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ABSTRACT 

Tidal power is an emerging field of renewable energy, 

harnessing the power of regular and predictable tidal currents. 

However, maintenance of submerged equipment is a major 

challenge. Routine visual inspections of equipment must be 

performed onshore, requiring the costly removal of turbines 

from the sea bed and resulting in long periods of downtime. 

The development of condition monitoring techniques 

providing automated fault detection can therefore be 

extremely beneficial to this industry, reducing the 

dependency on inspections and allowing maintenance to be 

planned efficiently. 

This paper investigates the use of deep learning approaches 

for fault detection within a tidal turbine’s generator from 

vibration data. Training and testing data were recorded over 

two deployment periods of operation from an accelerometer 

sensor placed within the nacelle of the turbine, representing 

ideal and faulty responses over a range of operating 

conditions. The paper evaluates a deep learning approach 

through a stacked autoencoder network in comparison to 

feature-based classification methods, where features have 

been extracted over varying rotation speeds through the 

Vold-Kalman filter. 

1. INTRODUCTION 

Traditional methods of fault diagnostics for rotating 

machinery typically involve a feature extraction stage, where 

signal processing techniques are used to extract 

representations of raw data more meaningful of specific 

faults or failure modes. This usually involves implementing 

a series of signal processing techniques to identify or isolate 

specific features of the raw data, followed by a classification 

stage to distinguish healthy data from faulty responses, figure 

1. 

 

Figure 1. Generic high-level feature-based diagnostics 

process 

To date, many feature extraction techniques have been 

studied for calculating features most representative of faults 

within vibration data, including various time domain and 

frequency domain methods to detect both stationary and non-

stationary fault signatures. A detailed review of different fault 

diagnostics techniques for condition monitoring and 

preventative maintenance using audio and vibration signals is 

provided by Henríquez, Alonso, Ferrer and Travieso (2014). 

However, recent advances in the field of machine learning 

have led to implementation of ‘deep learning’ approaches, 

where feature engineering can replaced by unsupervised 

learning through neural network architectures (Schmidhuber, 

2015). 

The aim of this paper is to explore the use of deep learning 

applied for diagnosing a generator fault within a tidal turbine 

through vibration data. A deep neural network, consisting of 

stacked sparse autoencoders and a softmax classifier, is used 
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to learn features from vibration data and perform diagnosis 

through classification. This deep learning approach is 

compared to a feature-based method, where features linked 

to specific failure modes are extracted from vibration data 

using the Vold-Kalman filter and classified using decision 

trees, support vector machines and K-nearest neighbours. 

The paper finds that deep learning through a network of 

stacked sparse autoencoders can offer improved diagnostic 

performance in comparison to feature-based methods. This 

method can be particularly useful for applications in which 

there is limited operational data (e.g. rotation speed 

measurement) or for applications where fault dynamics are 

not well enough understood for engineering appropriate 

features. 

2. TIDAL TURBINE DATA 

Data available for this study was provided by Andritz Hydro 

Hammerfest, a manufacturer of tidal turbines. Condition data 

was sourced from the HS1000, a prototype commercial scale 

1 MW tidal turbine in operation off the coast of Orkney, 

Scotland at a tidal array test site as part of the European 

Marine Energy Centre (EMEC). 

The HS1000 turbine has an open-bladed horizontal axis 

design and is fixed in position to the seabed, as shown in 

figure 2. Three blades drive a 1 MW rated induction generator 

through a gearbox, converting tidal flow rates to generator 

rotation speeds exceeding 1000 RPM. 

 

Figure 2. Andritz Hydro Hammerfest HS1000 Tidal Turbine 

2.1. Accelerometer Data 

Vibrations were recorded through a tri-axial accelerometer 

sensor fixed to the nacelle of the turbine, adjacent to the 

generator and sampled at 2 kHz. Available datasets detailed 

a number of vibration measurements over two separate 

deployments of the turbine. Measurements were taken during 

a range of different operating and weather conditions, where 

the turbine experienced constantly variable loading and 

rotation speed due to changing tidal flow rates and 

turbulence. 

Variation in rotor speed can make frequency-based analysis 

of vibration signals challenging, where frequency 

components relating to rotations of equipment vary in time. 

Order analysis techniques are often used to compensate for 

variations in rotor speed through techniques such as 

computed resampling or the Vold-Kalman filter (Wang & 

Heyns, 2011). 

