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ABSTRACT tems. This growing contribution of software creates a need t

. . consider this in the definition of the dependability of teiehn
Redundancy is a common approach to improve system re-

liability, availability and safety in technical systemst ig cal systems. AviZienigt al. gave a definition for the basic

. . . . concepts of secure computing (AviZienis et al., 2004)t tha

achieved by adding functionally equivalent elements that e S .

) . was adapted for self-optimizing systems, which are based on

able the system to remain operational even though one or . 4

. ; . . mechatronic systems (Gausemeier et al., 2014). Self- op-

more of those elements fail. This paper begins with an over:. ".”. : X o

. : . ; timizing systems emphasize the necessity for dependabilit

view on the various terminologies and methods for redun- ; ; . ;

. : concepts including software because of their inherentlinte

dancy concepts that can be modeled sufficiently using es-

tablished reliability analysis methods. However, these apgence. In (Avizienis etal., 2004), dependability for cartep-

proaches yield very complex system models, which limits

their applicability. In current research, Bayesian Networ Reliability
(BNs), especially Dynamic Bayesian Networks (DBNs) have Availability
been successfully used for reliability analysis becauseef Dependability Safety

benefits in modeling complex systems and in representing
multi-state variables. However, these approaches lack ap-
propriate methods to model all commonly used redundancy Maintainability
concepts. To overcome this limitation, three different eled

ing approaches based on BNs and DBNSs are described in this
paper. Addressing those approaches, the benefits and-limita
tions of BNs and DBNs for modeling reliability of redundant based systems is comprised of the following attributes: rel

Integrity

Figure 1. Dependability attributes (Avizienis et al., 200

technical systems are discussed and evaluated. ability, availability, safety, integrity and maintaindity (see
Fig. 1). Based on these attributes, additional definitices a

1. REDUNDANCY IN DEPENDABLE TECHNICAL made to address the threats to dependability (faults,seart

SYSTEMS failures) and means to achieve the attributes (fault priswen

) o - fault tolerance, fault removal, fault forecasting). Insthaper,
There are various definitions for system dependability thap |y attributes with focus on reliability, availability dsafety

differ in focus on certain systems, terminology and scopegre considered. The two remaining, integrity and maintain-
When it comes to dependability of technical systems, the mogypjjity, cannot directly be influenced by adding redundancy
common norms, such as IEC 60050-191 "Dependability and, technical systems and are therefore neglected. Althdegh t
Quality of Service” (International Electrotechnical Comsm  yefinjtion for dependability given by (Avizienis et al., @4)

sion, 1990) in the U.S., VDI 4001-2 "Reliability Terminol- comprises software and aspects of technical systems as well
ogy” (Verein Deutscher Ingenieure, 2006) and VDI 4003 "Re-the given concepts for software redundancy are not consid-
liability Management” (Verein Deutscher Ingenieure, 2P07 greq in this paper, because analysis methods and techniques
in Germany, do not take a strong influence of software on, inyestigate dependability of software differ from medso
dependability into account, as compared to mechatronic sygppjied to technical systems such as mechanical, hydraulic
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original author and source are credited. tainability, available resources for repair and relidhiliAl-
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though safety relies on reliability, a reliable system ismec-  Bayesian approaches based on a comprehensive definition of
essarily a safe system, since safety takes the severityeof thhedundancy concepts.
event into account as well. Even very rare failures of sys- . . . .
tems with high reliability might lead to catastrophic event _The remainder (.)f the paper is organized as follows: Se<_:. 2
e.g. train derailments, plane crashes or nuclear powet plahntroduce_s the dlﬁereqt concepts O.f redundancy. Sec.és-gwl
meltdowns. an overview on _estabhshed analysis methods fqr the réliabi
ity of systems with redundancy. In Sec. 4 Bayesian Networks
When individual elements are built as reliable as technolog (BNs) and Dynamic Bayesian Networks (DBNs) are intro-
permits, but system reliability is still not sufficientlydti, an  duced as reliability models that is used in Sec. 5 to develop
improvement of safety and reliability can only be reached bythree different approaches to model systems with redurydanc
adding redundancy to the system. Redundancy is the exi$h Sec. 6 these approaches are evaluated regarding their ben
tence of more than one element required to successfully pegfits to reliability analysis. The paper ends with a short-con
form a certain function, but it does not imply a simple du- clusion in Sec. 7.
plication of those elements. Since common mode and sys-
tematic failures have to be avoided, all redundant element®. CONCEPTS OF REDUNDANCY
should be designed and manufactured independently ((Sag
2004), (Birolini, 2007)). Redundancy aims to provide pérpe
ual functionality of a system even if elements fail. With fo-
cus on the bare functionality, mechatronic systems offer th
possibility to cover hardware failures by virtual elemeumts
ing analytical redundancye.g. an observer that covers a fail-

ure of a sensor by estimating the measures (Isermann, 200 ‘chniques. The intention of this work is to give an overview

