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ABSTRACT 

The benefits of applying Prognostics & Health 

Monitoring (PHM) techniques to Aircraft 

Maintenance are evaluated using System Dynamics 

(SD). It is well known that a key motivation for 

PHM is to increase aircraft availability by reducing 

unscheduled removals and downtime, ultimately 

reducing Direct Maintenance Costs (DMC). The 

benefits to aircraft maintenance are tested by 

modelling two maintenance philosophies using SD: 

the traditional approach driven by scheduled & 

reactive maintenance; and through Condition Based 

Maintenance (CBM) by considering PHM 

functionality in maintenance practice. The study is 

focused on an Electromechanical Actuator (EMA) 

for an aircraft flight control system across a fleet of 

25 aircraft over an 8 year maintenance overhaul 

period. The study indicated there were fewer 

unscheduled removals as a result of CBM in 

comparison to the traditional approach. Further 

sensitivity studies on varying degradation patterns 

led to instability in maintenance planning with more 

reactive maintenance due to more abrupt failures of 

the EMA. The cost effectiveness of CBM as a 

function of PHM efficiency is demonstrated through 

DMC accumulation where it was found that CBM is 

no longer cost-beneficial when over 85% of the 

EMA life has been used. Overall, the SD models 

presented a general level of systems understanding 

of the causalities that are inherent within the two 

maintenance policies and are a useful methodology 

to consider PHM benefits through analysing the 

impact of different policies on the system behaviour.  

Keywords—Prognostics; Health Monitoring; 

Aerospace; Condition Based Maintenance; System 

Dynamics; Electromechanical Actuators 

 

 

1. INTRODUCTION 

 

Prognositcs and Health Monitoring (PHM) are 

becoming more widely applied within the Aerospace 

industry and it is important to demonstrate the 

benefits and challenges that are associated to PHM 

through implementation and application. There are 

many benefits and drawbacks to account for when 

considering all stakeholders associated with PHM. It 

is therefore imperative to capture all of these to make 

it more receptive and acceptable to the Aerospace 

industry to fulfil the objectives of PHM which are to 

improve aircraft availability by reducing equipment 

downtime by enhanced understanding of health 

(Wheeler, Kurtoglu, & Poll, 2010). 

 

The impact on aircraft line maintenance actions are 

a key area of study when analysing the benefits with 

aircraft operators that are seeking new ways to 

optimise maintenance practice. Aircaft maintenance 

forms a significant part of an aircraft’s airworthiness 

criteria, with the key objectives to ensure a fully 

serviced, operational and safe aircraft (Ackert, 

2010). Poor maintenance can have a variety of 

impacts to an aircraft, its crew and its passengers. 

Delays to aircraft dispatch time could cause a 

financial impact to the airline (runway charges) and 
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customer dissatisfaction. In more severe cases, poor 

maintenance could lead to passenger or crew 

discomfort in injury or, in the worst case, a flight 

safety critical situation. It is important to consider 

the different types of maintenance activities with 

respect to ‘time’ at a high level as shown in Figure 

1. It is desirable for airlines to have maximum 

operability through optimisation of ‘down time’ 

activities (Şenturk, 2010).  

 

Time
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Figure 1. Maintenance Time Relationships (Knotts, 

1999). 

Aircraft maintenance regimes are generally 

comprised of activities stemming from preventive, 

corrective and design-out maintenance. These forms 

of maintenance are categorised in Figure 2. 

Corrective maintenance is often classified as 

‘unplanned’ or ‘reactive’ and is a form of 

maintenance based on troubleshooting equipment 

when it operates under undesirable conditions or its 

failure results in complete loss of operation thus 

leading to equipment down time.  Design out 

maintenance stems out of ‘planned’ maintenance as 

a long term objective and is applied as a means to 

improve equipment operability and reliability 

through a process of studies, construction and testing 

and may serve as part of an iterative design 

improvement of the equipment being maintained.  

