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ABSTRACT 

Large, slow turning bearings remain difficult to analyze for 
diagnostics and prognostics. For critical equipment, such as 
drilling equipment, top drives, mining equipment, wind 
turbine main rotors, helicopter swash plates, etc. this poses 
safety and logistics support problems. An undetected 
bearing fault can disrupt service, and causes delays, lost 
productivity, or accidents. This paper examines a strategy 
for analysis of large slow bearings to improve the fault 
detection of condition monitoring systems, thus reducing 
operations and maintenance cost associated with these 
bearing faults. This analysis was based on vibration, 
temperature and grease analysis from three wind turbines, 
where one turbine was suspected of having a faulted main 
bearing. 

1. INTRODUCTION 

This paper looks at a number of techniques in the 
diagnostics of large, slow turning bearings. Specifically, the 
use of: vibration, temperature and grease analysis from three 
wind turbine main bearings. This analysis was initiated as 
one machine is suspected of having a main bearing fault. 
The primary focus of the analysis is vibration based. 

1.1. Fundamentals of Bearing Analysis  

Large, slow rotating bearings are based on a rolling element 
bearing design. They are common in all large rotating 
machines and one of the most frequent reasons for machine 
failures.   In general, because roller element bearings are so 
fundamental to rotating machines, their vibration signals 
have been widely studied.  

The benchmark for bearing diagnostics is the envelope 
analysis (Darlow, Badgley & Hogg et al., 1974). This is 
because the spectrum of a raw signal often contains little 
diagnostics information about bearing faults. The envelope 

analysis is based on a bandpass filtering around a high 
frequency band in which the fault impulses are amplified by 
structural resonance. The signal is then amplitude 
demodulated, and the spectrum of this envelope signal 
contains the diagnostics information. 

When a rolling element strikes a local fault (or the rolling 
element fault hits the inner or outer race), an impact is 
produced on the structure. The resonance is a result of the 
natural frequency of the bearing/support structure. The 
modulation rate is associated with the bearing pass 
frequency, such as:  

• Cage Pass Frequency (CPF):  

  𝑓!"# = 𝑓!!! 1 − 𝐵𝐷 𝑃𝐷 𝑐𝑜𝑠 𝛽 ,                    (1) 

• Ball Fault Frequency (BFF): 

         𝑓!"" = 𝑓! 𝑃𝐷 𝐵𝐷 1 − 𝐵𝐷 𝑃𝐷 𝑐𝑜𝑠 𝛽
!
,         (2) 

• Ball Pass Frequency Inner Race (BPFI): 

 𝑓!"#$ = 𝑓!! ! 1 + 𝐵𝐷 𝑃𝐷 𝑐𝑜𝑠 𝛽 ,                 (3) 

• Ball Pass Frequency Outer Race (BPFO): 

 𝑓!"#$ = 𝑓!! ! 1 − 𝐵𝐷 𝑃𝐷 𝑐𝑜𝑠 𝛽 ,                 (4) 

where n is the number of balls or rolling elements, fr is the 
relative rate between inner and outer races (e.g. usually the 
shaft rate for a fixed bearing), PD is the pitch diameter 
(inner + outer race)/2, BD is the ball diameter, and β is the 
contact angle. 

Consider the example inner race fault (Bechhoefer, 2013). 
The bearing roller diameter is 0.235 inches, pitch diameter 
of 1.245, with eight rolling elements and a contact angle of 
0. The BPFI is 118.2 Hz, i.e. 𝑓!"#$ = f!×4.7550, with a 
shaft rate of 𝑓! = 25 Hz. One revolution of the shaft takes 
0.04 seconds, in which the inner race impact will be seen ~ 
four times, or in two revolutions (0.08 seconds), nine times 
(Figure 1). The impacts are seen to be 1/BPFI in time, or 
spaced 0.0084 seconds. Of interest is that the magnitude of 
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the impacts varies with 1/Rev, as the inner race fault passes 
under the load zone of the bearing, where Rev is the number 
of revolutions over the sampling period. In the frequency 
domain, the 1/Rev modulation results in side bands around 
the fault frequency. This is an indicator of an inner race 
fault. 