Since all current mechatronic systems inherently featonmees . ;
. . - ondifferent approaches based on BN compared to established

sort of digital processing power, redundancy can be acHieve :

; . ; ..-methods where only fundamental structures are taken into ac
without adding hardware elements to the system. While omit- unt
ted hardware elements could lower cost, the savings shou '
not be outweighed by additional cost for design and imple-Each of the subsequently introduced concepts can be realize
mentation of software-based analytic redundancy. Besdes with a k-out-of-n structure: such systems consistrofunc-
creasing cost, redundancy also increases system conyplexiionally identical elements, of whichelements are necessary
compared to a system without redundant elements. The irte perform the required function. Accordingly;- k£ elements
creasing complexity is likely to make the system more pronere redundant and remain in as spare to cover failures.
to errors and failures. In addition, (Sagan, 2004) namesthr
threats to reliability and safety of systems with redunganc
common mode failuress already discussed abosecial shirk-
ing (individual or groups of users reduce attention to reliabil
ity and safety due to the assumption that someone else wi
take care of problems) anovercompensatiofa safer sys-
tem eventually encourages individual or a group of users t
increase operation of the system in dangerous ways).

%he concepts of redundancy in technical systems investigat

within this work are limited to the basic structureg:out-

of-n in hot, warm and cold redundancies imonrepairable

systems. Among the general concepts of redundancy appear

even more complex representatives, such as bridge stegctur
nd majority redundancy in systems endowed with voting-

In hotredundancy, the redundant, standby elements fully
contribute to operation and are subjected to the same oper-
ating conditions and loads as the operating elements. The
ﬁlements are either treated as statistically independéinth
implies that the load on each element is identical but the-com
(g)lete load is not necessarily equally shared by all actiee el
ments, or dependent, where the load is shared among active
elementslpad sharing. If elements are assumed to be sta-
In order to cope with increasing complexity and to avoid com-tistically dependent, the load on individual active eletsen
mon mode failures in systems with redundancy, advancethcreases with each failure. Thus, the load and in turn degra
modeling techniques are required. Thus, Bayesian Networkdation of active elements increases over operating time for
(BNs) and especially Dynamic Bayesian Networks (DBNs)each failure.

have been successfully used for reliability analysis aes In warm redundancy, the failure rate of standby elements is

the art technical systems in current research (Weber & dpuff assumed to be nonzero. but lower than that of active ele-

2003), (Weber et al,, 2012), (Kaul et al., 2015). These AP ments. If the system with warm redundancy is designed for

?r:g?f;ceksgeii t?afg\r{r?;tfgéjsn?c?g(c:)}\//groggrenpr;soils V::eslé' dbgct) Ef_(')_ad sharing, standby elements are subjected to lower load
bprop y "than active elements until one of the active element fais. |

cepts or making the model increasingly complex, i.e. (Bdiuda systems without load sharing, the standby elements are un-

& Dugan, 2005), (Marquez et al., 2010), (Mahadevan et al. . .
T ) : . loaded, but degrade because of operating and environmental
2001). However, the objective of this paper is to discuss the I : . E ;
. : : conditions or aging. If load sharing is present, the assionpt
use of established modeling methods for systems with re; - .
._for statistically dependent elements arises, whereasadelb

dundancy, i.e. Reliability Block Diagrams (RBDs), Dynamic or aged elements can be interoreted as independent
Fault Trees (DFTs) and Markov Chains (MCs), in contrast to 9 P P '
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Cold redundancy can be seen as idealized warm redundandyhen investigatingold redundancy, there are different ad-

because only active elements are subjected to load and alltional elements taken into account, e.g. ideal/realivife

standby elements are not affected by any load or degraddéFig. 2 right) and measurement elements, in order to decide

tion. Hence, the failure rate of standby elements is assumedhich redundant element is set to operation (Birolini, 2007

to be zero since only active elements are likely to fail aradilo  Those approaches are limited to constant failure rates, be-

sharing is not possible. cause an analytical solution is easily obtained. Congideri

. . the restrictions stated above, RBDs are limited in prakttica

The difference between warm and cold redundancyis notal- ~ .~ R .