Preventive maintenance is driven through a culture 

of planned maintenance. It can be broken down into 

Systematic (Scheduled) maintenance, where 

equipment is serviced at periodic intervals to detect 

the onset of failure and therefore rectify the problem 

prior to the failure and Condition-Based (Predictive) 

maintenance (CBM) where continuous monitoring 

of equipment health to detect potential faults without 

having to disrupt aircraft operations.     

 

Maintenance
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Maintenance

Design-Out 
Maintenance

Corrective 
Maintenance

Systematic 
Maintenance

Condition-
Based 
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Figure 2. Maintenance Categories (Prokopenko & North, 

1997). 

General aircraft maintenance is based around a 

series of Scheduled maintenance for each respective 

sub-system and components. It is generally 

comprised of periodic inspections, which are 

classified into A, B, C and D checks with A & B 

checks conducted more frequently. They generally 

consist of visual inspections and general servicing 

whereas C & D checks are more extensive with 

checks requiring more man-hours (Ackert, 2010). 

The D check is the least frequent but the most 

comprehensive and is factored as an overhaul of the 

whole aircraft.  Corrective maintenance generally 

arises due to inherent undesirable properties unseen 

during scheduled maintenance and BITE (Built In 

Test Equipment) checks where applicable with 

Condition-based maintenance sparsely applied 

(Ackert, 2010). This paper therefore intends to 

capture the shift in maintenance policy as a result of 

PHM application for an Aerospace application by 

considering PHM at a component level with 

continuous monitoring of health considered through 

use of System Dynamics (SD) modelling.  

 

1.1  Origins of System Dynamics 

 

SD is a methodology used to aid the understanding 

of nonlinear characteristics of complex processes 

over time through the use of Stock & Flow diagrams 

and internal feedback loops stemming from Causal 

Loop diagrams (Radzicki & Robert, 2008). 

Historically, SD came into prominence in the mid-

1950s from Professor Jay Forrestor through an 

ambition to understand the core issues which define 

the success or failure of organisational processes 

(Forrestor, 1961) .  

 

Complexity within a system is generally defined in 

terms of the number of components or procesess 

within it or the number of combinations and 

scenarios to aid decision making which is termed 

‘combinatorial complexity’ (Sterman, 2000). It is 

often assumed such complexity could arise in a 

system through additive combinations however, it is 

also said that complexity may arise in simpler 

systems with low combinatorial complexity 

(Sterman, 2000) as dynamic complexity results from 

the combination of interactions amongst system 
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elements through time. It is a broad-ranging 

discipline that seeks to integrate several disciplines 

such as economics, law, management sciences, and 

management of information systems (Spohrer & 

Maglio, 2010). 

 

1.2 System Dynamics Application 

 

SD techniques have been applied sparsely as a 

methodology in demonstrating PHM qualitative and 

quantitative benefits to aircraft maintenance in 

general.    

 

Significant research and case studies have been 

carried out to explore the dynamics of maintenance 

strategies within production plants with the view to 

reduce overall plant operation cost and increase 

uptime (Jabar, 2003). Work conducted by Chumai 

(2009) included a SD model of plant maintenance 

systems to simulate plant maintenance behaviour. 

The results suggest that industrial plants should 

reduce preventive maintenance practice in a move 

towards predictive maintenance to achieve plant 

uptime and keeping maintenance costs to a 

minimum. The SD model presented could only 

provide a relative magnitude and direction of system 

outputs with input data based on a generic plant 

maintenance system with output data not necessarily 

representative of all plants (Chumai, 2009). 

 

A dynamic model for estimating the added value of 

maintenance services was developed using SD 

techniques for a production plant (Jokinen, Ylén , & 

Pyötsiä, 2011). It included modelling various 

maintenance systems to facilitate the service 

provider’s understanding of its customer’s business 

as a communication tool  and of the added value of 

services in the hope that it would enhance value 

propositions. The SD modelling served its initial 

purpose of providing visualisation of the intricacies 

of the maintenance system behaviour as a means to 

identify robust policies and isolate critical areas 

within the system. However, accurate estimations of 

the value was seen as unreliable due to uncertainty 

in the input data. 