Zooming into one impact (time 0.0135 to 0.017), the 
resonance of the bearing structure is seen. Usually, there are 
a number of resonant modes. The period is approximately 
0.0027 seconds, or a first mode of 380 Hz.  

 
Figure 1. Inner Race Fault, Time Domain. 

Over the intervening 40 years, a number of improvements to 
the envelope analysis have been made. In (Ho & Randall, 
2000), the enveloped was calculated as the modulus of the 
analytic signal obtained by the inverse transformation of the 
selected one-sided frequency band. This was further 
improved upon in (Randall, 2011), with Matlab© pseudo 
code  

1. X = fft(x); %Take the FFT of the vibration signal  
2. dfrq = sample_rate/length(x); %Get the freq. bin width  
3. idxLw = floor(22,000/dfrq); %find the indexes of the  
4. idxHi = floor(24,000/dfrq);  %envelope window  
5. X(1:(idxHi-idxLw+1) =X(idxLw:idxHi);%Heterodyne  
6. X((idxHi-idxLw+2):end) = 0; %Hilbert Transform  
7. env = abs(ifft(X));  % get the envelope  

The heterodyne process, line 5, copies and translates the 
window of interest to base-band, then low pass filters in the 
frequency domain, in one step. In line 6, the condition 
necessary to calculate the Hilbert transform is performed. 
Finally, the resulting envelope (env variable in line 7) is 
easily calculated as the absolute value of the inverse fast 
Fourier transform (FFT).  

For embedded systems, Bechhoefer (2012) developed an 
envelope analysis with reduced computation complexity. 
Since there is a bandwidth reduction in the envelope, only 
those data points needed for the envelope should be 

processed. This was accomplished by low pass filtering and 
decimating in one step, then taking advantage of the 
trigonometric identity:  

𝑐𝑜𝑠 𝑎 ×𝑐𝑜𝑠 𝑐𝑓 =  !! 𝑐𝑜𝑠 𝑎 − 𝑐𝑓 + 𝑐𝑜𝑠 𝑎 + 𝑐𝑓 ,  (5) 

which performs the heterodyne operation. Here cf is the 
center of the window frequency. For example, a structure 
with a resonance as 2.5 KHz, cf is 2.5 KHz. The high 
frequency image, cos(a+cf) will be filtered in the 
decimation process. The Hilbert transform was created by 
noting that the imaginary part of the Hilbert transform is the 
real part phase shifted by 90 degrees. Since sin (cf+π/2) = 
cos(cf), the imaginary part was created by multiplying the 
heterodyned signal by sin(cf). In the heterodyne process, 
sin(cf) and cos(cf) are updated by the constant angle ω. This 
allowed the use of Clenshaw’s recurrence algorithm, which 
removes most trigonometric function calls. 

2.  LARGE SLOW BEARING ANALYSIS 

Large slow bearings present an analysis challenge due to 
three considerations: resolution, small acceleration feature 
and inexperience (e.g. lack of test data). These issues in one 
way relate to the nature of the operating environment.  

2.1. Resolution 

Resolution is the ability to discern one feature from another. 
Consider analysis of the main bearing of a commercial, 1.25 
MW wind turbine. The main rotor shaft speed is 
approximately 20 revolutions per minute (RPM), or 0.34 
Hz. The main bearing fault rates, as defined in Eq. (1)-(4) 
are given as 𝑓!"# = 0.45, 𝑓!"" = 10.8, 𝑓!"#$ = 15.3, and 
𝑓!"!" = 12.7. The respective frequencies of interest are: 
[0.45 10.8 15.3 12.7] × 0.34 Hz which are 0.15, 3.67, 5.2 
and 4.32 Hz.  

Assume that one needs at least 10, preferable 30 bins 
between the frequencies of interest. To distinguish between 
direct current (DC) component, i.e. zeroth order, and 𝑓!"#, 
the frequency resolution must be between 0.015 and 0.005 
Hz.  

For a sample rate of 3,000 samples per second (Nyquist of 
1,500 Hz), this is 300,000 data points. Since the FFT 
typically uses radix 2, i.e. 2^ceil(log2(300,000), or 524,288 
data points, which is 175 seconds of data! 

Of course, in most applications, the torque/load is not 
constant over time. In this wind turbine application, due to 
tower shadow and wind shear, there is a three per revolution 
change in speed (Figure 2). 