: .~ .~ “application, but offer an intuitive introduction to the capt

ways clearly drawn when it comes to real world applications.
S of redundancy.

E.g. the spare tire in a car can be modeled as cold redundancy

since this assumpuon holds for sufficiently low failureest 3.2 Established Methods MC

of unloaded or slightly loaded elements. For a more exact

approach, where degradation or aging of unloaded standbyarkovian approaches investigate reliability and avalitgb

elements should be taken into account, warm redundancy i3f a system as a discrete or continuous time stochastic ggoce

likely to be chosen. in its finite state space. Markov models are supposed to be
memorylessa future state only depends on the present state
3. ANALYSISMETHODS and not on any preceding states in the past (Markov property)

This section gives an overview on established methods foMCs describe a sequence of directed graphs, where depen-
modeling fundamental concepts of redundancy as mentionedencies between states of the system for different timesstep
in Sec. 2 and focuses on the limitations that arise for eaclare modeled using stochastic transitions, i.e. conditjord-
method. Reliability investigations for those methods asdal  abilities. To allow for analysis of time continuous MCs, the
onBoolean(RBDs) andstate spacéMCs, DFTs, BNs, DBNs) state probabilitied; (¢) are obtained from a system of differ-
functions. The investigation of system reliability in thate  ential equations, which is given by consecutive state cesng
space is split up into two different approachesent-based between two adjacent time poirttand¢ + 6t for 6t — 0.

(MCs see Sec. 3.2) artue-slice-base@@BNSs). MCs are a comprehensive approach to model the basic con-

cepts of redundancy (Sec. 2), but face an exponentially in-
creasing number of states for additionally investigated el
RBDs are the most common method to model and analysments §tate explosion (Birolini, 2007) proposes an approach
reliability of systems with redundancy, since those systemfor modeling systems with redundancy as shown in Fig. 3 to
are modeled with a simple parallel structure (see Fig. 2.left limit the number of states for increasimgin k-out-of-n re-
However, comprehensive modeling of basic concepts of redundancy. This model is also used in Sec. 5.1. In Fig. 3, it is
dundancy (Sec. 2) is not possible, since RBDs cannot handle

temporal dependencies between elements, i.e.inwarm+edun I-vgot  I-v, ot 1-v,0t I-v, 0t I

dancy, and are limited to blnar_y ;tatem:_)(aratmnal_ failed) A oy A .61 A b1 vn_k_,b‘tv,ét
of elements. Itot redundancy is investigated using RBDs, e e e @ = @

Figure 3. MC for hot,warm and colg-out-of-» redundancy
for arbitraryt (Birolini, 2007)

3.1. Established Methods; RBD

assumed thatin statg, i = 0, ..., n — k elements have failed
and thus all elements have failed in state ;. The state
probability P,,_;+1(¢) is interpreted as reliability of the sys-
Figure 2. RBD for parallel structures in hot redundancytjlef - tem with redundancy. The failure rates for operating elesien
RBD with voter R, for hot or cold redundancy A and for redundant elemenis are assumed to be constant

o ] ) ) and identical for all elements. The following redundancies
statistically identical but independent elemehtsn are as-  can pe handled with this MC:

sumed, which have reliability2 over operating time with _ _
Ri(t) = ... = R,(t). For common distribution functions, 1. Hotredundancy withoutload sharing:= (n — ),

i.e. Exponential, Weibull, Gaussian, analytical solutidor 2 Hot redundancy with load sharing; = (n — i)A(i) and

reliability of systems with a hot redundancy can be deter- ;) increases with each preceding state (failure),
mined based on the binomial distribution (Birolini, 2007):

Warm redundancy with load sharing:
v = kX+ (n— k— i)\ and\, < A,

4. Cold redundancy; = kA andA, = 0.

n

Roys(t) = (”) RI(t)(1 = R(t))"", Rays(0) = 1. (1)

i=k
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For warm redundancy, this MC approach can handle lightlyAlthough DFTs have been successfully applied to religbilit
loaded or aged redundant elements as introduced in Sec 2. investigation of complex systems, the use of a Markovian ap-
Plroach limits their practical application for the reasotasex!