 

SD was also applied to evaluate fleet and 

maintenance strategies in a bus company (Bivona & 

Montemaggiore, 2005). The objective was to 

demonstrate how SD could be used to support key 

decision makers in designing and evaluating their 

maintenance strategies with reflection on their 

company performance. Results showed that 

predictive maintenance would benefit over 

scheduled maintenance in terms of optimisation of 

maintenance personnel and reducing equipment 

downtime (Bivona et al. 2005).  

 

 

 

1.3 Aims & Objectives 

 

The  purpose of this paper is to demonstrate the 

benefits of PHM to aircraft maintenance by using 

SD techniques with emphasis on highlighting 

causality between two maintenance strategies: 

 

1. Traditional approach driven by scheduled 

and reactive maintenance; 

 

2. Condition Based Maintenance (CBM) by 

considering PHM functionality in 

maintenance practice. 

 

It is intended to provide a wide-ranging  

understanding of the interconnectedness of the sub-

system elements of the two maintenance policies. 

 

PHM within the aerospace industry strives to 

increase equipment availability, optimise cross-fleet 

maintenance, reduce Direct Maintenance Costs 

(DMC), and reduce costs associated with 

unscheduled maintenance through enhanced 

understanding of system behaviour (Jennions, 

2012). The emphasis of the paper is to  illustrate such 

benefits through rigorous SD modelling by 

exploring PHM sensitivity and to test its efficiency 

for aircraft maintenance returns. It also illustrates 

any emergent characteristics from evaluating the 

effectiveness of PHM  economically with various 

failure patterns and nonlinear properties explored.  

 

Electromechanical Actuators (EMA) are becoming 

prominent safety critical applications in next 

generation fly-by-wire aircraft (Balaban, Saxena, 

Narasimhan, Roychoudhury, & Goebel, 2011). 

Therefore, focus on aircraft maintenance at a 

component level with an EMA for a flight control 

system is given. The emphasis and the model was 

based in the context of a medium sized airline 

consisting of 25 aircraft over a general overhaul 

period of 8 years (D- Check).  

 

The EMA that was used for this study was a linear 

ballscrew EMA that provides incremental linear 

motion powered by a motor. 

 
 

Figure 3. Linear EMA System (Bodden et al. 2007). 
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Figure 3 shows a baseline schematic of the system 

to be used consisting of a single actuator assembly 

driven by a brushless DC motor via a single stage 

gearbox with the motor mating with a single pinion 

in the ballscrew assembly (Bodden, Clements, 

Schley, & Jenney, 2007).  

 

The analysis presented is not necessarily intertwined 

with other aircraft systems and it is understood that 

the impacts of other critical components on aircraft 

availability have been neglected for the purpose of 

this study. 

 

2. METHODOLOGY 

 

The methodology consists of a series of procedures 

and equations to develop the finalised SD model. 

This includes Causal Loop Diagram (CLD) 

modelling to provide the initial visualisation of the 

maintenance strategies by modelling the key 

attributes and parameters through a Stock and Flow 

model. 

 

CLDs represent a simplistic map of the system being 

modelled encompassing all the system elements and 

interactions. CLDs also capture any feedback loops 

to enable better understanding of the system 

structure. Thus one can gauge the system behaviour 

in a dynamic setting. Each system element is given 

a positive or negative causal link. For a pair of 

connected nodes, a positive causal link means they 

are changing in the same direction and a negative 

causal link means they change in opposite 

directions. Feedback loops consist of either 

Reinforcing (+) or Balancing (-) loops. Reinforcing 

loops are often associated with exponential increases 

or decreases whereas Balancing loops infer a 

plateauing effect.   

 

The Stock and Flow diagram provides a more 

detailed impression of the CLD allowing the user to 

analyse the system in a more quantitative manner. A 

‘Stock’ depicts any entity in the system can accrue 

or lessen over time and a ‘Flow’ is the rate of change 

of a Stock. 

