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ABSTRACT 

In the last years, Electro-Mechanical Actuators (EMAs) are 
gradually replacing the older type of actuators based on the 
hydraulic power. In order to detect incipient failures due to a 
progressive wear of a primary flight command EMA, 
prognostics could employ several approaches; the choice of 
the best ones is driven by the efficacy shown in failure 
detection, since not all the algorithms might be useful for 
the proposed purpose. In other words, some of them could 
be suitable only for certain applications while they could not 
give useful results for others. Developing a prognostic 
algorithm able to identify the precursors of the above 
mentioned EMAs faults and their degradation pattern is thus 
beneficial for anticipating the incoming failure and alerting 
the maintenance crew such to properly schedule the 
servomechanism replacement.  

The goal of this paper is to propose an innovative model-
based fault detection and identification (FDI) method, based 
on Genetic Algorithms (GA), able to identify symptoms 
alerting that an EMA component is degrading and will 
eventually exhibit an anomalous behavior; in particular four 
kinds of EMA progressive fault are considered: friction, 
backlash, coil short circuit and electronics fault of 
controller. To assess the effectiveness of the proposed 
technique, an appropriate simulation test environment was 
developed: in particular, two MATLAB Simulink models 
representing the real EMA and the corresponding monitor 
have been used to simulate failures and evaluate the 
accuracy of the FDI algorithm. The results showed an 
adequate robustness and confidence was gained in the 
ability to early identify an eventual EMA malfunctioning 
with low risk of false alarms or missed failures. This paper 
aims to be a starting point to future works based on this 
method for PHM applications. 

1. INTRODUCTION 

Actuators are devices conceived to convert power from 
various sources (mechanical, electrical, hydraulic, or 
pneumatic) into motion. Such conversion is commonly used 
to operate flight control surfaces and several utility systems. 
Some of these actuators are safety critical; redundancy is the 
main (and obliged) option to reduce risk; moreover, 
components are required to be highly reliable. Rigorous 
programs of scheduled maintenance should guarantee that 
the system operates always in safety conditions. By the way, 
extreme (and possibly not expected) operative scenarios 
may lead to damage and unscheduled maintenance, with 
increased risk and costs, and possibly impact on mission. 
Monitoring functional parameters from the system of 
interest, it is possible to determine if an anomalous behavior 
is starting to occur at an early stage. It is also possible to 
determine the source of such anomalous behavior.  
The prediction of this kind of failures should be guaranteed 
at a high level of reliability. The discipline aimed to do so is 
called Prognosis and Health Management (PHM) (as 
reported by Byington, Watson, Edwards, & Stoelting, 
2004); the application of the PHM strategies typically 
requires monitoring a set of system parameters in the form 
of electric signals. As a consequence, the application of 
PHM is favored on electrical systems, where no additional 
sensor is required. Prognostics are typically related to 
mechatronic systems having a complex non-linear 
multidisciplinary behavior; therefore literature proposes a 
wide range of fault detection and identification (FDI) 
strategies. Among these, it is possible to mention model-
based techniques based upon the direct comparison between 
real and monitoring system (as proposed by Borello, Dalla 
Vedova, Jacazio, & Sorli, 2009), on the spectral analysis of 
well-defined system behaviors performed by Fast Fourier 
Transform FFT (Dalla Vedova, Maggiore & Pace, 2014), on 
appropriate combinations of these methods (Maggiore, 
Dalla Vedova, Pace & Desando, 2015) or on Artificial 
Neural Networks (as shown by Battipede, Dalla Vedova, 
Maggiore & Romeo, 2015). 

Matteo D. L. Dalla Vedova et al. This is an open-access article
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credited. 
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As regards the onboard flight command actuation systems, 
it must be noted that Electromechanical Actuators (EMAs) 
are gradually replacing the older type of actuators based on 
the hydraulic power; these actuators are essentially electric 
motors which transfer rotational or translational power to 
the control surfaces by means of gearings. As they are 
relatively recent for aeronautical applications, researchers 
are evaluating efficient and effective methods to detect 
incipient failures in order to improve their functionality and 
safety. However, with respect to the older hydromechanical 
or electrohydraulic actuators, EMAs are typically more 
favorable to be monitored with a PHM methodology, given 
that the same sensors used to the control scheme and system 
monitors can often be used also for PHM analysis (i.e. no 
additional sensors are required). For these reasons, the study 
presented in this paper considers electromechanical 
actuation systems, according to the “More Electric Aircraft” 
paradigm (Quigley, 1993) and the “All Electric Aircraft” 
paradigm (Howse, 2003). For completeness, it must be 
noted that the concepts and the results reported in this paper 
about the design of reliable and fast prognostic FDI routines 
belong to a wider research activity focused on the diagnosis 
model-based approach and, in particular, on the parametric 
estimation task.  

