform (HT) of ( )x t , then
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This is a new result, first published in Randall (2016), and
provides an alternative method for performing amplitude and
frequency demodulation using the TKEO.

In Maragos, Kaiser and Quatieri (1993), a set of equations
were derived to relate amplitude modulation (AM) and
frequency modulation (FM) signals to the TKEO as well as
quantifying the errors involved for the continuous and
discretised versions. They were based on the TKEO of the
original signal and its derivative, as follows:
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There is a subtle difference in principle between eqs. (10) and
(11), but the primary difference in practice is that Eqs. (11)
and (12) are intended to be evaluated in the time domain,
including taking the derivative of the TKEO. Maragos,

Kaiser, et al. (1993) explain that for accuracy it is necessary
to use a higher order difference equation for the
differentiation rather than a simple forward or backward
difference.

Eqs. (7, 8, 10) are very conveniently evaluated using HT
procedures via the frequency domain. In particular because
the TKEO is supposed to be based on a mono-component
carrier, this can be isolated in the frequency domain by a zero
phase shift ideal filter, simply by retaining only the
corresponding lines in the FFT spectrum. The generation of
an analytic signal, whose real and imaginary parts are related
by a Hilbert transform, occurs simply by inverse Fourier
transformation of such a (1-sided) frequency band, and exact
zero phase shift differentiation can be carried out at the same
time by multiplying the (complex) spectral values in the band
by jω . The noise problems that otherwise can be associated

with numerical differentiation are minimised by the
frequency range limitation of the band.

In other words the ( )( )Envsq x t of Eq. (10) is produced by

inverse transforming the selected band directly, and taking

the squared amplitude of the result, while the ( )( )Envsq x t

is obtained the same way after multiplying the selected band
by jω .

The only disadvantage of the HT approach via the frequency
domain is due to the wraparound effects of the FFT
processing. All time and frequency functions in the FFT are
considered to be one period of a periodic function, so the start
and finish have to join into a loop. This does make a number
of samples at each end invalid, but it is generally not a
problem to transform a slightly longer record and discard the
ends

The purpose of this paper is to show how this can be used to
estimate the instantaneous rotational speed of a machine,
provided a low harmonic of the shaft (preferably the lowest),
or other speed related component, is not masked by
overlapping extraneous components. This is virtually assured
if a tacho signal is available, but most often a low harmonic
of the machine vibration can be used as well, as in the
following examples.

3. APPLICATIONS

3.1. Single stage gearbox

The first example is based on data from a gearbox test rig
with two parallel shafts, driven by a 4-pole induction motor
with variable frequency drive (VFD). A photograph of the rig
is reproduced in Fig. 1. The torque load of the pump varies
with the speed, and it was found desirable to arrange the 25-
tooth and 46-tooth gears as a speedup ratio to maximise the
load. A 2-per-rev tacho signal was obtained from the higher



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

speed output shaft, and this could be used to check the speed
estimates presented here from the lower speed shaft.

A series of vibration signals were taken from the
accelerometer mounted on the gearbox casing. Each record
started with a 30s section at constant speed, followed by a
longer section where the speed was varied manually using the
control buttons for the VFD. Four recordings were made for
speed variations around nominal 22 Hz (Signals 1-1 to 1-4),
and two for variations around 15 Hz (Signals 2-1 and 2-2).
The variable speed part varied by about ±15% around the
nominal speed.

Figure 1. Layout of gearbox test rig

Figure 2. Spectra of vibration response and tacho signals, a
(a) Acceleration spectrum 0-5 kHz (b) Acceleration 0-50

Figure 2 shows spectra for the variable speed part of the
typical signal 1-1 from 5s after the start of speed variation to
just before the end. Fig. 2(a) and (b) show the acceleration
spectrum, and Fig. 2(c) and (d) show the spectrum of the
tacho signal from the output shaft, with frequency 2×46 / 25
times the input shaft speed. Even though the overall spectra
are quite different, the lowest harmonic of each can be seen
in the zoomed spectra of Fig. 2 (b, d), with the input shaft
speed (ISS) in 2(b) centred on about 20 Hz, and the second
harmonic of the output shaft speed (OSS) in 2(d) centred on
about 75 Hz. Each of these lowest harmonics is completely
separated from adjacent components and noise, allowing for
the choice of an uncontaminated demodulation band as
indicated in the figure. As might be expected, the second
harmonic of the tacho signal (4th harmonic of OSS) in Fig.
2(d) is twice as broad as the first, but the second harmonic of
the ISS in Fig. 2(b) is already overlapping with the first
harmonic of OSS, and therefore not separable.