Although MCs have proven to be a comprehensive approacil o . o 5t MCs,

for modeling systems with redundancy, they are restriated t
a continuous and memoryless distribution (exponential dis
tribution) of state transitions. This limits their practiap-

plication, since failures of many mechanical element®fell Directed acyclic graph (DAG) models, also known as Bayesian

4. BAYESIAN MODELS

Weibull distribution. or belief networks, are used for causal modeling and ingerpr
tation of static data or systems. To do so for dynamical sys-
3.3. Egtablished Methods: DFT tems or temporal data, dynamic DAG models (DBNs) can be

sted. In this section BNs and DBNs are introduced and their

A fault tree (FT) is a graphical representation of a set o aé\pplication to model system reliability is shown briefly.

events and their combination that cause or contribute to th
occurrence of an undesired top event, in general a failure aﬁ
system level. In contrast to RBDs, FTs use negative nota- -
tion: as the top event is defined as failure of the systeme, = BNs are DAG models with nodes representing a set of stochas-
is used for the occurrence of failure afadsefor operating. tic variablesy = {X;, X, ..., X,,} that are endowed with

To allow for modeling reliability based on the combination distributions. A directed graph model is fully defined for a
and contribution of events to a system failure, FTs contairgiven DAG and Conditional Probability Distributions (CPDs
static gatesdnd or), that can only handle Boolean combina- for every node. Each stochastic variablgéf; , Xo, ..., X,,}

tions of events and can thus not handle temporal dependerepresents a set of a finite number of possible states. A vari-
cies (Birolini, 2007). able can only have one of its states at a time. Variables can be

To overcome this limitation, FTs are combined with a Marko-endowed W't.h individual probability (.jlstnbut_lons,. e-.geWuII
or Exponential. BNs set up fqr specify a unique joint prob-

vian approach using dynamic gates to allow for modeling_, ... " . ~. "~ . i
states and time dependencies. The most popular dynam‘?}:blllty distribution P(y:) given by the product of all CPDs:

1. Bayesian Networks

gates (see Fig. 4) are: priority AND (PAND), warm spare n
(WSP) and probabilistic dependency (PDEP). A PAND gate P(p) = [[ P(Xi | Pa(X)) (2)
fails, if all input eventst; . ,, have occurred in a preassigned i=0

order (in graphical notation from_ left to right). The output whereX; represents nodeand Pa(X;) is the set of its par-
eventO of a WSP gate occurs, if the number of spare elegng f the variable§X;, X», ..., X,,} are discrete, they can

mentsS,..., is less than the minimum requiréd In PDEP ¢ ropresented by a Conditional Probability Table (CPT)ctvh
gates, a trigger evefit causes the conditional occurrence of jigys the probability that the child node takes on each of its
other input events’, ., in order to define a failure of the ierent states for each combination of states of its paren
gate. Those dynamic gates require continuous time Marko}ﬁodesP(C|Pa(C)) (Nielsen & Jensen, 2009). The probabil-
process to allow for quantitative analysis of DFTs. The Mark ity table of a root nodés’ (nodes without parents) is reduced

process is solved to obtain state probabilities, which béll 5 5 ynconditional probability table (k) that includes only
used as occurrence probability for the output event of the priori probabilities.

gateO. DFTs were comprehensively investigated for mod-
BNs can be seen as causal networks to be used for reasoning

about relevance and causal analysis for propagation adfbeli
throughout the network. Therefore they can be used to model
the causal dependencies in functionality in a technical sys

tem, e.g. is a failure of elemedtrelevant for functionality of
PDEP elementB?

WSP [
@@@ é)@@ 4.2. Reliability Modeling: BN

In a reliability model for technical systems, the set of vari
Figure 4. Dynamic gates in DFTs ablesy represent a set of elements of the technical system. In
a first approach it is assumed for all elements to have binary
states: truér representing an element aperable statend
galsefa representing an elemefatilure.

eling reliability of systems with redundancy (Montani e, al
2006), (Dugan et al., 1992), (Ren & Dugan, 1998) and hav
proved to sufficiently model the concepts of redundancy ad he probability table$’( A) for an elemen#d and conditional
introduced in Sec. 2. table P(B|A) for an elementB in a Bayesian Network as
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system reliability model as shown in Fig. 5, represent eledn addition to the modeling of causal and probabilistic depe
ment reliability R4 (¢t) and Rp(t) as well as causal failure dencies of technical systems in BNs and calculation of ayste
propagation represented by binary table entries. It isestil  reliability, DBNs offer the possibility to model tempora¢d
sumed that both elements have binary states/andndition-  pendencies between elements and can thus be seen as a more
ally fails when a failure ofA occurs. ThusB eventually fails ~ extensive modeling approach for the reliability of teclahic
on its own account with — Rp(t) when A is in operable systems.
state. Considering Eq. (2), the joint probability disttibn
4.4. Reliabilitiy Modeling: DBN
P(A=fa) P(A=tr)

IR0 R0 The assumptions made in Sec. 4.2, regarding the reliability
modeling of technical systems with BNs, still hold for DBNs.
‘ | P(B fa) p(B ) The set of variables introduced in Sec. 453, represents a
fa collection of elements of the system at two time slicesmd
1 RB(t) RB(z) proceeding time slice+ At.