2. AIMS OF WORK 

In this paper a new FDI algorithm based on the Genetic 
Algorithms (GA) is proposed, optimized and then validated 
through the comparison between predicted values and the 
behavior of a numerical EMA virtual test-bench, conceived 
and modeled for the purpose. In order to evaluate the 
accuracy of the prediction at the different conditions and to 
assess the field of validity of the proposed method, different 
combinations of progressive faults have been considered. 
In particular, according to hypothesis shown by Maggiore et 
al. (2015), authors evaluate the following progressive faults: 
BLDC motor stator coil short circuit, backlash and dry 
friction acting on the mechanical transmission and drift of 
the gain of the closed-loop position control logic. 

3. EMA REFERENCE MODEL 

As shown in figure 1, a typical EMA is composed of: 

1. an actuator control electronics (ACE) that closes the 
feedback loop, by comparing the commanded position 
(FBW) with the actual one, elaborates the corrective 
actions and generates the reference current Iref; 

2. a Power Drive Electronics (PDE) that regulates the 
three-phase electrical power; 

3. an electrical motor, often BLDC (BrushLess Direct 
Current) type; 

4. a gear reducer having the function to decrease the 
motor angular speed (RPM) and increase its torque to 
desired values; 

5. a system that transforms rotary motion into linear 
motion: ball or roller screws are usually preferred to 
acme screws because, having a higher efficiency, they 
can perform the conversion with lower friction; 

6. a network of sensors used to close the feedback loops 
(current, angular speed and position) that control the 
whole actuation system. 

 

Figure 1. Electromechanical Actuator Scheme. 

As previously stated, the primary goal of the research is the 
proposal of a technique able to identify symptoms alerting 
that an EMA is degrading: therefore, in order to assess the 
robustness of this technique, a suitable simulation test 
environment has been developed. The proposed numerical 
model, developed by Maggiore et al. (2015) and shown in 
Figure 2, is consistent with the EMA architecture reported 
in Figure 1 and it is implemented in MATLAB/Simulink® 
environment. Such a model is able to simulate the dynamic 
response of the real actuation system taking into account the 
effects due to aforesaid progressive faults, conversion from 
analogic to digital of the feedback signals (ADC), electrical 
noise acting on the signal lines and position transducers 
affected by an electrical offset.  

 

Figure 2. Proposed EMA block diagram. 

It is composed by six different subsystems that will be 
briefly described in the followings. 

1. an input block that generates the different position 
commands (Com); 

2. a subsystem that, as shown by Todić, Miloš and Pavišić 
(2013), simulates the actuator control electronics, closes 
the feedback loops and generates as output the 
reference current Iref (ACE); 
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3. a subsystem simulating the power drive electronics and 
the trapezoidal BLDC electromagnetic model, that 
evaluates the torque developed by the electrical motor 
as a function of the voltages generated by the three-
phase electrical power regulator (BLDC EM Model); 
this model, proposed by Maggiore et al. (2015), has 
been developed according to the mathematical models 
and the assumption reported by Çunkas and Aydoğdu 
(2010), Halvaei Niasar, Moghbelli and Vahedi (2009) 
and Hua and Zhiyong (2008); 

4. a subsystem simulating the EMA mechanical behavior 
by means of a 2 degrees of freedom dynamical system 
(EMA Dynamic Models); 

5. another input block simulating the aerodynamic torques 
acting on the moving surface controlled by the actuator 
(external forcing TR); 

6. a block simulating the monitoring system (Monitor). 

In order to validate the proposed numerical model, the 
dynamic response developed by the aforesaid system under 
certain operating conditions (control input, boundary 
conditions and entities of different faults) was compared 
with data obtained from literature. In particular, the back-
EMF and phase currents waveforms, related to different 
values of the rotor angular velocity, and the dynamic 
responses of the BLDC motor, caused by various command 
inputs, have been compared with some experimental 
evidences and corresponding cases available in literature 
(Lee & Ehsani, 2003 and Kaliappan & Chellamuthu, 2012), 
highlighting a satisfactory compliance. 