2.2. Generator Fault Case 

During the turbine’s second deployment, the turbine 

displayed a change in response causing increased vibrations 

within the turbine’s generator. This can be observed in figure 

3 showing the average spectrum of vibration data for each 

deployment. Computed resampling (Wang & Heynes, 2011) 

has been used to normalize the frequency spectrum to 

represent rotational orders of the high speed shaft (HSS). 

A clear increase in vibration from the generator’s poles can 

be observed at the 6th order of the HSS. High vibrations were 

also identified at 100 Hz (a harmonic of the line frequency) 

and at harmonics of the generator rotation frequency within 

the turbine at different loads. The turbine is currently 

awaiting decommissioning following the completion of its 

testing program. 

 
(a) 

 
(b) 

Figure 3. Average frequency response of (a) healthy tidal 

turbine and (b) generator fault 
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3. METHODOLOGY 

This paper aims to compare the performance of feature-based 

classification to deep learning for the diagnosis of a generator 

fault within a tidal turbine. 

Vibration features were extracted through the Vold-Kalman 

filter, isolating a set of specific frequency components during 

variable rotor speeds. This feature set was then used to train 

a number of classification techniques including decision 

trees, support vector machines and k-nearest neighbors. 

These results were used as a benchmark for the deep learning 

approach. 

Deep learning was performed through a deep neural network, 

consisting of layers of sparse autoencoders and a softmax 

classifier. Sparse autoencoders learned features from 

spectrograms of raw vibration data and were used to train a 

connected softmax classifier layer. The classification 

performance was then improved by retraining the network as 

a whole through a process known as ‘fine-tuning’. These 

steps are described in greater detail below. 

3.1. Feature-Based Classification 

Vibration components characteristic of generator faults were 

extracted from vibration data through the Vold-Kalman filter. 

A feature-set containing the root mean square (RMS) of 

select frequency components was then used to train a number 

of classifiers including support vector machine (SVM), 

decision trees and k-nearest neighbours. Each classifier was 

trained to classify healthy and faulty behaviour of the 

generator. 

Generator faults produce excess vibration at harmonics of the 

generator rotation speed, caused by unevenly distributed 

electromagnetic forces or mechanical wear (Scheffer & 

Girdhar, 2004). These fault signals are generally stationary 

under steady operating conditions, where the distribution of 

the signal does not change over time. This differs from non-

stationary fault signals, generally observed from faults within 

rotating components such as gearboxes or bearings causing 

periodic impacts, where the distribution of signals change 

over time. 

The Vold-Kalman filter is a suitable feature extraction 

method for this fault case as it is able to isolate multiple 

components from a vibration signal who’s fundamental 

frequencies change because of variable rotation speed, but are 

otherwise stationary signals. 

3.1.1. Vold-Kalman Filter 

The Vold-Kalman filter acts as a moving band-pass filter, set 

to track sine waves with high slew rates (Vold & Leuridan, 

1995). This was used as a form of order tracking, extracting 

features from raw vibration data recorded during high 

variation in rotor speed. 

Given an RPM measurement and an order to be extracted, 

this technique consists of solving a set of linear least squares 

equations known as the structural and data equations (Vold 

& Leuridan, 1995). A second generation Vold-Kalman filter 

(Tume, 2005) was implemented in MATLAB, using an 

implementation by van der Seijs (2012). 

The following components were taken as features for 

vibrations over each axis, detailing vibrations associated with 

generator faults (Scheffer & Girdhar, 2004): 

 Generator shaft rotation frequency and 1st harmonic 

 Generator poles vibration frequency and 1st harmonic 

 Line frequency 1st harmonic (100 Hz) 

The root mean square (RMS) values of each extracted 

frequency component were then used as features for 

classification, calculated as in Eq. (1) where 𝑥𝑖  is the 

amplitude of a frequency component over window length 𝑁. 

 𝑥𝑟𝑚𝑠 = √
1

𝑁
∑ 𝑥𝑖

2

𝑁

𝑖=1

 (1) 

3.1.2. Classification Techniques 

A number of classification techniques were compared to 

build a benchmark for feature-based diagnostics. These 

techniques included the support vector machine (SVM), 

decision tree and K-nearest neighbours (KNN) 

Support Vector Machine (SVM) 

Support vector machines (SVM) classify data through the 

definition of a hyperplane, separating data points of different 

classes in the feature space. This hyperplane is defined to 

maximize the distance between the hyperplane and the 

nearest data point (the margin), giving optimum separation 

between classes. Support vectors are data points closest to the 

hyperplane and define the boundaries between classes, figure 

4. A detailed explanation of support vector machines is 

provided by Cortes and Vapnik (1995). 