Figure 5. BN with CPTs used as system reliability model Hence, DBNs can be used to model temporal dependencies
among elements and to estimate the dynamic behavior of sys-
of the Bayesian Networl (A, B) can be interpreted as sys- tem or element reliability (We_ber &.Jc.)uffe, 2003). Consider
tem reliability R (). The Bayesian Network as set up aboveing the system as shown in Fig. 5, it is assumed that element
represents system and element reliability (t) and Rs(t) A evolyes over _tlme due to degradation. A DBN is set up
only at a particular operating tirnte System reliabilityRs(¢t) ~ accordingly in Fig. 6.
has to be evaluated over system lifetime to obtain a discrete
graph.
Pd=fa)  P(A=tr)
1-Ry(1) Ry(1)
P(An=fa) P(Apn=tr)
1 0

1-R4(AY) R4(AF)
P(B=fa) P(B=tr)

4.3. Dynamic Bayesian Networks

A DBN is a BN extended by a temporal dimension to model
discrete-time stochastic processes for dynamic systehas. |
system evolves over time, a DAG is used to model the sys-
tem for each discretéme slice These slices are connected
through temporal probabilistic links to constitute a fubhdel.

1 0
According to Murphy’s two-slice temporal Bayes Net (2TBN) I-Rp(t+A?)  Rp(t+A?)

respresentation of DBNs (Murphy, 2002), the value of a variy Figure 6. A DBN with CPTs in 2TBN representation used as
able can be calculated from the immediate prior and the 'nsystem reliability model for exponentially distribut&d, and

ternal regressor. Ry
A set of stochastic variables = {71, Zs,..., Z,} is in-
creased for every additional time sliceand, based on 2,

conditional dependency oA;: A;. . fails, only if A; has

already failed in the previous time slice with
where the notation is similar as introduced in Sec. 41;
is the jth node at timet and Pa(Z!) are the parents of!. Pr(Apias | A) = Pr(AaiNA) _ Pr(Agar)
The parents of the investigated noﬂ’a(Zt) can either be Pr(4;) Pr(Ay)

in the same time slice or in the previous time slice — 1.t oxnonential distribution is assumed for elementand B,

Thus, assuming a first-order Markov process, time glie  henpPr(A A,) simplifies with Pr( A = Ra(t +
conditionally independent of its predecessor (Murphy,200 At) tor( vrac | Ar) P r(Avrar) Al

P(& | &-1) is given as follows: The CPT of element; gives thea priori reliability R4(t)
m and probability of failurel — R 4(t). In the proceeding time
| &) = H ZJ | Pa ZJ)) 3) slice t + At, the CPT for element#i;, A, is given for the

(®)

GivenT observations of;, a DBN withT" time slices is ob-

(=A(t+At)
tained. The resulting joint probability distribution fdreun- Rat+ A1) _¢ 5 = e(FAAN) — RA(AL). (6)
rolled DBN (see 3) is given by: Ra(t) el
ElementB is basically not infected by the temporal depen-
P(évr) H H P(Z] | Pa(Z))). (4)  dency of elementl, since Markov process is assumed and is
=1 o1 thus accordingly defined as in Sec. 4.2.
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5. MODELING APPROACHES 1 s —s%— Cold

—+— Warm, with load sharing
—o— Hot, without load sharing
— — Hot, with load sharing

Single element

The methods introduced in Sec. 3 have limitations in mod
eling even the basic concepts of redundancy. Thus in thi
section, three different approaches, all based on starsahard

dynamic Bayesian models, are proposed and discussed cc __ 0.6 ¢
sidering limitations, efforts and requirements that afiseen =
the chosen models. & 0.4 |

0.8

5.1. Markovian Approach 0.9

The intention of the Markovian approdcis, to take advan-

tage of the comprehensive modeling of reliability using BNs 0 . X erivielliciolieisiig
on the one hand, and, on the other hand, make use of este 0 100 200 300 400 500
lished methods for modeling systems with redundancy, i.€ t/h

Markovian models.

