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ABSTRACT

More electric aircraft are lighter and more eneefficient
than conventional aircraft. Hence, the design
electromechanical devices and its preventive maartee
strategies are in increasing need and challengdlifgt
control systems. One of the most significant meidzn
parameter for aging is the backlash gap size. Heitce
presents a good indicator for failure detectioagdbsis and
prognostic. In this work, an estimation method bfst
parameter is proposed for any electromechanicalatmt
(EMA); rotary or linear with roller screw or baltew, used
to actuate any flight control surface of the aificrélaps,

so called inertia driven model (Nordin & Per-OIgf)02) is
applied to describe the backlash phenomenon.

ofin the way of backlash estimation, some identifars

schemes are proposed but still remain open. Inr(iEda
Lagerberg, 2007) a nonlinear estimators for batkisize
and state are developed, using Kalman filteringmhethis
estimation schemes considers that the state made i
system switching between two linear modes, calbetact
mode’ and ‘backlash mode’ in absolute referencatafe.
Hence, this presents a complex model with a sicguifi cost
computing. In (Voros, 2010) an identification medhmased
on a mathematical model for backlash with hard dyica

ailerons...etc. This method presents a simple ang eadionlinearity, which uses appropriate switching tiows

technique for implementation in real time basecadrinear
Kalman Filtering (LKF).

1. INTRODUCTION

and their complements, therefore, the knowledgethef
model structure is required and any industrial i@pgibn is
given in this approach. Too many papers treat efcthntrol
for mechanical system with backlash compensatiamiiic
& Béla, 2009), (Lagerberg & Egardt, 2007), (NordirPer-

Couplings mechanical components, such as geartalk, bQ|of, 2002), (Kalantari & Saadat, 2009) and (Kolrgk

screw and roller screw...etc., introduce
phenomenon. Therefore its estimation is fundamédatats
compensation and implementation in control, for Itfau
detection, diagnosis, or prognostic. Unfortunatéhgre are
only few contributions in the literature in this ya

In modeling viewpoint, most popular model of backlas
considered as a dead zone (Tustin, 1947), (Liveesid
1952), (Cosgriff, 1958), (Freeman, 1957). De-Max(d9i98)
presents a backlash model with ‘Compliance’ thaamsean
intrinsic property allowing an object to be elastiordin,
Galic and Gutman (1997) and, Lagerberg and Egaai7)
consider the backlash model as flexible shaft, thiglel is
physically more accurate than the traditionally duskead-

zone. Vords (2010) proposes a mathematical model fd"

backlashagranovich, 2012). Indeed, Nordin and Per-Olof (200
and

summarize the introduced backlash models

compensation within controller. Lorinc and Béla@2)take
into account backlash compensation and nonlineeticfin
in the same time where the mechanical systemasetiien a
hybrid system approach. In (Kalantari & Saadat, 30én
adaptive algorithm is designed, based on differegions of
the system angular position error. Since for batkla
compensation, this one is estimated by a learniritgim the

adaptive controller. Therefore, learning methodhds very

accurate and requires a known backlash structume.
(Kolnik & Agranovich, 2012) a backlash compensation
control method is proposed, it's based on two-nsystem
odel where the backlash is treated as torquerbatee,

backlash with hard dynamic nonlinearity, which usedhen a disturbance observer (DOB) is constructeafder to

appropriate switching functions and their completaefhe
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Notice that this method is patent

estimate and compensate the disturbance. So,nthefdhis
method is to reduce torsional vibrations, but mogive a
precise value of the backlash gap size. As wek, @an find
an estimation method based on signal processinghiin
way Jaber and Bicker (2016) propose a backlasindisg
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in the gearbox of industrial robot joints, it's ledson time- Remark: Motor inertia in translational is given by the
frequency signal analysis scheme, as wavelet wamsf (ansformation: my, = J,,(r/27)? where J,, is the rotary
applied on a specific signal profile. Adding to réfgcant | | )

cost computing, the studied displacement profileegher ~ inertia (Kg.m").

operational nor random behavior.

2.1. Frictions M odel
In this paper we propose a dynamic model backlaish w ~ ' ' oo

dead zone and a flexible shaft. This model is simib  Prior to give backlash model, it is important tgfiight the
(Lagerberg & Egardt, 2007) and (Nordin & Galic, Ip9 friction assumptions considered in this study, beeathese
but, it's presented on the relative reference. @me is to  hypotheses have an impact on the aerodynamic load
identify the backlash gap size related to the demke by measurement, we will see in the simulation exampta.
assuming that the stiffness and damping are knamd, Simplification, let us consider that the couplingilseen the
upstream and downstream actuator positions areurezhs Screw and the PMSM is infinitely rigid. Thus, thehale