 
Figure 4. Support Vector Machine classification 
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Support vector machines are natively linear, but can be made 

non-linear through the ‘kernel trick’: representing input data 

in a higher dimensional space through a kernel function 

(Shawe-Taylor & Cristianini, 2004). In this study, three 

forms of SVM classifier were used: linear, quadratic, and 

cubic. 

Decision Tree 

A decision tree is a structure containing a set of decision rules 

that predict a set of outcomes (or class values for 

classification) from input data (Rivest, 1987). Decision trees 

consist of nodes representing a series of decisions and 

outcomes for input data. Internal nodes have ‘branches’ 

leading to subsequent nodes, performing decisions on the 

input data. ‘Leaves’ are nodes with no further decision 

branches and represent the most appropriate class for the 

input data leading to that point. Figure 5 represents a simple 

decision tree for input data 𝑥𝑖 with targets 𝑦. 

 
Figure 5. Decision Tree classification 

k-Nearest Neighbors 

The k-nearest neighbors method performs classification by 

measuring the distance between test data and training data. A 

class is assigned to test data by selecting the majority class of 

the 𝑘 training data points closest to the test data (Altman, 

1992). 

The Euclidean distance metric was used to find the 𝑘 closest 

data points, Eq. (2), where 𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑛)  and 𝑞 =
(𝑞1, 𝑞2, … , 𝑞𝑛)  are Cartesian coordinates of features in 𝑛 -

dimenional space. 

 d(𝐩, 𝐪) = √∑(𝑞𝑖 − 𝑝𝑖)2

𝑛

𝑖=1

 (2) 

3.2. Deep Learning through Sparse Autoencoders 

Deep learning is a form of machine learning where multi-

layered architectures are used to autonomously learn features 

and classify data, replacing feature extraction. These 

architectures are commonly based upon neural networks 

through techniques such as autoencoders, deep neural 

networks, deep belief networks and convolutional neural 

networks (Schmidhuber, 2015). 

Deep learning has currently been applied to various condition 

monitoring and machinery diagnostic applications, for 

example: 

 Sparse coding to extract features for bearing fault 

detection (Liu, Liu & Huang, 2011)   

 Stacked autoencoders to detect valve and bearing faults 

from acoustic data (Verma, Gupta, Sharma & Sevakula, 

2013) 

 Deep neural networks for diagnosing partial discharge 

data in high voltage assets (Catterson & Sheng, 2015)  

 Deep neural networks for diagnosing bearing and 

planetary gearbox faults (Jia, Lei, Lin, Zhou & Lu, 2016)  

 Stacked autoencoders for fault diagnosis of bearings 

based on the wavelet transform (Junbo, Weining, 

Junfeng & Xueqian, 2015) 

 Sparse coding to learn the response of bearing failure 

(Martin del Campo & Sandin, 2015) 

 Stacked autoencoders with support vector regression for 

health state estimation in fuel cell systems (Qiao & Xun, 

2015) 

In this paper, deep learning is performed though a network of 

stacked autoencoders, where sparse autoencoder layers learn 

features from vibration data and are stacked on top of a 

softmax classification layer. The network was trained on 

spectrograms generated from raw vibration data, inspired by 

(Lee, Largman, Pham & Ng, 2009) where spectrogram data 

was used to train a convolutional neural network for speech 

recognition. 

3.2.1. Stacked Autoencoder Deep Neural Networks 

Autoencoders are a form of neural network used for 

unsupervised learning (Vincent, Larochelle, Lajoie, Bengio 

& Manzagol, 2010). Their aim is to replicate an input 𝑥 as its 

output �̂� through a number of hidden neurons (figure 6a). The 

network learns the function ℎ𝑊,𝑏(𝑥) to best approximate the 

input, Eq. (3). 

Each hidden neuron in the autoencoder encodes input data 𝑥 

to 𝑎(1), known as neuron’s activation. This is detailed in Eq. 

(4) where 𝑓 is a transfer function (commonly sigmoid), 𝑊(1) 

is a weight matrix and 𝑏(1) is bias vector. 