In this two minute acquisition, the standard deviation of 
main rotor shaft speed is 0.0103 RPM, or 0.62 Hz. 
Numerically, this means that 68% of the time, given the 
0.005 Hz/bin resolution, the spectral content is smeared 
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across +/-136 bins in the frequency domain. In order to 
correct for variation and shaft rate (𝑓!) and improve the 
envelope analysis, a time synchronous resampling algorithm 
was developed (Bechhoefer, Van Hecke & He, 2013). 

Figure 2. Main Rotor RPM over 120 Seconds. 

This algorithm used a tachometer signal to phase lock the 
shaft under analysis, and resamples the vibration data into 
the spatial domain of the shaft. In this example, given the 
approximately 0.34 Hz shaft rate, it takes approximately 2.9 
seconds for a revolution. For a sample rate of 3,000 samples 
per second (sps), there are, on average, 8,800 data points. In 
the resampling algorithm, for each revolution, the data is up-
sampled to 16,384 data points. This effectively removes any 
variation in shaft speed. 

2.2. Bearing Fault Features Energy 

Faults associated with slowly rotating equipment are 
difficult to measure because the energy is small. Consider a 
30 Hz output shaft, with a 0.001” (1 mil) displacement fault 
on the outer race (e.g. 𝑓!"#$ of 5). Because acceleration is 
the second derivative of displacement, the estimated 
acceleration of this fault would be 0.0511 (30 x 5)2 x 0.001 
= 1.15 Gs. This is not an unreasonable value, as we can see 
in Figure 1, an RMS of 1.76 Gs on a 25 Hz shaft.  

For the wind turbine example, with 𝑓! = 0.34  Hz and 
𝑓!"#$ = 4.3 Hz, the same damage, 0.001”, would generate 
an acceleration of 0.0511×4.32×0.001 = 0.00094 Gs. This is 
a very small value to measure in the presence of noise. 

2.3. Few Data Sets 

Finally, there is a lack of experience in working with large 
bearings. There is little, if any, documentation of the 
structural resonance of these bearings. This is, as noted, 
essential for envelope analysis. Further, because of the size, 
weight and cost of these types of bearings, there are few 
seeded fault tests conducted to learn about this type of 
bearing fault phenomenology. 

3. LARGE SLOW BEARING EXAMPLE 

This example is based on the availability of three 
commercial wind turbines (1.25 MW), where one of the 
turbines had a suspected main bearing fault. The machines 
were equipped with a bused condition monitoring system, 
which collected vibration data on two accelerometers 
mounted on the main bearing, and a tachometer signal. The 
accelerometer was based on microelectromechanical 
systems (MEMS) technology, where 

• Accelerometer 1 has a bandwidth of 0 to 32 KHz, and a 
noise density of 4mg/√Hz, +/-70Gs. 

• Accelerometer 2 has a bandwidth of 0 to 2.5 KHz, and 
a noise density of 110 µg/√Hz, +/-18Gs. 

Each sensor was configured to sample at 3,052 sps for 120 
seconds using a 24-bit analog-to-digital converter (ADC). 
The resampled spectrum in order domain for each machine 
is seen in Figure 3. The order domain is the frequency 
divided by shaft rate. This is done to normalize each plot by 
the machine RPM. Each machine has a large spectral tone at 
order 89 (this is equivalent to 30.52 Hz), which is associated 
with the planetary gearbox mesh frequency.  

 
Figure 3. Resampled Spectrum in Order Domain. 

Machine 2 shows multiple harmonics order 76 and 400 (26 
and 140 Hz). 
 
This is likely due to resonance. Investigating this, the 
envelope window was set from 50 to 150 Hz, i.e. bandwidth 
of 100 Hz, plotted in Figure 4 (zoomed to show 0 to 40 Hz). 
The window was selected above the gear mesh frequency. 
In Figure 4 Machine 2 shows an outer race fault, with 
multiple higher order harmonics associated with the outer 
race fault frequency. This fault characteristic is not present 
from machine 1 and 3, also depicted in Figure 4. The fault 
energy in Machine 2 is approximately 10 times the noise 
density (e.g. floor energy) of Machine 1 and 3.  
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Figure 4. Envelope Spectrum Clearly Showing an Outer 

Rate Fault on Machine 2. 