4. EMA FAILURES AND DEGRADATIONS 

Since EMA have been only recently employed in 
aeronautics, their cumulated flight hours or on-board 
installations are not enough to allow a reliable statistics 
about the more recurring failures. Gökdere, Chiu, Keller & 
Vian (2005) show that it is possible to discern between four 
main categories of failures: 

1. mechanical or structural failures; 

2. BLDC motor failures; 

3. electronics failures; 

4. sensor failures. 

The present work has been mainly focused on the combined 
effects of four different progressive faults: backlash (ܭܮܤ) 
and dry friction (ܨௌ்) acting on the mechanical transmission 
(as a consequence of wear phenomenon), turn-to-turn short 
circuits affecting the BLDC motor stator coils ( ௔ܰ ), and 
drift of the gain of the closed-loop position control logic 
 These failure modes were selected, on the basis of .(௣௥௢௣ܩ)
information found in literature about the incidence and the 
criticality of different progressive faults (Kenjo & 
Nagamori, 2003, Chesley, 2011, and Weiss, 2014), in order 
to individuate a significant case of study. 

As known, dry friction phenomena always occur when two 
surfaces are in relative motion: when friction coefficients 
increase due to wear, reaction torque becomes higher and 
the motor must provide higher torques to actuate the control 
surface. As shown by Borello and Dalla Vedova (2012), the 
increased dry friction, while still not causing the seizure of 
the entire system, reduces the servomechanism accuracy 
and, sometimes, influences the system dynamic response 
generating unexpected behavior (stick-slip or limit cycles). 
The mechanical wear also generates backlash in EMA 
moving parts such as gears, hinges, bearings and especially 
screw actuators. These backlashes, acting on the elements of 
the mechanical transmission, reduce the EMA accuracy and 
can lead to problems of stiffness and controllability of the 
whole actuator (Borello and Dalla Vedova, 2014).  
BLDC motor failures are mainly seen as progressive coil 
short-circuits, or bearing wear generating rotor static 
eccentricity. As shown by Shashidhara & Raju (2013), there 
is a consensus that 35-40 % of induction motor breakdowns 
could be attributed to the stator winding insulation. The 
short-circuit failure mode usually starts between a few coils 
belonging to the same phase (coil-coil failure). Since into 
short-circuited coils the voltage remains the same and the 
resistance decreases, a high circulating current arises, 
generating a localized heating in conductor: this heating 
favors the extension of the failure to the adjacent coils.  
If this kind of failure is not promptly detected it could 
propagate and generate phase-phase or phase-neutral 
damages. The progressive stator coil short-circuit effects 
have been modeled by means of a simplified numerical 
algorithm shown by Maggiore et al. (2015). Since both 
failures change the magnetic coupling between stator and 
rotor, the algorithm simulates these faultss modifying values 
and angular modulations of the back-EMF coefficients1.  

 ݇݁_ܽ ൌ ௜݁ܭ ∙ ௜݁ܥ ∙ ሺ1 ൅ ߞ ∙ ሺݏ݋ܿ  ௥ሻሻ (1)ߴ

These constants (ke_a, ke_b, ke_c) are used to calculate the 
corresponding back-EMF (ea, eb, ec) and mechanical 
couples (Cea, Ceb, Cec) generated by the motor phases. 
Sensor and electrical components are not less important than 
the other ones and their degradations are often characterized 
by rather fast temporal evolutions. However, considering 
suitable time scales, it is possible to evaluate precursors that 
can be used to take an action (Ginart, Brown, Kalgren & 
Roemer, 2007 and 2008). Wanting to test the effectiveness 
of the algorithm of FDI also proposed in the presence of this 
type of progressive failure (and, especially, in the case of 
interactions with other considered failures), the authors 
decided to examine a simple case of electronic fault caused 
by an unexpected drift of the gain of the closed-loop 
position control logic. 