So, the advantage of this estimation approachas itts  frictions considered in this study are given by i&a,
based on linear Kalman filtering with three variblstate 2007):

only by considering the backlash gap as white ndibeis, o .

this makes the implementation very easy in reaé tiith a Fr =R/X +S'g”e(x)[':dry +’7|H|] @

very low computing cost.

where:
2. MODELING OF EMA X Position in the absolute reference) (
In the goal to estimate the mechanical backlasHn ait X Speed In the absolute referencvs}
Fs Global frictions N)

operational profile displacement, one has to bailgeneric
dynamical model equivalent to the EMA. So any R Viscous friction parameteN((ns))
electromechanical actuators; rotary or linear carviewed Fary Dry frictions (N)
as a transmission between two masses; the firstiormre Efficiency 06)
permanent magnet synchronous motor (PMSM), thenskco . . L

Notice that these frictions can be distributed aghéwo

inertia is a transformation into the motor axissofew mass Emphas: Iso that the f sl
according to the screw thread and/or reductiororate. if masses. Emphasize also that the force sensor rasasly
the aerodynamic loads . Thus, sum of external forces

6 is the angular position, andis reduction ratio, then, | -
PMSM position in translational absolute refereregjiven ~ applied to the screw is given by:

by X, =6.r/2.r. Thus, one considers a dynamic system with  Fec« =F *Fs 2)
two masses and spring damper as explained bellagurg-
b | | 2.2, Backlash State M odel
K 1 By considering us within the relative referencesfixat the
N motor inertia i.e.oX = X, - X, the fundamental principle
Ce mm ms . . . .
> (Moton) ‘jﬂw (soow) | Fr of dynamics related to the position variation agglon the
S0 = — screw inertia gives:
t | R &K =K +K)(3X - 3Ky ~S)-(f +2F )oK +Foq  (3)
0 >1( 1 X‘z (Absolut>e( reference) mS - 0 ’ ext
Figure 1. Backlash model of EMA. Terms AK and Af are respectively the uncertainties of
where: stiffnessK and structural dampinfg
X Position in the absolute referenoe) ( The backlash identification scheme is based on Kalm
f Damping coefficientN/(nvs)) filtering by using the relative dynamic model (3hus, the
K Stiffness W/m) goal is to estimate the backlash variati§t) that is
St) Backlash i) considered as an exogenous input perturbation. ritaim
My Motor inertia (in translational X(g) hypothesis here, is to consider that the dynamialbe S(t)
m Roll screw massK{g) is an integral type added to a random white noigd &
F Aerodynamic loadN) known spectral power density. That means:
F¢ Frictions force ) .
&, Initial displacementrt) S=0+b() Q)

Whereb(t) is a white noise without bias and with a known
spectral power density.
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Using the backlash model of EMA (3) and the hypsihe
(4) the process model can be written in state sfraoe

X(t) = Ax(t) + Bu(t) + Mw(t) (5)
y(t) = Cx(t) + v(t) (6)
Where:
x=[x & of (7)
y =[]’ ®)

are the state and measurement vecidty,js measurement

noise, w(t) includes uncertainties and global disturbances

input process:
wt) =[0 ap(t) bt
with

©)

Ap(t) = —AK.OX — Af X + AK.S(t) (10)

Therefore we assume that the covariance matricegt)of
andw(t) are known. And:

0 1f 0
K - K
As|l-— — — (112)
Mg Mg Mg
i 0 0 o
- 1 T
B=|0 — 0 (12)
L Ms
0O 0 O
1
M=0 — O
o (13)
0O 0 1
c=[1 0 o (14)
D=0 (15)
are respectively, state matrix, input control matri

exogenous input matrix and measurement matrix. lligina
the input control is given by

u=Feyq (16)

Therefore, notice that speed and frictions are ankn so
the external forces as given by (2) are unknowrusT by
considerin¢Ff| <<|R|, the input control can be written as:

uld F| (17)

Well, loads are measured by forces sensor. Thisthgsis
has a little impact on result that will be discukse the
illustration example.

3. ESTIMATION OF BACKLASH WITH KALMAN FILTER

3.1. Model Discretization

To implement Kalman Filter, we assume that the wutd
the continuous system (5) and (6) is sampled withperiod
time Ts in discrete observation. We assume thatdmérol
input u is a piecewise constant over the sampling period T
by using Zero-order hold. One notices thedT) = x(k) .

Hence, the discrete state equation is given by:

X(k +2) = Agx(k) + Bgu(k) + M gw(k) (18)

y(k) = Cgx(K) +V(k) (19)

Where these matrices are approximate starting ftoen
general solution of continuous system (5) and lbggration
between instantsy =kTg and t=(k+1)Tg . Thus, we find

(Franklin, Powell, and Workman, 1997):

Ay =ehTs (20)

By = " eABdy (21)
0

M d-= | n (22)

Cq =C (23)

Hence, we can use a numerical approximation, orgulie
Control Toolbox of MATLAB® to obtain discreet matrices.