The proposed method uses BNs for modeling the reliability Of|gure 7. ReliabilityF:(t) modeled with Markovian approach

arbitrary technical systems and MCs to cover redundant sub-
systems. The BN is evaluated for discrete time (see Seg. 42g
while the MC is evaluated for continuous time. To allow for might be nonlinear, i.e. Arrhenius Model. So, the calcula-

mpdeling ofa redundantsubsy_stems, a MC Is set up that comgg,, of A(7) is only a rough estimate to illustrate the modeling
prises only elements that contribute (active or standbifjdab approach. However, considering the graph of the hot redun-

redundancy. Afterward all contributing elements are ident dancy with load sharing, the system is at first almost as reli-

fied and redundancy concept is chosen, the MC is evaluateg}) o 55 the system with hot redundancy without load sharing.

and the obtained subsystem reliability is given to the CPT 0{yhan, the first element fails, load is increased on the remain-
the corresponding node in the BN. ing elements and reliability is accordingly lowered beeaus

Considering a MC as shown in Fig. 5, ldtbe the represen- (i) is assumed to increase by3 for each element failure
tative of a system with redundancy and its childréh,an
arbitrary nonredundant element with giv&y(t) that func- ~ 5.2. BN Approach

tionally rely onA. Then, Ra(?) is the reliability of the re- o 1q4eling of systems with redundancy using BNs fol-
dundant subsystem that is determined by solving the MC fo[oWS the general approach for modeling reliability of sys-

the state probability of the last nodg,(-.+1). The analysis tems as introduced in Sec. 4.2. Since BNs cannot handle

of Fhe BN as model qf overa!l system fe“"’?b““}’ can be donetemporal dependencies in a straight forward approach using
using standard algorithms without further inquiries. only component reliabilities, different approaches hasrbe

The DAG is unaffected by this Markovian approach, becaus@roposed to overcome this limitation. To enable BNs to ap-
the BN keeps the compact structure of a system without repropriately model systems with temporal or event-based de-
dundancy, while the MC covers only the redundant subsyspendencies, different approaches have been proposed eithe
tem with a minor number of states than the overall systembased on discretization of operating time (Boudali & Dugan,
As shown in Sec. 3.2, the basic concepts of redundancy ca#05), (Marquez et al., 2010) or focusing on correlation be-
be modeled using the proposed MC, anyhow it is restricted téween system components (Mahadevan et al., 2001). How-
the inherent limitation of MCs. ever, those approaches require additional computationteff

to obtain conditional probabilities and are therefore aetgd.

In fact, only hot k-out-of-n redundancies can be modeled
straight forward using BNs as exemplarily shown forlan
out-of-3 redundancy in Fig. 8.

me and failure rate\ of an element is rather complex and

In Fig. 7 the reliabilityR(¢) for exponentially distributed fail-
ures of anl-out-of-3 redundancy is shown for a set of basic
concepts.

Reliability £(t) is computed fort = 0...500%, overall con- |, ot requndancy without load sharing all elements conteib
cepts forA = 1/50, in hot redundancy with load sharing for by the same amount and fail independently from each other

i) = (i+1/n)A aqd in warm_redundancy for, = 0.2. because load on remaining elements is the same in occurrence
The results are obtained by using the Bayes Net Toolbox fOBf element failures.

Matlab by Murphy (Murphy et al., 2001). In real-world ap- o o _
plication, the influence of dynamic load situations on theli ~ System reliabilityR(¢) is investigated for the same parame-
ters) andt as used in Sec. 5.1. Perpetually, element reliabili-

1This approach was developed by L. Bathelt in his bachelosishat the tlei are assumed to be expone_ntla_lly dIStrlblR_egB=Cf(t) =
University of Paderborn in 2015 and was supervised by W.r6ext e~*t. The results are shown in Fig. 10 and identical to the
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o e P(A4,B,C=fa) P(4,B,C=tr) e~ AD(AY) |f two element failures have occured 2), reli-
I-Rypct)  Rypd?) abibility is Rgjac = Rejap = e DAY, The results for a
' system with hot redundancy with load sharing obtained from
@ A B C|P(Sys=fa) P(Sys=tr) the DBN differ slightly from the results computed with the
J;Z %’Jt{f é ? MC approach. In fact, the maximum absolute error between

s : : both approaches isax(] Ryc — Rpsn |) = 2.8%.
trtrt 0 1 . .
n To allow for modeling of systems wittvarmredundancy and