                                                           
1  The proposed algorithm, implemented by means of the functions f(u) 

contained in the BLDC EM Model block diagram reported in figure 2, 
acts on the three back-EMF constants Cei (one for each branch) 
modulating their trapezoidal reference values Kei as a function of coil 
short circuit percentage, static rotor eccentricity ζ and angular position ϑr. 
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Figure 3. EMA Monitoring Model block diagram 

 
5. EMA MONITOR MODEL 

The above mentioned Simulink model, as explained in the 
previous section, is able to simulate the dynamic behavior of 
an actual electromechanical servomechanism taking into 
account the effects due to command inputs, environmental 
boundary conditions and several kinds of failure. So, even 
with proper limitations, this model allows simulating the 
dynamic response of the real system in order to evaluate the 
effects of different faults and designs, analyses and tests 
different diagnostic and prognostic monitoring strategies. 
In order to conceive a smart system able to identify and 
evaluate the progressive failures by means of a GA-based 
parameter optimization process, it is necessary to compare 
its dynamic behaviors with those provided by a simpler 
EMA model. To this purpose, authors developed a new 
Monitor Model (MM), representing a simplified version of 
the detailed EMA model, having the same logical and 
functional structure; such a model, with respect to the 
detailed one, is able to give similar performance, although 
less detailed, requiring less computational effort and 
reduced computational time. The MM has been run several 
times, during the GA-based optimization process, in order to 
calculate proper prognostic parameters used by the authors 
to perform the FDI of the detailed EMA model (i.e. the real 
system). It must be noted that the input of this model is the 
same as that used for the reference model, in order to make 
a comparison between these two models when studying the 
dynamic response. Obviously, it is important that the 
dynamic response of the monitor model must be as closer as 
possible to the reference model dynamic response. 

6. FAULT DETECTION/IDENTIFICATION ALGORITHMS 

Several optimization techniques are commonly used also for 
model parameter estimation tasks, which can be classified 
into two main categories: deterministic (direct or indirect) 
and probabilistic (stochastic, as Monte Carlo method, 
simulated annealing and genetic algorithms).  

 

As reported by Dalla Vedova et al. (2014), a large part of 
these methods are local minima search algorithms and often 
do not find the global solution (i.e. they are highly 
dependent on a good initial setting). Local-minima 
approaches would not be robust and may provide a false 
indication of parameter changes in an on-line system (i.e. a 
wrong selection of starting settings could determinate 
problems of convergence or global minima). Otherwise, 
global search methods, such as genetic algorithms and 
simulated annealing, provide more promising options for 
on-line model identification (Raie & Rashtchi 2002, 
Alamyal, Gadoue & Zahawi 2013). 

Genetic Algorithms (GAs) have been used in science and 
engineering as adaptive algorithms for solving practical 
problems and as computational models of natural 
evolutionary systems (Mitchell, 1996). About that, it must 
also be noted that, especially in order to implement a model-
based FDI algorithm able to perform the health diagnosis of 
a real EMA evaluating several variables (typically five or 
more), the method based upon GAs are usually more 
effective and reliable with respect to other approaches (e.g. 
deterministic methods). In recent years the applications of 
genetic algorithms in the development of diagnostic systems 
based on numerical models have found wide interest in the 
scientific world and have led to several technical 
applications. In particular, in the field of mechatronics and 
electromechanical systems (with particular emphasis on 
electric machines), have been published many researches 
about new diagnostic and prognostic algorithms which 
integrate GAs optimization and model-based approach 
(Alamyal, Gadoue & Zahawi, 2013). For example, Raie & 
Rashtchi (2002) developed a parameter identification 
method, based upon genetic algorithm, for the detection and 
magnitude determination of stator turn-to-turn coil faults, 
based on a parameter identification of a model in which the 
turn fault is considered. 
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Starting from these considerations, in this work the authors 
have developed a new model-based FDI technique to 
identify fault levels of an EMA analyzing its dynamic 
response and comparing it, through a process of 
optimization (GAs), with the response generated from a 
numerical model. Then, the proposed method to detect these 
faults is based on the comparison of two signals coming 
from a reference system, and a monitor model. The former 
can be, for example, the angular speed or a current 
circuiting in a phase of a Brushless DC (BLDC) motor of a 
real EMA for which the fault detection is needed, or, as in 
the case of this work, of a modelled EMA able to simulate 
the examined faults. The latter is a simplified model with 
the requirement to be simple and fast in terms of 
implementation and computational time, since proposed 
method needs several iterations, making the heavily detailed 
model inappropriate. However, once determined the output 
to study, either of a real or a simulated EMA, and once 
modelled the monitor model, the comparison is performed 
by an optimization algorithm. This algorithm minimizes a 
quadratic error function by changing iteratively one or more 
parameters (defined as representative of the examined 
faults) of the monitor model until the output signal best 
overlaps with the reference system response. If the 
parameters calculated by the optimization algorithm match 
with the real ones, the method has worked properly; if the 
monitor model is accurate enough, the optimization 
algorithm gives a good detection of the system health.  