Both the indicated demodulation bands were frequency
demodulated using Eq. (10) and the results (scaled for the
tacho) are shown in Figure 3. Both curve estimates were
smoothed as discussed below, but each had about the same
amount of noise before smoothing. Figure 3 is mainly to show
that equivalent results can be obtained from both response
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proportional to the demodulated band. The wraparound error
is about the same in terms of number of samples. The
difference between the two estimates in Fig. 3 is very small.
Compared with a mean value of 19.5 Hz, the maximum
absolute difference between the two curves (eliminating the
section at each end with wraparound error) is 0.023 Hz
(0.12%) and the standard deviation is 0.0064 Hz (0.03%).

As mentioned above, the direct application of Eq. (10) gives
some additive noise in the result, which can be attributed to
the differentiation, but it is usually simple to smooth it by
some sort of low-pass filtration. As mentioned below for
another example, two methods that were previously used for
the smoothing were band reduction in the FFT spectrum, and
polynomial curve fitting, but it was realised that the best
method in this situation is zero phase shift FIR filtering, as it
does not suffer from the effects of the step between the two
ends of the record (as does the frequency domain method)
and it can follow more rapid changes than the polynomial
method (which goes unstable for too high order).

Figure 4 shows the results of filtering with a rectangular
moving average filter, using the Matlab® function FILTFILT
to avoid phase shift, as suggested in Brandt (2011). The
smoothing filter in this case comprised 100 samples.

Figure 4. Original (blue, solid) vs smoothed (black, dotted)
speed curves. (a) Full record (b) zoomed section showing

end effects

The blue solid curve is the original noisy data, and the black
dotted curve is the smoothed result. The smoothed curve is
the same as the blue curve in Fig. 3, but the x-axis has been
scaled in samples. The zoomed curve in Fig. 4(b) shows the
noise in more detail, and also the end effects at the end of the
record. It is seen that the end effect of the frequency domain
HT calculations (blue solid curve) is about the same length as
that due to the smoothing filter (black dotted curve) and is of
the order of the filter length, viz. 100 samples.

Figure 5 shows the smoothed speed profiles of all six signals
obtained by this process.

Figure 5. Smoothed speed profiles for the six signals

All signals were order tracked, phase demodulating the same
demodulation band to provide a phase vs time map for the
time to rotation angle conversion. In Randall and Smith
(2016) they were used to demonstrate a new method for
suppressing the effects of speed variation on gear diagnostics.

3.2. Wind turbine gearbox

In Randall, Coats and Smith (2015), an alternative method
was published to extract the instantaneous speed of a machine
from the vibration response signal. It was based on our
group’s submission to a contest run in conjunction with the
CMMNO conference in Lyon, France, in December 2014.
The contest involved making “the most relevant diagnosis of
a wind turbine operating under non-stationary conditions”
with particular emphasis on two points:

1) Diagnosis of a bearing fault on an unspecified shaft

2) Determination of the instantaneous speed of the input shaft
over the length of the recording

Only part 2) is discussed here. All information had to be
extracted from a single recording of an acceleration signal of
length 550s, where the output shaft speed (generator) varied
between about 20 and 30 Hz.

The sponsors of the contest were the French wind turbine
manufacturer Maïa Eolis, who provided the signals for
analysis, and the French company Oros, who provided the
prize, a vibration analysis system.

The layout of the turbine gearbox was given by the contest
organisers in the following Figure 6, where the input was to
the planet carrier at the bottom left, and output to the
generator at top right. A table was provided giving the
numbers of teeth on all gears, so that the relative speeds of all
shafts could be estimated.

Time (Sample No.)

(a)

(b)

Time (s) Time (s)

1-1 1-2

1-3 1-4

2-1 2-2
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Figure 6. Schematic layout of wind turbine gearbox.
LSS = low speed shaft; ISS = intermediate speed shaft;

HSS = high speed shaft.
Gears have numbers, bearings have letters

Because the speed varied a little too much to choose a single
harmonic of any shaft speed that was separated from adjacent
components over the whole record length, the total record
was divided into overlapping segments, in each of which the
speed variation was less than about ±15%. Figure 7 shows a
spectrogram of the signal over the whole length, indicating
two potential carrier components to demodulate to obtain the
speed information.

Figure 7. Spectrogram showing two separated components

The lower of these around 50 Hz was suspected to be the
second harmonic of the planet gearmesh frequency (PGM),
and the higher around 250 Hz was suspected to be the second
harmonic of the intermediate gearmesh frequency (IGM).
Detailed analysis after order tracking confirmed this.