Note that after resampling the apparent sample rate is 5,580 
sps, with a Nyquist of 2,760 Hz. The bandwidth of the 
window, being 100 Hz, allows a large decimation in time, 
by 27.   Even with a modest 16,384 point FFT, this then 
allows a bin width of 0.0125 Hz. This gives enough 
resolution to resolve the cage fault from DC.     

3.1. Cepstrum Analysis 

The real cepstrum analysis was defined by Oppenheim 
(1965) and is a way to de-convolute homomorphic systems. 
The cepstrum is defined as: 

𝑐𝑒𝑝 = ℱ!! 𝑙𝑜𝑔 ℱ 𝑓 𝑡 .                 (6) 

This is the real part of the inverse FFT of the log of the FFT. 
The concept is that the product of two signals is the sum of 
the logs of the signals. Since a bearing fault is the 
modulation of the fault frequency on the resonance 
frequency (e.g. multiplication of two signals), the cepstrum 
should be sensitive to this fault (Figure 5). Because the 
inverse Fourier analysis has been called, the cepstrum is a 
time domain analysis. The x-axis of the analysis is called the 
quefrency (in seconds), and is the reciprocal of the 
frequency spacing. 

For machine 2, the peak at quefrency of 0.231 presents a 
frequency of 4.3 Hz. This coincides with the outer race 
fault. For machine 3, the quefrency peak at 0.0346 
represents a harmonic of 30 Hz. This is likely due to gear 
mesh and is not a feature of a bearing fault.   
 
As the cepstrum is a time domain analysis, a number of 
condition indicators can be generated from it. For example 
the cepstrum kurtosis or cepstrum RMS could be used as a 
fault indicator. For this example, machine 3 generated large 
cepstrum RMS and kurtosis (see Table 1), which is based on 
the average of 10 acquisitions. This information would not 

be actionable for the bearing fault, but may indicate a 
potential planetary gear ring fault. 
 

Table 1. Cepstrum Condition Indicators. 
 
Machine Cepstrum 

RMS 
Cepstrum 
Kurtosis 

Machine 1 0.0038 63.33 

Machine 2 0.0036 48.28 

Machine 3 0.0045 98.42 

 

It is felt that additional work needs to be performed on 
automated cepstrum analysis. 

 
Figure 5. Cepstrum of the Main Bearings. 

4. BEARING CONDITION INDICATORS AND HEALTH 

For automated fault detection, a method is needed to both 
quantify the bearing damage and to recommend a 
maintenance action when appropriate. The quantification of 
damage is done using condition indicators (CI), which are 
descriptive statistics of the components under analysis. CIs 
for bearings include the energies associated with the 
bearing’s fault pass frequencies 𝑓!"# , 𝑓!"" , 𝑓!"#$ , and 
𝑓!"#$. Other possible CIs are the average spectral energy, 
the spectral kurtosis (although more commonly used for 
window selection, see (Randall 2011), and the cepstrum 
RMS and Kurtosis. As an example, for a CI of the cage 
using Kurtosis, we take the FFT of the preprocessed 
vibration signal and the Kurtosis of the FFT resultant. Then 
we set the CI equal to the value of the Kurtosis of the FFT 
from the bin(s) associated with the 𝑓!"#. 

For this experiment, 16 acquisitions were available from 
Machine 1, nine acquisitions from Machine 2, and 15 from 
Machine 3. This allowed a population of CIs to be 
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developed for the cage, ball, and inner and outer race 
energies. 

4.1. Threshold Setting and Component Health 

Because the physics of failure is poorly understood (e.g. 
from a given CI value, the absolute level of damage cannot 
be calculated), threshold setting is typically a data driven 
process: maintenance is performed when a statistically set 
threshold is exceeded. The concept of thresholding was 
explored by Byington, Safa-Bakhsh, Watsen and Kalgren 
(2004) where for a given, single CI, a probability density 
function (PDF) for the Rician/Rice statistical distribution 
was used to set a threshold based on a probability of false 
alarm (PFA). This is contrasted with (Dempsey & Keller, 
2008), where the relationship between CI threshold and 
PFA was explored to describe the receiver operating 
characteristics (ROC) of the CI for a given fault. 
Additionally, Dempsey used the ROC to evaluate the 
performance of the CI for a fault type. These methods 
support a data driven approach for condition monitoring by 
formalizing a method for threshold setting.  