3.2. Kalman Algorithm

The LKF is an optimal estimator which searches ¢bst
function J =ZL":1E{SZZ(k)} at the least square sense. The

X(k) is defined byx(k) = x(k) - x(k) which is the difference
of estimation stat&(k), and system statek) . The LKF
algorithm is described by the following two stegussive
equations by using the discreet state model (18) (4@)
(Maybeck, 1982):

Step 1 (prediction step)

K(k +1/k) = AgR(K/K) + Byu(k) (24)

P(k+1/K) = AyP(K/K) Ay +MgWyM 4" (25)
Step 2 (prediction step)

K¢ (k+1)=P(k+1/K)Cq" (cd P(k+1/K)CqT +Vy )_1 (26)

R(k+1/k+1) = X(K+1/K)

Ky (kD (y(k+D - Cyi(k+1/k) - Dgug (k+D) &7

P(k+1/k+1) = (1, - K (k+1)Cq JP(k +1/K) (28)
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Where W, and V, are the process noise and measurement
noise covariance respectively with known power &péc
densities.Xx(k +1/k) and x(k+1/k+1) are the prediction and 08
the estimation state covariance respectivelik +1/k +1)
and P(k+1/k) are the prediction error and the estimation
error covariance respectively (Maybeck, 1982).

0.6

0.4

Loads [N]

0.2

4. SIMULATION AND DISCUSSION

4.1. Simulation Result with Real Data L oads

-0.2

To improve the result of this estimation schemes oses a
complete dynamic model that includes frictions Vishare
distributed among screw and PMSM independently
according to (1). Therefore, frictions are consider
unknown in this study. Hence, all values parameaisesi in
backlash state model (18) and (19) are not provifibed
confidentiality reasons, as well, all data usedilfastration
are normalized.

Figure 3. Aerodynamic loads.
The measured state considered in this study igedlaive
position between screw and PMSM in translationdlusl
Figure 4 shows the convergence of estimated relativ
position to the real one by using LKF.
To make an operational scenario we use the rea dat
profile, especially PMSM and screw positions in 1
translational (Figure 2) and aerodynamic loadsuEd).
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Figure 4. Relative position (Screw — PMSM) in
ts) - ' translational.
Hence, by considering the backlash as a dynamiahiay it

Figure 2. Screw and motor position in translational fluctuates between two values corresponding resedgtto
Notice that a zoom in a small interval also is gifer more  the upper and lower bound of real gap backlasthaws in
visibility. Figure 5. We also note a small variation around hugtper
and lower backlash bound. This phenomenon is dubeo
measured loads that not include frictions as ddfiog (2).
Indeed, aerodynamic loads are often supporting ngovi
(positive load) who push the backlash to the upgpemd,
and the dry frictions are either added or subtchatéo real
aerodynamic loads, according to speed sign aseatefin(1)
and shown in Figure 6 and Figure 7. The same pnoble
occurs around the lower backlash bound, when theslare
in the opposite (negative) way of the screw dispiaent as
shown in Figure 7.
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backlash that we notaS, we propose a statistical method

) S TSRV | | U S A using upper average and lower average of the dstima
= 05| Estimated Gap | backlash signal:
= — —Real Gap
‘_[@ 0 7 P n
& 05f u\ H B ASDZ p( )_ZS“l(k) (29)
T T T T T T T T T T T a P "
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
l Where:
1 e R ] .
= o8 —r—] Sp(K) :{S(k) I s(k)= max(s(k))+m'”(s(k))} (30)
= 7 — —Real Gap 2
g o ]
E ] max(S(k)) + min(S(k
§ o ] Sn(k):{S(k) I sk < M ))2 S ))} (31)
A - — - — - _— = - — - — - 4
0.54 0. LSS O.LSG 0.L57 0. L58 0. LSQ .
t[s] Are respectively; upper average and lower averdgthe
estimated backlash
Figure 5. Backlash gap estimation.
5. CONCLUSION
1— *g; =3 ﬁ%‘* - - ; i "”" . . . pe . .
= os In this paper, a new method of identification i®gsed;
2" it's about the backlash gap size estimation for
% o electromechanical actuator in an operational bemavihe
3 estimation scheme is based on LKF by consideriag tthe
backlash variable as an integral type added tondora

white noise with a known spectral power density.isTh
method has the advantage to estimate any backtash f
that can be considered as a random signal. In rikle an
example of simulation using real loads and displeas
profile is illustrated to show the relevance ofthiethod. In
perspective works, more complex model of backlaghbe
studied with the same philosophy.

Speed [m/s]
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