As previously mentioned, the goal of this paper is to study, 
through Genetic Algorithms (GA), a detection method for 
some of the most representative faults EMA related. Two 
MATLAB Simulink models representing the real EMA and 
the monitor model were performed. To this purpose it must 
be noted that GAs are a class of evolutionary algorithms that 
take inspiration to the natural selection process. 
Optimization starts with a population of points (called 
chromosomes) which together represent the human genome. 
Each chromosome is a potential solution of the problem, the 
so called fitness function (the abovementioned error 
function), calculated for each of them. According to the 
obtained value, a rank is assigned to them: since it is a 
minimization, chromosomes who give lower fitness values 
have a better rank and are selected to be the parents of a new 
population of points (the following generation) created by 
means of different operators called crossover (a combination 
of parents), migration and mutation. This process is repeated 
iteratively until the last child of the last generation fulfill a 
stopping criterion, that can be a tolerance on the fitness 
function, a limit on the stall generations, a maximum 
number of generations, etc.  

By tuning these settings, the method can be more or less fast 
or may or not converge to a final solution. It is important to 
consider that there is a strong dependence on the particular 
problem taken into account. 

7. GENETIC ALGORITHM TUNING 

Matlab gives the opportunity to set different GA options in 
order to improve the convergence and the speed of the 
algorithm. GAs convergence is characterized by a strong 
dependence from the treated problem so that there is not an 
universal configuration that works in every case, hence a 
setting used for a problem such as a single fault 
optimization is very different from a setting for a multiple 
fault optimization. First of all it is important to specify the 
type of function (fitness) that has to be set in order to make 
the optimization. As already seen, the typical function used 
for this kind of problems is the error function. Error function 
is made up with the square of the difference between the 
measured output of the EMA and the modelled one. When 
this error is minimized by the optimization algorithm, the 
two curves match at their best. As the monitor model is built 
to find a fault of the real EMA, it takes into account of 
different parameters that represent several typologies and 
levels of damage, one if a single fault simulation is 
performed, otherwise four in combined fault. The algorithm 
changes iteratively these parameters inside the Simulink 
monitor model until the error is minimized, giving as results 
parameter values that should approximate the real faults. 
In order to have a good optimization by GA, different 
parameters must be tuned. 

7.1. BC definition 

It is important to define the research domain by the 
boundary conditions. For every parameter it is known the 
operating range that includes the starting nominal condition 
and a hypothetical full damage limit (e.g. ௔ܰ  cannot be 
higher than 1 or less than 0.8, ܨௌ்  cannot be less than 
0.1689). This is important since the algorithm will search 
inside a limited space with a better probability to find the 
right solution with the same population size. In Table 1 are 
reported the boundary conditions for the examined faults. 

Table 1. Progressive Faults Boundary Conditions. 
 

 ௔ܰ ሾ#ሿ ܨௌ் ሾܰሿ ܭܮܤ	ሾ݀ܽݎሿ ௣௥௢௣ܩ ሾିݏଵሿ

Lower 
Bound 

0.8 0.1689 0 5e4 

Upper 
Bound 

1 0.8445 0.04 15e4 

7.2. Population size 

The population size represents the number of individuals 
handled in each iteration. A small population size could not 
give the diversity necessary to search in all the available 
space, while a too large population makes the computational 
time too high. This is due to the fact that when an individual 
is tested by the algorithm, its fitness is calculated by the 
Simulink monitor model.  
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By default, Matlab uses 20 individuals. These are enough 
for single fault parameter estimation where the function has 
a global minimum well defined. In contrast, for multiple 
faults the fitness function becomes more complex since the 
electric fault and the friction hide each other’s. For this 
reason, in this last case, a bigger population is considered. 

7.3. Initial population 

By means of the initial population it is possible to define a 
group of possible solutions of the problem. It is impossible 
to define an initial population with all the possible 
combinations of failure but it is possible to define a vector 
with the solution for the nominal condition. This helps 
saving time when EMA is in a healthy condition; in fact the 
algorithm finds the global minimum at its first iteration 
without the inconvenient of a long computation. 