Because no single CI has been identified that works with all 
fault modes, the concept of fusing n number of CIs into a 
bearing health indicator (HI) was presented in (Bechhoefer, 
2012). Computationally, the use of an HI is attractive. The 
HI provides decision-making tool for the end user on the 
status of the system health. The HI consists of the 
integration of several CIs into one value that provides the 
health status of the component to the end user.  

Highlighted in (Bechhoefer, Duke & Mayhew, 2007) are a 
number of advantages of the HI over CIs, such as: 
controlling false alarm rate, improved detection, and 
simplification of user display. This approach allows the use 
of well established statistical methods. Further, it is a 
generalized process for threshold setting, where the HI is a 
function of distribution of CIs, regardless of the correlation 
between the CIs. 

Prior to detailing the mathematical methods used to develop 
the HI, a nomenclature for component health is needed. To 
simplify presentation and knowledge creation for a user, a 
uniform meaning across all components in the monitored 
machine should be developed. The measured CI statistics 
(e.g. PDFs) will be unique for each component type (due to 
different rates, materials, loads, etc.). This means that the 
critical values (thresholds) will be different for each 
monitored component. By using the HI paradigm, one can 
normalize the CIs, such that the HI is independent of the 
component. 

The HI can be designed such that there are two alert levels: 
warning and alarm. This paradigm also provides a common 
nomenclature for the HI, such that: 

• The HI ranges from 0 to 1, where the probability of 
exceeding an HI of 0.5 for a nominal component (e.g. 
no damage) is the PFA. 

• A warning alert is generated when the HI is greater than 
or equal to 0.75.  

• An alarm alert is generated when the HI is greater than 
or equal to 1.0. Continued operations could cause 
collateral damage. 

Note that this nomenclature does not define a probability of 
failure for the component, or that the component fails when 
the HI is 1.0. Rather, it suggests a change in operator 
behavior to a proactive maintenance policy: perform 
maintenance prior to the generations of cascading faults. For 
example, by performing maintenance on a bearing prior to 
the bearing shedding extensive material, costly gearbox 
replacement can be avoided. 

4.1.1. Controlling for the Correlation Between CIs:  

All CIs have a PDF. Any operation on the CI to form a HI is 
then a function of distributions. For this study, the HI 
function is taken as the norm of n CIs (energy). 

In general, the correlation between CIs is non-zero. This 
correlation implies that for a given function of distributions 
to have a threshold that operationally meets the design PFA, 
the CIs must be whitened (e.g. de-correlated). Fukunaga 
(1990) presented a whitening transformation using the 
Eigenvector matrix multiplied by the square root of the 
Eigenvalues (diagonal matrix) of the covariance of the CIs: 
A = Λ1/2 ΦT, where ΦT is the transpose of the Eigenvector 
matrix and Λ is the Eigenvalue matrix. The transformation 
is not orthonormal; the Euclidean distances are not 
preserved in the transformation. While ideal for maximizing 
the distance (separation) between classes (such as in a 
Bayesian classifier), the distribution of the original CI is not 
preserved. This property of the transformation makes it 
inappropriate for threshold setting. 

If the CIs represented a metric, such as bearing energy, then 
an HI can be constructed, which is the square of the 
normalized power (e.g. square root of the squared 
acceleration). A generalized whitening solution can be 
found using Cholesky decomposition; see (Bechhoefer, He 
& Dempsey, 2011). The Cholesky decomposition of a 
Hermitian, positive definite matrix results in A = LL*, 
where L is a lower triangular, and L* is its conjugate 
transpose. By definition, the inverse covariance (𝚺!!) is a 
positive definite Hermitian.  It then follows that if  

𝑳𝑳∗ =  𝚺!!,                              (7) 

where we have defined 𝑨 = 𝚺!!, then 

 𝒀 = 𝑳×𝑪𝑰!.                                (8) 
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The vector CI is the correlated CIs used for the HI 
calculation, and Y is 1 to n independent CIs with unit 
variance (one CI representing the trivial case). The 
Cholesky decomposition, in effect, creates the square root of 
the inverse covariance. This in turn is analogous to dividing 
the CIs by their standard deviations (the trivial case of one 
CI). This creates the necessary independent and identical 
distributions required to calculate the critical values for a 
function of distributions. 