This 𝑎(1)  is then decoded in the following layer through 

transfer function 𝑓  and parameters 𝑊(2)  and 𝑏(2)  to best 

estimate the original input vector 𝑥 as in Eq. (5). 

By limiting the number of hidden neurons, the network is 

forced to learn a compressed representation of the input data 

through parameters 𝑊 and 𝑏. Hidden neurons can therefore 

be seen as features that have been learned by the network, 
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representing the structure of input data. This can form 

representations similar to principle component analysis 

(PCA), however it is a non-linear process. 

 ℎ𝑊,𝑏(𝑥) ≈ 𝑥 (3) 

 𝑎(1) = 𝑓(𝑊(1)𝑥 + 𝑏(1)) (4) 

 �̂� = 𝑓(𝑊(2)𝑎(1) + 𝑏(2)) (5) 

A deep neural network can be created through stacking 

multiple autoencoder layers on top of a final classification 

layer. This is shown in figure 6b, where 𝑁 autoencoders are 

connected together before a softmax classification layer. 

Stacking multiple autoencoder layers together allows the 

network to learn higher order features, where each successive 

layer represents additional complexity within the input data. 

3.2.2. Training the Network 

The network is trained using gradient descent, where the aim 

is to minimise a cost function 𝐽(𝑊, 𝑏). This cost function is 

defined as in Eq. (6). The first term is a mean squared error 

term, where 𝐾 is the number of examples/observations, 𝑥(𝑘) 

is the input data at each example/observation, 𝑦(𝑘)  is the 

output data at each example/observation and ℎ𝑊,𝑏  is the 

function performed by each neuron dependent on weight 𝑊 

and bias 𝑏 parameters. 

The second term, Ω𝑤𝑒𝑖𝑔ℎ𝑡𝑠 , is a weight decay term (also 

called L2 regularization) used to improve generalization and 

prevent overfitting. Third term, Ω𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 , is a term to 

encourage more sparse activations of hidden neurons 

(Olshausen & Field, 1997). Parameters 𝜆 and 𝛽 control the 

influence of the weight decay and sparsity terms respectively. 

𝐽(𝑊, 𝑏)

= [
1

𝐾
∑

1

2
‖ℎ𝑊,𝑏(𝑥(𝑘)) − 𝑦(𝑘)‖

2
𝐾

𝑘=1

] + λΩ𝑤𝑒𝑖𝑔ℎ𝑡𝑠 + 𝛽Ωsparsity 
(6) 

Derivatives of the cost function required for the gradient 

descent technique are computed through back propagation. In 

this study this was performed through the scaled conjugate 

gradient algorithm, explained in detail by (Møller, 1993). 

The network is first pre-trained, where each autoencoder 

layer is trained separately (Hinton, Osindero & Teh, 2006). 

The first layer autoencoder is trained on raw input data 𝑥(𝑘) 

to learn feature parameters 𝑊(1)  and 𝑏(1) . Activations 

𝑎(1) are then used as inputs when training the next 

autoencoder layer, learning feature parameters 𝑊(2) and 𝑏(2) 

and activations 𝑎(2) . This is repeated for 𝑁 autoencoder 

layers where the final set of activations 𝑎(𝑁) are used to train 

the softmax classifier with target outputs 𝑦. 

Following pre-training, the network is then ‘fine-tuned’ to 

improve the classification performance (LeCun, Bengio & 

Hinton, 2015). This step allows the network to improve the 

features learned during unsupervised pre-training to 

maximize margins between classification classes. During 

fine-tuning, all layers are trained together through back 

propagation using the same cost function as in Eq. (6). 

4. RESULTS 

In this study, a deep learning approach was compared to a 

feature-based approach for the diagnosis of a tidal turbine 

generator fault. 

The feature-based diagnostic method used a feature set 

consisting of the RMS of select frequency components 

known to indicate generator faults, extracted from vibration 

data using the Vold-Kalman filter. This feature set was then 

used to train classifiers including support vector machine 

                        
(a)       (b) 

Figure 6. Network configurations for (a) a sparse autoencoder and (b) a stacked autoencoder deep neural network 
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(SVM), decision tree and K-nearest neighbours (KNN) to 

detect when the turbine’s generator was operating under 

healthy and faulty conditions. 

Deep learning was then performed through a stacked 

autoencoder network. The network was trained on 

spectrograms generated from raw vibration data and learned 

feature representations of input data through its hidden layers. 