 

2.1 Causal Loop Diagrams 

 

Two CLDs were constructed using the software 

‘Vensim’. The first CLD presented in Figure 4 

provides an intitial visualisation of the processes 

involved in the traditional maintenance approach 

driven by scheduled & reactive maintenance for an 

EMA in a commercial aircraft. 

 

 
Figure 4. Scheduled & Reactive Maintenance processes 

CLD. 

A ‘Uses Tree’ is a good way to illustrate the 

causalities in a more comprehendible format as 

shown in Figure 5.  

 

 

 

 

 

 

 
Figure 5. Scheduled & Reactive Maintenance Uses Tree. 

The traditional maintenance process is simplified 

through the Uses Tree to show the in-service 

component to be subjected to Scheduled 

maintenance at a defined period with failures 

occuring sporadically. 

 

Five feedback loops were identified in the CLD 

presented in Figure 5 with the nature of the feedback 

and behaviour described in Table 1.  

 
Table 1. Feedback Loops for Scheduled & Reactive 

Maintenance CLD. 

Loop Inference 

1:In-service EMA 

→Scheduled 

Maintenance→EMA 

OK→In-service 

EMA 

This is a ‘balancing’ 

feedback loop where the 

behavioural pattern of the 

loop suggests a temporary  

null in operation due to the 

EMA experiencing 

downtime due to mandatory 

maintenance. 

2:In-service 

EMA→Scheduled 

This is a ‘reinforcing’ 

feedback loop due to the 
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Loop Inference 

Maintenance 

→Degradation→ 

Remedial 

Action→EMA 

OK→In-service 

EMA 

gradual wear that occurs 

within the EMA. 

3:In-service EMA 

→Scheduled 

Maintenance→ 

Reduced 

Performance→ 

Corrective 

Maintenance→ 

Remedial Action→ 

EMA OK→In-

service EMA 

This is a ‘reinforcing’ 

feedback loop like loop 2 due 

to the attributes associated to 

gradual wear within the 

EMA.   

4:In-service 

EMA→Abrupt 

Failure→Corrective 

Maintenance→ 

Remedial Action 

→EMA OK→In-

service EMA 

This is a ‘balancing’ 

feedback loop as abrupt 

failures would lead to 

reactive maintenance due to 

more severe degradation 

trends within the EMA 

system. 

5:In-service 

EMA→Scheduled 

Maintenance→Degra

dation→Remedial 

Action→Unrepairabl

e→New 

EMA→EMA OK 

This feedback requires the 

need for EMA replacement 

as a result of the workshop 

deeming the component 

unrepairable. It was 

envisaged that the majority 

of these outcomes would 

arise from abrupt failures and 

so this was a deemed a 

‘reinforcing’ loop. 

 

The same process was followed for modelling the 

CBM approach with PHM associated processes 

added in – the corresponding CLD is shown in 

Figure 6.  

 
Figure 6. CBM processes CLD. 

The additional steps relating to PHM processes were 

added in to the CLD with State of Health (SoH) 

assessment a governing feature to aid maintenance 

personnel at a workshop to get a better 

understanding of component health.  

 

As shown in the Uses Tree in Figure 7, the SoH is a 

sequential step as it is something intended to be 

performed offline (at a frequent interval) and 

becomes a dominant feature within CBM. 

 

 
Figure 7. CBM Uses Tree. 

There were considerably more feedback loops in the 

CLD model with PHM processes added in. the 

feedback loops were broken down into 3 groups as 

shown in Tables 2-4. 

 
Table 2. Feedback Loops for SoH assessment within 

CBM-CLD. 

Loop Inference 

1:In-service 

EMA→SoH 

Assessment→RUL→

Within Limits→EMA 

OK 

This is a ‘reinforcing’ 

feedback loop due to the 

principal nature in which 

the SoH assessment is 

performed at a frequent 

interval as a mandated 

process in which there is 

no disruption or reduction 

in aircraft availability. 