7.4. Initial range 

In order to better search into the available space it is 
important to give an initial range. The initial range is the 
dimension of the space in which the algorithm spreads its 
individuals. If the problem is constrained, it is a good choice 
to put as initial range the boundary values. The importance 
of the initial range resides into the diversity: if the initial 
range is too small, the search of the global minimum would 
be restricted to small parts of the domain. This makes the 
mean distance between individuals too small to make a good 
search with the consequence that the algorithm might get 
into a local minimum. The proper initial range value, 
instead, gives the right diversity, i.e. individuals are spread 
into the whole domain giving a better chance to get into the 
global minimum. 

7.5. Fitness function scaling 

The fitness function scaling is the way through the GA gives 
a value to the fitness function calculated for each individual 
in order to have a meter for choosing the parents.  
The fitness scaling adopted in this work is “rank”, i.e. the 
selection is not based on individuals fitness value but by a 
rank expressed as a natural number dependent on the value 
of the fitness. To better understand this method, imagine 
having two individuals, the former with a fitness of 100 and 
the latter with a fitness of 1. Obviously, the second 
individual is much better since it is two orders smaller than 
the first one. If the choice of the parents was dependent on 
the fitness value, the probability to select the individual with 
fitness 100 would be very low with respect to the individual 
with fitness 1. Instead, with fitness scaling, the two 
individuals are labeled in a way so that the individual with a 
fitness of 100 has the rank “2” and the individual with 
fitness 1 has the rank “1”. With this method the algorithm 
does not privilege those individuals that have a fitness value 
much more smaller than others, preserving a better diversity 
and making harder to get into a local minimum. 

7.6. Selection function 

The GA default selection function is stochastic uniform; 
according to this method, a line is lied out, with each parent 
corresponding to a section of length proportional to its 
scaled value (calculated by the fitness rank scaling). The 
algorithm moves along the line in steps of equal size. At 
each step, the algorithm chooses the parent from the section 
it lands on. The first step is a uniform random number that 
must be minor than the step size. This gives weaker 
members of the population (according to their fitness) a 
chance to be chosen and thus reduces the unfair nature of 
fitness-proportional selection methods. 

7.7. Crossover fraction 

The crossover fraction is a number between 0 and 1 that 
represents the percentage of children that will be produced 
by parents crossover. When crossover fraction is set to 1, all 
children are produced by crossover. This can make the 
algorithm faster in terms of convergence but the probability 
to get into a local minimum is higher. Instead, a crossover 
fraction equal to 0 means that all children are created by 
mutation, that makes the algorithm totally stochastic with 
the impossibility to converge when the minimum is caught. 

7.8. Crossover function 

It is known that the crossover can be performed in different 
ways: as reported by Germanà (2015), the best results for 
the considered application are achieved by the crossover 
heuristic. Once selected the two parents for reproduction, 
the algorithm draw a line between them. The children are 
created along this line in the opposite direction to the worst 
parent with a radius that can be specified by the user. This 
method makes the algorithm to converge faster than other 
crossover functions, at least for the considered problem. 
Mutation is performed by the adaptive feasible function that 
is ideal for constrained fitness function applications. 

 
Figure 4. Selection stochastic uniform scheme 

8. ANALYSIS OF THE PROPOSED FDI ALGORITHM 

It is important to decide which faults and how many of them 
at same time one wants to simulate: it is clear that it is 
different if only a single fault occurs instead of two or many 
other faults. In fact in a real case, the user may not know 
which kind of damage is present in the considered EMA; 
hence the method must recognize the exact fault among a 
series of different parameters with the best accuracy.  
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On the other hand – if it is known which component gives 
problems – by a systematic study of the inputs and outputs 
of the system it is possible to find the hypothetical damage 
without testing a large amount of parameters. As reported 
by Germanà (2015), GAs are good for the search of a single 
fault, but in a real case may be necessary to find damage by 
searching among different parameters as there could be 
more than one fault. Differently from the single fault case, 
the multi-fault algorithm must be properly tuned since there 
are faults such as ௔ܰ  and ܨௌ்  that hide each others (i.e. 
different damage combinations can lead to similar problem 
convergences). In fact, despite faults like ܭܮܤ  and ܩ௣௥௢௣ 
have widely different effects on the dynamic response with 
an error function that has a global minimum univocally 
determined by any couple of these two parameters, for faults 
such as ௔ܰ and ܨௌ்the error function may bring to solutions 
far from the real state. Precisely, both affect the motor speed 
– and the user position – since a decrease of the former 
leads to an increasing regime speed while an increase of the 
latter causes a decrease of the same. This means that 
different couples of these parameters may give a best 
solution.  