Figure 8. BN for a hot 1-out-of-3 redundancy without load load sharing, the same DAG and CPT structure is used as

sharing shown in Fig. 9. The failure rate of active elements is as-

sumed to be\ and the failure rate for standby elements is

results obtained from the Markovian approach. However, thér = @A, Which is invariant to element failures: is called
use of standard BN for modeling systems with redundancglormancy or degradation factor to indicate lesser degiamlat
restricts the possible scope of redundancy concepts to h&f Standby elements (Montani et al., 2006). In time slice
spares without load sharing. element reliabilities are given biRp = Rc = et for
standby elements arfgly = ¢~ for active element. Perpet-
5.3. DBN Approach ually, the reliabilities in time slicé + At are defined for one
_ o o ~ standby element failure aBp|c = Rojp = e (4% and
DBN are used in a wide field of providing an appropriatefor fajlures of the active and one redundant elenfégitac =
analysis method for DFTs such as in (Montani et al., 2006) e~ ML)
(Marquez et al., 2010). Montani describes a transformation
algorithm to convert DFTs into DBNs with focus on handling If warm redundancy is modeled as stated above, it becomes
dynamic gates inherent to a DFT in order to provide an exobvious thatthe arcB; — A1 a¢ andC; — Aty a¢ have no
hausting analysis method. To do so, Montani describes affifluence onA;, »; and could therefore be neglected. How-
approach for mode"ng Comm0n|y used redundancy Concep@/er, due to model ConSiStency, these arcs are kept visible.
thatis applied to the introduced concepts in Sec. 2. The results for reliability of warm redundancy also shown in
The DBN as shown in Fig. 9 shows the basic outline for hotFig. 10. Although warm redundancy behaves as expected -
warm and coldl-out-of-3 redundancy respectively with load it is more reliable than systems with hot spares - its relia-
sharing and the introduced modeling approach using DBN ipility significantly differs from the results obtained ugithe
Sec. 4.4. To modélotredundancy with load sharing, the fail- MC approach. The maximum absolute error between both
approaches imax (| Ryre — Rpsn |) = 3.8%.

ABC| PAin~fa) P(A:n=1)  The DBN outlined in Fig. 9 can also be used to model sys-

C|AB =

fafafa f 0 tems withcold redundancy. In cold redundancy, the redun-
trtrtr| 1-Ry(AF) R4(A?) dant elements are inactive with idealized reliability. Giol
ir}r{a 5'£A\C§§2 gA\c&g ering Fig. 9, element®3 and C are assumed inactive with
rfatrl 1-Ryp A|B — — i1 acti e Wi R
tr'fafa J-RAIBC(N) RA}BC(Al) Rp =Rc =1 until active eIe_menI4 fal|ls with R4 = e

in time slicet. Inherent to this modeling approach of cold,
B AC|P(Bin=fa) P(Bn=1r) and of warm, redundancy is an activation order for redundant
Jafafa 1 0 elementsB andC. After a failure of 4, B is supposed to
P RB:( Af RB:( Af be activated first, whil€ is only actived ifA and B already

trirfa I—RB‘Cé t; Rpc t; failed. Thus, reliabilities after failure of activé or, A and
;Vfaf” 5'§B|A Ait §B\A Ait BgivenbyRp4 = Rojap = e A9, If A did not fail in
rjafal I-Rpacht)  RpiaclA)  ime glicet, reliability of A in time slicet + At is given by
Figure 9. DBN for an 1-out-of-3 redundancy with load shar- 24 = efk(Af)? reliabilities of redundant elements andC'
ing. CPT forC; . a; is accordingly defined td3; , ;. are still idealized.

As already stated for warm redundancy, aigis— A1 a¢
ure rate of each element depends on the number of elemeghqc, — A, A, can be neglected.

failures: and is defined a3 (i) = ((i +1)/n)A for expo- _ .
nentially distributed reliabilityR4 = Rp = Rc = e~ Nt  Theresults obtained from this approach for cold redundancy