2:In-service 

EMA→SoH 

Assessment→RUL→

Nearing RUL 

Limit→Remedial 

Action→EMA OK 

This is a ‘balancing’ 

feedback loop due to the 

SoH assessment bringing 

about need for remedial 

action and therefore 

prompting the aircraft to 

go out of service 

momentarily. 

3:In-service 

EMA→SoH 

Assessment→RUL→E

oL (End of Life)→ 

New EMA 

This feedback loop is 

similar to Loop 2 in that 

this has a ‘balancing’ 

feedback loop where the 

EMA has reached the end 

of its useful life and 

therefore a replacement is 

prompted. 

4:In-service 

EMA→SoH 

Assessment→Nearing 

RUL 

limit→Unrepairable→

New EMA 

This is a ‘balancing’ 

feedback loop attributed 

from the aircraft 

experiencing downtime 

due to EMA replacement. 
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Table 3. Feedback Loops for Abrupt failures within 

CBM-CLD. 

Loop Inference 

5:In-service 

EMA→Abrupt 

Failure→SoH 

Assessment→RUL→E

oL→Remedial 

Action→New EMA 

This was deemed to be a 

‘reinforcing’ feedback 

loop due to the equipment 

being forced out of 

service prior to the SoH 

check thus subsequently 

leading to a replacement. 

6:In-service 

EMA→Abrupt 

Failure→SoH 

Assessment→RUL→ 

Within Limits→LG 

EMA OK 

This is a ‘balancing’ 

feedback loop because 

the abrupt failure may not 

be applicable to the EMA 

itself and therefore there 

is no resulting effect on 

parts inventory with the 

EMA showing 

satisfactory health. 

7:In-service 

EMA→Abrupt 

Failure→SoH 

Assessment→RUL→

Nearing RUL 

Limit→Remedial 

Action→EMA OK 

This process is similar to 

loop 6 however there is a 

need for prolonged 

downtime with the EMA 

deemed repairable and 

this was deemed to be a 

‘balancing’ feedback 

loop. 

 

This is the same for loop 

8 where the EMA is 

declared unrepairable 

following remedial 

action. 
 

Table 4. Feedback Loops for Scheduled Maintenance 

within CBM-CLD. 

Loop Inference 

9:In-service 

EMA→Scheduled 

Maintenance→Degrad

ation→SoH 

Assessment→RUL→ 

EoL→New EMA 

This is a ‘balancing’ 

feedback loop due to the 

planned downtime for 

Scheduled Maintenance 

with poor health reading 

giving rise to EMA 

replacement. 

 

The same applies for 

loops 11 & 12 where the 

outcome of SoH check 

lead to remedial action 

and possible replacement. 

10:In-service 

EMA→Scheduled 

Maintenance→Degrad

ation→SoH 

Assessment→RUL→

Within Limits→EMA 

OK 

This is a ‘reinforcing’ 

feedback loop because 

the EMA is deemed to be 

in satisfactory condition 

for continued service. 

This is assumed to be the 

majority case scenario.  

 

Further learning can be achieved from CLDs where 

the broadness of the system can be broken down and 

therefore one can begin to quantify the system in a 

more tangible representation by using a Stock & 

Flow diagram.   

 

2.2 Stock & Flow Diagram 

 

The CLDs presented provides an initial overview of 

the system with the top level processes involved in 

maintenance and such a technique enabled the 

identification of any feedback and key attributes to 

take forward to build a detailed sub-system model 

through Stock & Flow diagrams.  

 

Many sub-systems can be developed from the CLDs 

and for the purpose of this research the objective was 

to build a Stock & Flow diagram of a sub-system 

evaluating  EMA maintenance and availability. The 

intention was to exemplify the effect of PHM on 

corrective maintenance and how advanced 

prediction in the onset of a degrading failure can 

reduce the rate of failure and unscheduled removals 

and thus boost availability. 

 

Prior to modelling the Stock & Flow diagram of the 

sub-system, it was necessary to define the stocks 

(state variables) and flows (state changes)  necessary 

to model the sub-system.  

 
Table 5. State Variables. 