The network’s final layer then used to classify both healthy 

and faulty generator behaviour. 

In each case, the classification accuracy was measured as a 

percentage as in Eq. (7), where 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑠 refers to the 

number of correctly classified test examples and 

𝑁𝑡𝑒𝑠𝑡 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 is the total number of test examples. 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) = (
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑠

𝑁𝑡𝑒𝑠𝑡 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠
) × 100 (7) 

4.1. Feature-based Diagnostics 

The following frequency components were extracted from X, 

Y and Z axis vibration data using the Vold-Kalman filter, 

based on the measured rotation speed of the high speed shaft: 

 Generator shaft rotation frequency and 1st harmonic 

 Generator poles vibration frequency and 1st harmonic 

 Line frequency 1st harmonic (100 Hz) 

These frequency components detailed specific vibration 

components from the turbine’s generator, linked to generator 

faults (Scheffer & Girdhar, 2004). 

A feature set containing the RMS of each frequency 

component over a 1 second window was used as the input to 

each binary classifier. To improve classification accuracy, 

features were scaled using the Z-score standardization 

method (Kreyszig, 1979), Eq. (8) where 𝑥 is feature data, �̅� 

is the mean and 𝜎 is the standard deviation . 

 𝑥′ =
𝑥 − �̅�

𝜎
 (8) 

Feature data from the two deployments were used to train 

binary classification methods capable of identifying this 

particular fault within the generator for automated diagnosis. 

Data from the turbine’s first deployment were used as healthy 

(class 0) and data from the second deployment, during 

periods where excessive vibrations were observed, were used 

as faulty data (class 1). 70% of data was randomly select for 

training models, with the remaining 30% used for testing.  

Table 1 details these results, where a cubic SVM was found 

to give the highest classification accuracy of 96.86%. 

 

 

 

Table 1: Feature-based classification accuracies 

Classification Method 
Testing 

accuracy  

SVM 

Linear SVM 93.01 % 

Quadratic SVM 96.06 % 

Cubic SVM 96.86 % 

Decision Tree 

20 maximum nodes 95.96 % 

50 maximum nodes 96.85 % 

100 maximum nodes 96.39 % 

KNN 

𝑘 = 1 96.42 % 

𝑘 = 10 96.76 % 

𝑘 = 100 95.59 % 

4.2. Stacked Autoencoder Deep Neural Network 

A stacked autoencoder deep neural network was trained using 

spectrograms generated from raw vibration data as inputs. A 

series of autoencoders were first trained in an unsupervised 

fashion to learn features from the spectrogram data. These 

features were then fed into a softmax classifier layer to 

categorise healthy behaviour and a generator fault. The 

network was then retrained through back propagation in a 

process called ‘fine-tuning’ to adjust the features learned to 

improve the classification accuracy. 

4.2.1. Spectrogram Data 

Narrow spectrograms, referred to as spectrogram ‘slices’, 

were used as inputs to the deep neural network. Spectrogram 

slices were generated from raw vibration data through the 

Short Time Fourier Transform (STFT) (Sejdić, Djurović & 

Jiang, 2009). 10 STFTs were performed on vibration data 

every 0.5 seconds with an overlapping window of length 1 

second, figure 7. The frequency scale was truncated to 500 

Hz to reduce dimensionality. Spectrogram slices (10x500 

sized vectors) gave a time-frequency representation of the 

vibration data, allowing the network to potentially learn 

representations of both stationary and non-stationary signals. 

70% of data was randomly select for training the network, 

with the remaining 30% used for testing. 

4.2.2. Classification Results 

Networks were tested with two configurations: a single 

autoencoder layer and two autoencoder layers. Increasing the 

number of autoencoder layers increases the complexity of 

features learned by the network. The number of hidden units 

in each autoencoder layer was also altered, changing the 

number of features learned by each layer. 
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Figure 7. Sampling spectrogram ‘slices’ from raw vibration 

data 

The sparsity proportion parameter 𝛽  and weight decay 

parameter 𝜆 in the cost function, Eq. (6), were set to 0.05 and 

0.001 respectively. 

The autoencoder activation function ℎ, detailed in Eq. (4), 

was chosen as a rectified linear unit, Eq. (9). This function is 

popular for deep networks and tends to lead to sparse 

activation of hidden units (LeCun, et al., 2015). 