 

Figure 5. 3D representation of the fitness function (error) 
calculated for 1600 combinations of ௔ܰ and ܨௌ். 

This is better shown in figure 5 where the error function is 
given by a combination of 1600 couples of ௔ܰ and ܨௌ் (the 
real values of the corresponding actual faults are ௔ܰ= 0.9 
and ܨௌ்.= 0.3378 N). As it is clear to see, lot of solutions are 
good (the valley labeled in blue). Moreover, the problem is 
accentuated by the fact that the motor speed error is much 
bigger with respect to the other output errors so that its 
effect on the optimization is predominant. This problem has 
been overcome modifying the algorithm by giving to all 
errors the same weight. In the single fault estimation, only 
one output is used to find the searched value; whereas, in 
the proposed multiple fault detection, the fitness function is 
made up with the sum of all the outputs, each one with its 
own scale. A variation of each parameter brings to the 
variation of all outputs in different ways but in certain cases 
these variations are several orders lower than others.  

A normalization of all errors with their maximum value 
makes all functions included between 0 and 1 so that 
variations due to a change of a parameter gives an amount 
of error comparable for all outputs. Hence, since ܨௌ் causes 
a small variation also in the sinusoidal response, it is 
univocally determined without the influence of the motor 
speed in the step response (necessary to find the ௔ܰ fault). 

8.1. Multiple fault results 

As mentioned earlier, was then carried out an extensive 
campaign of tests to evaluate the performance of the 
proposed method in various operating conditions (various 
types of controls, various combinations of type and level of 
the faults considered, sensitivity to electrical noise and to 
the different environmental conditions). In the following 
tables are described the damage type, extent and accuracy of 
the estimation showing also the difference between outputs 
before and after the optimization. 

Nominal condition: a good fault detector must recognize 
also a non-damaged situation. In nominal condition the 
optimization algorithm must return the nominal parameters 
as reported in the table below. This case is the strongest 
with respect to the others since the proposed optimization 
algorithm is set to take into account as starting point the 
nominal condition parameters. This is achieved by defining 
in the initial population a vector containing these values so 
that when the algorithm starts its optimization process, it 
finds immediately the global minimum.  

Small damage: usually, every system has a progressive 
fault evolution so that it is important for the algorithm to 
find a small variation in the model parameters. In this 
simulation a small percentage of the coil is short circuited, 
wearing causes a small backlash and friction, and finally no 
electronic fault is taken into account. 

Full damage: First of all it is appropriate to state that, in a 
case of real operation, the probability of occurrence of such 
a condition (i.e. very high fault levels for all types of 
progressive failure considered) is quite remote. In fact, 
progressive faults as wearing increase gradually so that they 
are detected before reaching too high values. But, taking 
into account that a robust and effective algorithm must 
recognize every fault situation in order to be considered a 
valid method, also this condition has been investigated. 
Results shown in Table 4 confirm that the FDI algorithm 
can predict also strongly nonlinear conditions. 

Random damage: finally, wishing to investigate the 
sensitivity of the proposed algorithm in more depth to 
different failure conditions (e.g. combinations of very 
heterogeneous fault), it has been developed a calculation 
routines capable of generating various fault combinations 
(setting the corresponding bounds and the desired level of 
heterogeneity) As reported in Table 5, the results accuracy 
is high as in the previous fault combinations so that the 
method is definitely effective. 
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Table 2. Results for a nominal condition combination. 
 

Fault Estimation True value Accuracy 

௔ܰ 1 1 100% 

 ௌ் 0.1689 0. 1689 100%ܨ

 %100 0 0 ܭܮܤ

 ௣௥௢௣ 100000 100000 100%ܩ

Table 3. Results for a small damage combination. 
 

Fault Estimation True value Accuracy 

௔ܰ 0.96105 0.95 98.83% 

 ௌ் 0.32989 0.3378 97.65%ܨ

 %98.60 0.01 0.00986 ܭܮܤ

 ௣௥௢௣ 97984 100000 97.98%ܩ

Table 4. Results for full damage combination. 
 