Stocks Definition 

Working EMAs EMAs that are fully operable 

and functioning for safe 

intended purpose. 

Degrading 

EMAs 

EMAs that are starting to 

lose efficiency as a result of 

mechanical wear. 

Working EMAs 

to undergo CBM 

EMAs that are subject to 

PHM. 

Degrading 

EMAs to 

undergo CBM 

Queue for EMAs to undergo 

CBM.  

EMAs under 

Scheduled 

Maintenance 

All EMAs are subject to 

system level periodic checks. 

Failed EMAs EMAs that have failed to 

operate at design operating 

conditions.  

EMAs failed 

prematurely 

EMAs that have failed 

before MTBF. 

EMAs under 

remedial action 

Failed EMAs at workshop 

for repair. 

Direct 

Maintenance 

Costs 

Incurred costs as a result of 

scheduled or unscheduled 

maintenance activities. 
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Table 6. State Changes. 

Flows Definition 

Failure Rate The frequency at which the 

EMA fails. 

Premature 

Failure Rate 

The frequency at which the 

EMA fails before the MTBF. 

Failure Rate 

(following 

CBM) 

The frequency at which the 

EMA fails post-CBM. 

Repair Rate The frequency at which 

remedial action is conducted 

by workshop engineers. 

False PHM Rate The frequency at which False 

Positives/Negatives occur. 

Rate of Detected 

Failures 

The frequency at which 

failures are detected through 

CBM. 

CBM Work Rate The frequency at which PHM 

is performed. 

 

 

 

 

 

 

Based on these Stock & Flow attributes and system 

level information from the earlier CLD modelling a 

Stock & Flow diagram was constructed and is 

presented in Figure 8.  

 

From Figure 8, there are many parameterised 

attributes that impact each stock and flow, which 

demonstrates causality and therefore adds 

granularity to the model.  

 

EMA ballscrew actuator failures are most often  a 

result of gradual degradation of the ballscrew 

surface through metal to metal contact of the re-

circulating balls to the hardened metal surface of the 

ball screw shaft (Jin, Chen, & Lee, 2013). Therefore 

the ‘Rate of Wear’ component was initially 

modelled to reflect a gradual degradation of the 

EMA in terms of its MTBF as shown in Figure 9.  

 

 

Figure 8. Stock and Flow Diagram of EMA 

Maintenance Sub-system. 
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Figure 9. Probability of Failure under Gradual 

Degradation. 

Subsequent simulation sensitivity studies were 

conducted to further demonstrate the effect of more 

severe failures as a means to examine the effect on 

EMA availability and the resulting number of 

failures over the overhaul period.  

 

3. RESULTS AND DISCUSSION 

 

This section presents the results of the simulation 

studies following the methodology described in 

Section 2 to demonstrate the usability of the Stock 

& Flow diagram in Figure 8. The analysis was based 

on two metrics: EMA availability (total number of 

EMAs deemed to be in an operable state at the 

beginning of a flight at any point of time during the 

maintenance overhaul period), for the two 

maintenance policies modelled. Additionally, 

sensitivity studies explored the effects of efficiency 

of PHM reporting and of differing types of 

component degradation. The impacts on DMC were 

also explored with a view to demonstrate the 

effectiveness of CBM as a function of PHM 

efficiency by considering DMC accumulation 

through EMA life. The SD analysis conducted are 

based on a continuous simulation of discrete events 

as is the case for most SD simulations (Tako & 

Robinson, 2008).  

 

3.1 EMA Availability 

 

The first simulation, shown in Figure 10, was based 

on the traditional maintenance approach of 

scheduled and reactive maintenance.  

 

 
 

Figure 10. EMA Availability through Maintenance 

overhaul period with no CBM. 

The simulation response of Figure 10 shows two 

distinct regions. The region labelled ‘1’ displays 

decaying oscilations and is an artifact of the 

simulation start-up and thus can be ignored. The 

region labelled ‘2’  displays an oscilation at the 

scheduled maintenance interval that grows over 

time. This is congruent with the observation that 

over time the rate of component failure increases 

hence more failures are detected at each inspection. 
 