4.1.2. HI Based on Rayleigh PDFs 

The CIs for bearing energy (assuming nominal bearings) 
have Rayleigh like PDFs (e.g. heavily tailed). Consequently, 
the HI function was designed using the Rayleigh 
distribution. The PDF for the Rayleigh distribution uses a 
single parameter, β, defining the mean µ = β × (π/2)0.5 and 
variance σ2 = (2 - π/2) * β2.  The PDF of the Rayleigh is: 
x/β2exp(x/2β2).  Note that when applying these equations to 
the whitening process, the value for β for each CI will then 
be: σ2 = 1, and β = σ2 / (2 - π/2)0.5 = 1.5264. 

The HI function using the norm of n CIs can be shown to 
define a Nakagami PDF (Bechhoefer & Bernhard, 2007). 
The statistics for the Nakagami are η = n, and  

ω = 1/(2-π/2)*2*n, where n is the number CIs used in the 
calculation of Y. The critical value for the HI, given four CIs 
were used (cage, ball, inner and outer race energy), so that: 
η = 4, and ω = 18.64. For a PFA of 10-6, the threshold 9.97, 
with the HI function calculated as:  

𝐻𝐼 = !.!
!.!"

𝒀𝒀!.                            (9) 

The 0.5 value normalized the HI, such that the probability of 
an HI being greater than 0.5 for a nominal bearing is 10-6. 
The HI for the machines are given as in Figure 6. 

 

 
Figure 6. Main Bearing Health. 

5. EFFECT OF ACCELEROMETER NOISE DENSITY 

The prior analysis was conducted with accelerometer 2, with 
a noise density110 µg/√Hz. This is because there was no 
fault detection with accelerometer 1, with a noise density of 
4mg/√Hz, i.e. accelerometer 1 had 36x (15.6 dB) the noise 
floor of accelerometer 2. By increasing the acquisition time 
by 4x, the signal to noise can be increased by 3 dB (2x). 
This is because the Welches spectrum averages the power, 
reducing random noise by 1/√n, where n is the number of 
averages.  

This was verified by increasing the data length to 480 
seconds, and 960 seconds (4x or 3dB and 8x or 4.5 dB, 
Figure 7). 

Increasing the Signal to Noise by 3 dB allows the outer race 
fault to be detectable. The acquisition is eight minutes and 
1,464,960 data points. This may exceed the memory of 
some embedded systems. Additionally, because of the large 
variation is speed seen over eight minutes, it necessitates the 
use of a time synchronous resampling algorithm 
(Bechhoefer et al., 2013). 

 
Figure 7. Reducing Noise by Increasing Sample Length. 
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6. OTHER CONDITION ANALYSIS TECHNIQUES 

 
Figure 8. Main Bearing Temperature. 

Both temperature, from the supervisory control and data 
acquisition (SCADA), and grease analysis was available for 
these machines. Temperature for machine 2 ran five to 10 
degrees hotter than for the machine 1 and 3 (Figure 8).  This 
data was taken when all of the machines were generating 
more than 200 KW of power.  

The grease analysis was performed by an ISO 9001:2008 
and ISO/IEC 17025:2005 certified laboratory (Table 2). 
 

Table 2. Main Bearing Grease Analysis (ppm). 
 

Aqueous	Metals	 Machine	1	 Machine	2	 Machine	3	

Silver,	Aq.	ppm		 <9.37		 <10.98		 <10.05		

Aluminum,	Aq.	pp		 <10.8		 **268.5		 **175.6		

Boron,	Aq.	ppm		 <7.9		 <9.3		 <8.5		

Barium,	Aq.	ppm		 <5.8		 <6.8		 <6.2		

Calcium,	Aq.	ppm		 *34.1		 *43.1	 <17.8		
Cadmium,	Aq.	
ppm		 <5.8		 <6.8		 <6.2		
Chromium,	Aq	
ppm		 <10.8		 **136.4		 **91.3		