Fault Estimation True value Accuracy 

௔ܰ 0.8141 0.8 98.23% 

 ௌ் 0.8274 0.8445 97.97%ܨ

 %99.25 0.04 0.0403 ܭܮܤ

 ௣௥௢௣ 149815 150000 99.87%ܩ

Table 5. Results for random damage combination. 
 

Fault Estimation True value Accuracy 

௔ܰ 0.961 0.95 98.41% 

 ௌ் 0.6729 0.6756 99.6%ܨ

 %98 0.01 0.0098 ܭܮܤ

 ௣௥௢௣ 124140 125000 99.31%ܩ

9. CONCLUSIONS 

Within this paper, we have demonstrated that, if properly set 
and calibrated, the proposed GA algorithm, used for FDI 
method, is very reliable in the identification of the increase 
of EMAs failures’ precursors; in particular, GAs are suitable 
for parameters estimation since both single and multiple 
faults give accurate results for different levels of damage. 

We have tested the proposed method in various failures 
conditions and it proved to be effective for an operational 
scenario with a suitable time of execution (some minutes)2. 
In this regard, before concluding, it is however appropriate 
to make some observations. The first consideration is about 
the convergence: the problem can be represented by 1 to 4 
variables and a fitness function constituted by the sum of 8 
different outputs which guarantees univocally a global 
minimum when the right fault combination is applied to the 
variables of the problem. Accuracies are all over 90%, so 
we can conclude that the method converges appropriately. 
Moreover, it must be said that, even if the method is 
probabilistic, every simulation converges at the same result 
almost in the 100% of attempts, making the method suitable 
in terms of repeatability. The second consideration is about 
the convergence speed: when single fault estimation is 
performed, convergence happens in less time rather than in 
the multiple faults case, exactly approximately in 25 
iterations. This is due to the simplified nature of the 
problem. In fact, for single fault parameter estimation, the 
fitness function is constituted only by one output out of 8 
available, chosen according to the sensibility of this last to a 
variation of the faulty parameter. This makes the problem 
simple to be solved since exists only one value of the fault 
considered that returns the global minimum. Moreover, 
performing GA with only one parameter means to handle a 
smaller population, with the consequent lower 
computational time required. Usually, the time taken to 
converge in this case is about some tens of seconds. 
Evidently, this is different when multiple faults are 
considered. We chose to simulate 4 faults at the same time 
because only one output of the reference model is not 
sufficient to find univocally the global minimum. There are 
faults that yield similar effects to the same output, making 
the optimization harder. As a consequence, more than one 
output is considered, exactly 8 different outputs both for 
sinusoidal and step response. In this case the problem is 
more complex and the minimum is harder to find, so that 
more iterations are required to obtain the convergence.  
For this second problem, around 100 iterations are 
concerned. This is not the only reason of the slower 
convergence speed: in fact, in this case the optimization 
algorithm handles 4 different variables, with a consequent 
bigger population. For each iteration, fitness evaluation, 
fitness scaling, selection, crossover, mutation and migration 
are performed for every individual of the population, 
requiring more computational resources.  

                                                           
2  It must be noted that, at the moment, the time of convergence of the 

entire FDI process varies, as a function of number of variables and 
boundary conditions, from a few minutes to beyond half-hour. A so high 
elaboration time depends not only from the calculation process itself, but 
also from the limited performances of the calculator (a laptop equipped 
with a i5 processor) and from complexity of the SW performing the FDI. 
Obviously, these elaboration times are not acceptable for real-time 
processes (hypothesis that, however, we feel to refuse a priori), but they 
are not satisfactory also in case of FDI processes scheduled during the 
usual aircraft maintenance operations. 
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In conclusion, it must be noted that, in the context of 
prognostic applications, this FDI method can be considered 
satisfyingly reliable (also in case of combined failures or 
noisy signals) and it is possible to assess its validity even on 
other possible different conditions (i.e. various combination 
of progressive faults and boundary conditions); however, in 
order to extend its capabilities, it is our intention investigate 
further these issues in order to: 

1. extend the method to a much larger number of 
progressive failure and boundary conditions; 

2. verify the robustness and the convergence of this 
method also under particularly unfavorable conditions; 

3. appropriately simplify the monitoring model and the 
optimization procedure so as to limit the corresponding 
processing times (limiting it to a few minutes or less). 
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