The next step was to introduce the effect of CBM by 

tuning in the frequency of PHM into the existing 

maintenance schedule. The PHM schedule was 

adjusted through ‘the CBM Work Rate’ parameter 

to analyse the effects on availability and downtime 

with PHM occuring for every aircraft at the 

following intervals: 

 

- At the end of every Week; 

- At the end of every Day; 

- At the end of every Flight Cycle (FC). 

 

The mean values of In Service EMAs over the entire 

maintenance overhaul period was also calculated for 

varying PHM frequencies and also other failure 

distributions as presented later in this section.   

 

1 

2 
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Figure 11. EMA availability with varying frequencies of 

CBM. 

 

Figure 12. In Service EMAs Mean Availability for 

varying CBM frequencies over the entire overhaul 

period. 

Figure 11 indicates that as CBM becomes more 

frequent within the CBM schedule the mean 

availability number of  In Service EMAs over the 

maintenance overhaul period increased as shown in 

Figure 12. There is also a higher degree of stability 

when CBM is conducted on a daily basis and at the 

end of every FC with the reduced transient 

behaviour. This can be attributed to the more 

continuous health monitoring in place where the 

constant steady state responses are indicative of the 

reduced reactive maintenance events and therefore 

increased uptime. This would enable maintenance 

engineers to monitor the SoH offline without 

operational interrupts. Any impending failure dealt 

with in advance would enable better optimisation to 

schedule in component replacement effectively.  

 

 

 

3.2 Degradation Sensitivity 

 

The analysis considered only gradual failures up 

until this point. It is more challenging for aircraft 

operations and maintenance teams using CBM when 

the component degrades at a faster rate (Li, Wang, 

Liu, & Bu, 2014). This was tested to demonstrate the 

effectiveness of PHM  in such situations by 

adjusting the ‘Rate of Wear’ setting in the Stock & 

Flow diagram.  

 

The component degradation in Figure 9 was 

modelled through Weibull Probability Density 

Function (PDF).  

 

𝑓(𝑥, 𝛼, 𝛽) = 1 − 𝑒−(𝑥/𝛽)^𝛼                    (1) 

 

The sensitivity study for degradation involved 

varying the function arguments for the Weibull PDF 

to reflect more severe failure distributions. 

 

Where x  is the value at a point of time in the MTBF 

curve, α is the shape parameter and β is the scale 

paramater to the distribution. α & β were adjusted to 

reflect different failure distributions, these are 

presented in Figure 13.  

 

 
 

Figure 13. Weibull curves for various EMA failure 

distributions. 

The β parameter was increased to indicate failures of 

an abrupt nature at the early stage of the EMA life. 

These failures could arise from actuator 

misalignment leading to mechanical seizure of the 

ballscrew assembly (Balaban, et al., 2015). The α 

parameter was increased to indicate gradual 

degradation initially but then exhibit sharper 

degradation towards the end of the EMA life. Such 

failures can often be attributed to abrupt seizures in 

the bearings or the screw shaft from a build up of 

debris or loss of lubrication (Balaban et al. 2015).  
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Each of these failure distributions were tested in the 

Stock & Flow diagram with CBM implemented at 

the end of every FC.   

 

 
 

Figure 14. EMA availability for more abrupt failure 

distributions. 

Figure 14 indicates the increasingly variable EMA 

availability with more early stage failures of the 

ballscrew. The transient response of the simulation 

becomes more apparent and remains prevalent 

throughout whole overhaul period with reducing β 

values. The reducing amplitude of these responses 

never reach steady state equilibrium and is 

indicative of the CBM striving to cope with the 

demands of component uptime in the face of a high 

frequency of early stage EMA failures. 

 

Figure 15: In Service EMAs Mean Availability for 

varying failure severities (β values) over the entire 

overhaul period. 

Figure 15 illustrates that EMAs failing more 

abruptly results in there being significantly less 

mean availability throughout the whole maintenance 

overhaul period.  