 𝑓(𝑥) = max (0, 𝑥) (9) 

Table 2 details the classification accuracies for each network 

configuration, where the network was tested after pre-

training and fine-tuning stages. Results show the deep 

learning approach offers improved classification accuracy 

over a feature-based method of fault diagnosis. 

Classification accuracy after the pre-training stage increased 

as the number of hidden units was increased. This shows that 

learning more features gives a better representation of the 

turbine’s vibration behaviour for both healthy and faulty 

cases. However, accuracy increased to 100% after fine-

tuning for any number of hidden units. This reveals the 

strength of deep learning approaches, as pre-trained features 

can be further optimised to reduce the classification error. 

Increasing the number of autoencoder layers offers no 

significant improvement in classification accuracy and in fact 

appears to reduce the classification accuracy of pre-trained 

features in some cases. 

4.2.3. Feature Visualisation 

Despite the neural network being primarily a ‘black-box’ 

technique, features learned by autoencoder layers can be 

visualised by examining the weights 𝑊 of each hidden unit, 

Eq. (10).  

 𝑥𝑗 =
𝑊𝑖𝑗

(1)

√∑ (𝑊𝑖𝑗
(1)

)
2

𝑁
𝑗=1

 (10) 

Figure 8 displays 𝑥𝑗  for the 5 hidden units in the first 

autoencoder layer with the highest activation for both healthy 

and faulty conditions. Under healthy conditions features 

contain a strong low frequency component, relating to normal 

structural oscillations of the turbine’s nacelle and support 

structure. Given data under faulty conditions the network 

appears to have learned a series of fault signatures, the most 

prominent relating to the generator poles’ vibration at 

different rotation speeds. 

Table 2: Stacked autoencoder network accuracy 

Number of 

autoencoder 

layers 

Number 

of Hidden 

Units 

Pre-

training 

accuracy 

Fine-

tuning 

accuracy 

1 

5 66.77 % 100 % 

10 80.82 % 100 % 

20 96.65 % 100 % 

50 98.05 % 100 % 

100 99.53 % 100 % 

2 

5 67.91 % 100 % 

10 77.24 % 100 % 

30 97.62 % 100 % 

50 97.89 % 100 % 

100 99.93 % 100 % 

 

5. DISCUSSION 

This study has shown deep learning approaches can have a 

number of advantages over feature-based classification 

methods. Firstly, the deep learning method implemented in 

this study has shown a classification accuracy of 100%. This 

is even the case for networks with very few learned features 

after fine-tuning. 

In addition, such high classification accuracy was achieved 

from raw vibration data without supporting data describing 

the operating conditions or loading on the turbine (such as 

rotor speed or tidal flow rates). Visualisation of the weights 

of hidden neurons for faulty data showed that the network 

learned features that were indicative of fault signatures under 

different loading conditions. Little engineering knowledge of 

the system (under both healthy and faulty conditions) is 

required to achieve good diagnostic performance, provided 
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there is access to sufficient data. This may be beneficial for 

new or increasingly complex systems, where the dynamics of 

faults are not well understood, or for applications where the 

specifications and/or loading of machinery are unknown. 

However in comparison to feature-based methods, deep 

learning methods may have shortcomings. For example, 

sufficient labelled data is required for classification and 

diagnosis. In addition, the computational requirements can 

increase dramatically for larger datasets. 

6. CONCLUSION 

In this study, results have shown a deep learning approach 

can improve upon classification accuracy of feature-based 

methods for diagnosing a fault within a tidal turbine’s 

generator from vibration data. 

Feature-based classification methods were tested, extracting 

features from vibration data using the Vold-Kalman filter. 

These features were then used to train SVM, decision tree and 

KNN classifiers. The highest classification accuracy from 

this method was 96.86%, obtained through a cubic SVM. 

A deep neural network of stacked autoencoders was then 

trained with spectrograms constructed from raw vibration 

data, learning the response of the tidal turbine under variable 

loading conditions and identifying a fault within the turbine’s 

generator. The network achieved classification accuracy of 

100%, improving upon the accuracy of feature-based 

methods, without the additional loading data (such as rotor 

speed). 

Future work will involve benchmarking deep learning 

approaches against other common feature extraction methods 

for additional vibration datasets, testing the method’s ability 

to detect faults in other rotating machine components (such 

as gearboxes and bearings), where fault signals may be non-

stationary and more complex. 
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