Copper,	Aq.	ppm		 **71.5		 **16483.0		 **11679.7		

Iron,	Aq.	ppm		 121.8	 **27499.3		 **16084.7		

Potassium,	Aq.	p		 <14.4		 <16.9		 <15.5		

Magnesium,	Aq.	p		 <7.2		 <8.4		 <7.7		

Manganese,	Aq.	p		 <5.8		 *171.3		 *77.2		

Molybdenum,	Aq.		 <13.0		 39.8	 <13.9		

Sodium,	Aq.	ppm		 <15.9		 <18.6		 <17.0		

Nickel,	Aq.	ppm		 <7.2		 <8.4		 <7.7		

Phosphorus,	Aq.		 *<50.5		 *991.2		 *669.1		

Lead,	Aq.	ppm		 <31.7		 **236.3		 **132.0		

Antimony,	Aq.	pp		 <16.6		 <19.4		 <17.8		

Silicon,	Aq.	ppm		 20.7	 **241.5		 **147.2		

Tin,	Aq.	ppm		 <20.9		 <24.5		 <22.4		

Titanium,	Aq.	pp		 <3.6		 <4.2		 <3.9		

Vanadium,	Aq.	pp		 <3.6		 <4.2		 <3.9		

Zinc,	Aq.	ppm	 *134.6	 *10629.7	 *7173.2	

 
The table is coded by the laboratory such that (*) yellow 
indicates a caution limit and (**) red is an alarm limit. 
Machine 2 had the highest level of aqueous metals in the 
grease. Machine 3 grease analysis indicates a fault, yet, 
machine 3 vibration health is nominal, i.e. not actually 
higher than machine 1.  

7. CONCLUSION 

The availability of both vibration, temperature and grease 
analysis from three wind turbines, where one turbine is 
suspected of having damaged main bearing, allows for an 
opportunity to develop a strategy for fault detection of large, 
slow bearings. Approximately ten acquisitions from two 
accelerometers (high bandwidth, high noise, and low 
bandwidth, low noise) and a tachometer were taken. 
Temperature was available from the SCADA system every 
ten minutes. Grease analysis from an ISO certified 
laboratory was also available from these machines. 

In order to detect faults using vibration data, long 
acquisition times are needed (120+ seconds). Because of the 
long acquisitions, there were large changes in shaft speed. 
This is detrimental to the analysis because it smears the 
spectral content in the Fourier analysis. A time synchronous 
resampling algorithm used tachometer data to correct for 
changes in shaft speed, improving the analysis (the Fourier 
analysis assumes a stationary signal).  

The envelope analysis was conducted using resampled 
vibration data (120 seconds at 3,052 sps) and a 50 to 150 Hz 
window with a 16,384-point spectrum. This facilitated the 
detection of an outer race fault on machine 2. Machine 1 
and 3 were found to be normal. The fault was detected with 
the low noise density (110 µg/√Hz ) sensor. The high noise 
density accelerometer could not detect the fault until the 
acquisition was increased to 480 seconds (3 dB 
improvement in SNR). The cepstrum analysis was 
performed on the vibration data, but the results were not 
actionable.  

The main bearing’s component health was calculated using 
a data driven method. Using the Nakagami distribution and 
a probability of false alarm of 10-6, the bearing condition 
indicator data was mapped to a health indicator, where a 
health indicator of less than 0.5 is nominal, greater than 0.75 
and less than 1 is warning, and greater than 1 is alarm. The 
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health indicator for the main bearing on machine 2 was 
1.45. 

Temperature data indicated that machine 2 ran 5 to 10 °C 
hotter than machine 1 and 3. The grease analysis indicated 
that both machine 2 and 3 were faulted, as many aqueous 
metals were in alarm.  

Typically, vibration based detection on large slow bearings 
is difficult. However, using long acquisition times to 
improve resolution and proper window selection, the 
vibration data were easier to interpret, and gave more 
actionable information, than temperature and grease 
analysis. With online condition monitoring, using the trend 
of the health indicator, it is likely that remaining useful life 
of the bearing could be calculated. The vibration data, as 
presented, can give the operations and maintenance 
organizations valuable information to enhance logistic 
support of the machine. 
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