 

Figure 16. EMA availability for gradual failure 

distributions leading to abrupt failures. 

Figure 16 shows the tendency of the EMA 

availability to become sporadic over the duration of 

the overhaul period with increasing α values. This 

can be attributed to the sporadic health pattern of the 

EMA where initially it exhibits gradual degradation 

however a sudden failure leads to component 

downtime. Therefore, the mean in service EMAs 

remains relatively constant with PHM functionality 

enabling maintenance teams to plan in reactive 

maintenance when sharp degradations begin to 

manifest themselves. 

 

Figure 17. In Service EMAs Mean Availability for 

varying failure severities (α values) over the entire 

overhaul period. 

As can be seen from Figure 17, the mean availability 

of in service EMAs reduces with increasing α values 

over the whole maintenance overhaul period. 
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3.3 Cost Effectiveness of PHM 

 

An emerging feature of the analysis was the increase 

in ‘False Positives/Negatives’ readings as a result of 

the PHM functionality. This is a common issue 

encountered when considering the economics of 

CBM through PHM (Feldman, et al., 2010).   

 

Additional studies were conducted to demonstrate 

the effectiveness of CBM as a function of PHM 

efficiency by considering DMC accumulation 

through EMA life where minimal costs would be 

incurred at the early detection of the onset of a 

failure through PHM. 

 

This was conducted using the Stock & Flow diagram 

(as was presented in Figure 8) with the following 

inputs:  

 

MTBF = ~18000 FH (Weiss, 2014) 

Operational Interrupt cost = £3360.00/FH (Airlines 

for America, 2014) 

DMC = £586.00 (IATA, 2011) 

Spares cost = £5500.00 (Exlar, 2016) 

 

Figure 18 illustrates the trend in which DMCs are 

accumulated through incremental PHM intervals 

(time to detect fault as a percentage of overall EMA 

life) from which it was ascertained that if PHM were 

to identify the onset of a failure at an early stage 

minimal DMCs would be incurred. An exponential 

rise in DMCs follows as failure detection occurs 

towards the end of component life. This can be 

attributed to the degradation becoming more 

prevalent over time and therefore it costs much more 

to repair. 

 

 
Figure 18. Direct Maintenance Costs for CBM at the end 

of each FC. 

Using the data from DMC accumulation over PHM 

prediction intervals, the overall savings were 

deduced and they enabled the calculation of where 

the PHM predictions would start to incur a loss.  

 

 
Figure 19. Savings per Flight hour for CBM. 

Figure 19 shows that early replacement detectable 

through PHM starts to become no longer cost 

beneficial if more than 85% of the EMA life has 

been used.  

 

4. CONCLUSIONS 

 

Two maintenance policies have been modelled and 

analysed through SD as a means to demonstrate the 

potential qualitative and quantitative benefits to 

aircraft maintenance teams using CBM.  

 

The analysis initially considered the EMA to 

deteriorate gradually over a maintenance overhaul 

period of 8 years, which would result in a surge in 

reactive maintenance near the end of the overhaul 

period. CBM was added into the model to improve 

availability of the EMAs and to bring stability to the 

maintenance planning as the frequency of the PHM 

was increased.  

 

The study also explored the effects on EMA 

availability as a result of varying failure patterns. 

This included introducing more severe failure 

distributions, which resulted in more unscheduled 

removals and an increased need for reactive 

maintenance due to these abrupt failures. The 

increased frequency in PHM also resulted in a higher 

number of ‘False Positives/Negatives’ which 

prompted a further study to demonstrate the PHM 

performance in terms of cost effectiveness. It was 

established that PHM becomes no longer ‘cost 

beneficial’ to maintenance when over 85% of the 

EMA life has been used. 

 

The analysis was modelled using failure 

distributions based on literature featuring test stand 

degradation of ballscrew actuators. These were used 

to map specific failure patterns to test PHM 

functionality within the SD model. It is envisaged 

that such work should be extended to consider real 

failure distribution data on ballscrews undergoing 

wear to factor in other non-linear effects. 
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