The method used for the contest consisted in phase
demodulating the selected band (this also being used for the
order tracking) then differentiating the phase of each section
to get angular velocity. This was because the initial phase of
each section was somewhat arbitrary, but the frequency must
be continuous at the junction points between windows. The

demodulated phase is modulo 2π, so must be unwrapped to a
continuous function of time. Figure 8 shows the estimated
frequency for the eight segments into which

Figure 8. Initial frequency estimates for the eight segments
(y-axis arbitrarily scaled)

the record was divided, most being 50s long with one long
section from 300-500s. The overlapping sections were
blended by cosine tapering over 2.5s on either side of each
break point. It is seen that the differentiation introduced
noise, which had to be smoothed. For the contest, two
methods of smoothing were tried, the first being lowpass
filtration in the frequency domain, and the other polynomial
curvefitting. The frequency domain LP filtering had the
disadvantage of end effects, which would reduce the valid
length of record. The polynomial curve-fitting was chosen for
the contest because it did not have these end effects, but was
limited to rather smooth curves. The shorter sections could be
fitted with 5th order polynomials, which was no problem, but
the long section from 300-500s required a 20th order
polynomial, which was on the border of becoming unstable.
Figure 9 shows this section and the curve-fitted polynomial
(in red).
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result. This had to be converted (order tracked) to be in terms
of rotation angle rather than time, and this was in fact done
by integrating the instantaneous frequency to get the
phase/time map for the conversion.

Figure 10. Comparison of the result from Randall,
Coats et al. (2015) compared with the true

result (blue) and the two nearest competitors.

Our entry won the contest, and in Figure 10 it is compared
with the true result (and the two nearest competitors). This
demonstrates that the basic method based on phase
demodulation, differentiation, and smoothing is valid, but
improvements could be made. We noticed that where our
estimate differed most from the true result (eg near 140s and
380s) the LP filter gave a closer result than the polynomial.

Thus in applying the method of this paper to the same data, it
was realized that a better method of smoothing would be to
do it in the time domain with an FIR filter (to avoid the
wraparound effects of the FFT) and this should at the same
time give more adaptability to follow sudden changes in the
curve than the polynomial method. This has already been
demonstrated in Figs. 4 and 5. For the current paper the
section from 250-500s was treated, and the spectrum of the
second harmonic of the PGM is shown in Figure 11.

Figure 11. Spectrum of the band used for frequency
demodulation by the TKEO method

It is seen that there is no significant overlap of other
components, though the base noise level is perhaps a bit
higher than in Fig. 2.

This band was frequency demodulated using Eq. (10), and the
result is shown in Figure 12. The noise is seen to be very
comparable with that in Fig. 9 using the other method.

Figure 12. Speed estimate using TKEO method (blue) and
smoothed version using FIR filter (red)

The result of FIR smoothing is seen in red, and can be
compared with the polynomial result of Fig. 9. While quite
similar, the new result has more detail, and in some small
points is closer to the true result of Fig. 10 (eg, near 320s and
370s). In this case the total record length was 120,000
samples, and the rectangular smoothing window comprised
1600 samples.

4. CONCLUSION

In this paper a new method is developed for determining the
instantaneous speed of a machine by frequency demodulating
an isolated shaft order. It is based on the concepts of the
TKEO, but evaluated using the Hilbert transform via the
frequency domain. The squared instantaneous frequency is
obtained by dividing the squared envelope of the derivative
of the signal (the TKEO) by the squared envelope of the
signal. The differentiation is simply achieved by
multiplication by jω in the frequency domain of the same

section of spectrum used to obtain the squared envelope.

This is much simpler to carry out than an alternative method
based on phase demodulation of the same band, followed by
phase unwrapping and differentiation to angular velocity.
The noise in the result is about the same for both methods,
and can be smoothed by a number of methods. The best
appears to be one introduced for the purpose in this paper; a
zero phase shift FIR filtration whose smoothing window
length can be chosen to suit the data.

The only disadvantage of the method is that it cannot be
carried out in real-time, as can the traditional TKEO
procedures used for speech analysis, but in general this is not
a problem with machine diagnostics, and on the other hand
there are considerable benefits associated with the zero phase
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shift processing and ideal filtration enabled by the frequency
domain (FFT) Hilbert transform manipulations.

The method is validated using data from two different
applications. One was a parallel shaft single stage gearbox,
where identical results were obtained by analysis of an
acceleration signal and a tachometer signal for each of a
number of different speed profiles varying by up to ±15%
around two different mean speeds. The other was a wind
turbine gearbox, where the speed was extracted from the
isolated second harmonic of the planetary gearmesh
frequency, which also varied by about ±15%. It had
previously been demonstrated that larger speed variations can
be treated by dividing the signal up into overlapping sections
in each of which the speed variation is limited, and then
blending the individual sections together afterwards, so it was
not thought necessary to repeat this.

The new method, including smoothing, is shown to be
slightly better than the previous one, and is certainly easier to
carry out.
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