for i = 0 in time slicet. It thus follows that each element 9ives the same results as the MC approch. Since the activa-
(failure) effects all other elements, which is considerethe  tion of redundant elements is event-triggered by the faibfr
DAG. Considering Eq. 6, reliabilities in time slide+ At active elements, the time stép between the time slices has
with At = 10h for one element failurei(= 1) are assumed {0 be chosen appropriately in this DBN approach in order to
to beRyjc = Rajp = Rpja = Rpjc = Reja = Rejp = obtain sustainable results.
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1 % —s%— Cold BNs and DBNs as well cannot appropriately handle event-
—+4— Warm, with load sharing based changes in state probabilities, which is necessary to
0.8 —o— Hot, without load sharing tackle redundancy concepts with load sharing. In order to
— — Hot, with load sharing obtain sustainable results, the time st&p has to be cho-
0.6 Single element sen rather small, making this expensive concerning ex@tuti
= time.
~ 0.4t Boudali introduced arevent-based®dN (Boudali & Dugan,
2005) that splits the operating time in discrete intervald a
0.9 analytically computing the reliability of an element forcka
interval. The conditional probabilities of the proceedele-
ment are computed as the inherent reliability of the element
0 o~ with reference to the parent element failure in a certaierint
0 500 val of the operating time. The accuracy and execution time
t/h depend on the number of intervals and is thus eventually an
Figure 10. Reliability R(t) modeled with Bayesian ap- exper?sive.approach. Another issge might arise from the in-
proaches creasing size of the CPTs due to increasing number of inter-

vals, which makes the handling and filling of the CPTs an ex-
hausting task. However, the proposed method to analyicall
compute conditional reliabilities in systems without-of-n

redundancy might become intractable for sufficiently laige
RBDs are, besides FTs, the most common modeling and anal-

ysis method used for systems with redundancy, because &ased on (Boudali & Dugan, 2005,)' Marquez gxtepded .the
their intuitive representation in parallel structure. Huwer, "?'ea of e"e”t'_bas‘?d BNs_by some k|nd_ of dynamp discretiza-
RBDs and FTs have some major restrictions concerning dylion of operating time usingybrid BNs in order to improve
namic or temporal dependencies among elements, which coffXecution time (Marquez et al., 2010). Hybrid BNs use con-
tribute to redundancy, i.e. sequenced failure order, berau “”%{0“5 and ghscrete vanable_s and_ ca_nnot perfqrm exabtpro
of the Boolean description of reliability. Hence, RBDs and ability updating on nongaussian distributed variables.

FTs are not considered for use in Bayesian approaches in thif this paper, only exponentially distributed variables, &l-
work. ement reliabilties, are used for simplification purposesc&

Markovian models offer various approaches to model systerf BNS require a stationary process, the structure and condi-

reliability in discrete/continuous state space for dissfreon- t!onal propablhes are thusltlme-mvanant, the use of o
tinuous time and are common method to investigate reliabilpaIIy distributed variables is straight forward and easynt-

ity of complex systems. In Sec. 5.1, the state space of thBIement (see Eq. 6)' Arbitrary distribut(_ad variables regjui
reliability of a redundant subsystem is discretized andueva MOre comprehensive approaches to estimate the state proba-

ated for continuous time using a MC. The obtained reliapilit Pllities (Nielsen & Jensen, 2009), making the described ap-
of the system with redundancy is afterwards given to a BNProaches increasingly complex. However, an extension for
which is used as model of system reliability. The drawbacké"‘r,b'tr‘_"‘ryd'st”bu“onS IS necessary to cope with real_hz!/ap—

that arise from this approach are inherent to Markovian modphgauons, . _degradatlpn proces;es_that are suffigiefet

els, such as their limitation to exponentially distributtete ~ Scribed by Weilbull distributions (Birolini, 2007).

transitions. State explosion is not a problem, if Bironiin

approach for modeling redundant subsystems is used, but i- CONCLUSION

still present for complex systems. To allow for modeling of complex redundancy and its basic
concepts, established and advanced methods were briefly in-
troduced and three modeling approaches based on Bayesian
models were described. These approaches were discussed

pability of investigating redundancies is discussed. The i X ;
troduced approach for BNs has its major limitation in han_and compared to the results of established Markov Chains.
ghe major limitations of Bayesian models were outlined in

dling dynamic or temporal dependencies such as RBDs and', , o
FTs. Anyway, BNs can directly be used for exact modelingth's yvork anc_i, in order to overcome these limitations, Dy-
of hot spares without load sharing. To overcome this limita-"@Mic Bayesian Networks can be used as an expert system
tion, the DBN approach was developed to cope with redunt®®! t0 investigate reliability of complex systems.

dancies featuring load sharing. The results, obtained from

DBNSs, were compared to the results of the MC approach.

The computed maximum absolute error is significant because

6. DISCUSSION

Since this work employs BNs or DBNs as models of sys-
tem reliability, two approaches are introduced and their ca
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