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Alexandre Trilla1, Pau Gratacòs2, David Guinart3, Allegra Alessi4 and Benjamin Lamoureux5
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ABSTRACT

Traction motor blowers are essential components of electric
trains. Their failure entails a complete disruption of the op-
erational service, in addition to a safety hazard. Thus, main-
taining them effectively is a must to guarantee the availability
and reliability of the rolling-stock units. To this end, the pre-
dictive maintenance approach can add a lot of value because
blowers display a complex behaviour, they seldom fail, but
when they do the costs associated to their replacement and
the subsequent time out of service of the train (not generating
revenue) are prohibitively high and may challenge the viabil-
ity of a business case. However, getting to deploy an adequate
data-driven predictive approach is difficult because it entails
collecting streams of useful information in order to generate
bespoke diagnostics and prognostics in a timely manner. In
this article, we have developed and deployed a network of
intelligent wireless sensors that enable to capture vibration
data easily on board, and to seamlessly integrate it into our
data processing pipeline for a remote inspection of the blow-
ers. In order to adapt the data analysis modules to the blower
characteristics and test conditions, we have conducted a fea-
ture mapping with the complete fleet of blowers (288 com-
ponent units) and a statistical analysis to detect anomalies.
Then we have fitted a performing diagnostic function taking
into account the criticality criteria from the ISO 10816 norm
that is currently used as the only indicative reference for gen-
eral rotational machine maintenance. Additionally, we have
checked the validity of these analysis outputs with the dis-
mantlement and visual inspection of some blowers. Our pur-
pose is to develop a new schedule for the maintenance actions
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as we can now better determine the condition and predict the
failure of a blower ahead of time, thus increasing the detec-
tion effectiveness of degraded blowers. We believe that an ad-
equate maintenance of traction motor blowers with a remote
predictive approach based on intelligent wireless sensors may
increase the availability and reliability of the trains, and thus
make the rail transport service more appealing.

1. INTRODUCTION

Electric trains rely heavily on the good operating condition
of traction-motor blowers, which cool down the vast amount
of heat generated by the power electronics that drive the trac-
tion unit. These blowers are rotational devices that incorpo-
rate a turbine that spins at various angular speeds according
to the cooling demand. There are several issues that may
compromise the correct operation of this device: the build-
up of dirt may produce imbalance, the degraded coupling of
the shaft may produce misalignment, the bearing that sets
the turbine in place may experience cracks or spallings on
its races, etc (S. J. Lacey,2008). At present, the maintenance
team that is responsible for the reliability and availability of
the traction-motor blowers makes use of the ISO 10816 stan-
dard (ISO,2009), which accounts for the root-mean-square
value of the velocity signal to determine if the component
is in good condition or not with a threshold. Also, they de-
tect imbalances and correct them with counterweights along
the surface of the turbine. However, these mechanical correc-
tions eventually produce a fatigue that produces unexpected
incidents which cause service-affecting failures, see Figure 1.

This paper presents the deployment of the Prognostic and
Health Management (PHM) approach described in the ISO
13374 standard (ISO,2003) on the fleet of traction-motor blow-
ers. This ISO standard defines a series of steps to be fol-
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Figure 1. Fatigue of a traction-motor blower with counter-
weight imbalance corrections.

Figure 2. TheMotes installed on the outer casing of the
traction-motor blower.

lowed in order to approach the predictive maintenance in an
ordered manner, first extracting the signal features, and then
deploying models to conduct the diagnostics and the prognos-
tics. We will particularly focus our efforts on the detection
and management of the turbine deformation, because this is
not being properly addressed by the current maintenance ap-
proach. In order to do so, the vibration of the blowers in op-
eration will be acquired with a network of intelligent wireless
sensors called TheMotes (A. Trilla and P. Gratacòs,2013), see
Figure 2. Vibration is a very rich proxy variable that encodes
lots of information and denotes the presence and condition
state of rotating mechanical components. TheMotes were
chosen because they are non-intrusive (magnetically attached
to the outer casing), do not require cabling (data is forwarded
wirelessly from device to device and finally collected with a
tablet), do not interfere with the operation of the system and
are ideal for retrofitting. They acquire a vibration signal with
3 axes, during 10 seconds, and with a sampling rate of 3.2kHz
using an on-board Micro-Electro Mechanical System-based
sensor.

This article is structured as follows: Section 2 shows the sta-
tistical analyses that have been conducted in order to model

Table 1. Frequencies of interest for understanding the vi-
bration signature of the traction-motor blower. Note that the
structural looseness refers to the harmonics of 55Hz greater
than 3.

Frequency Justification
55Hz Imbalance (O1)
110Hz Misalignment (O2)
272.061Hz Bearing inner race (BPFI)
167.939Hz Bearing outer race (BPFO)
20.992Hz Bearing cage (FTF)
109.701Hz Bearing rolling element (BSF)
219.403Hz Turbine rolling element (RE)
770Hz Turbine vanes (VA)
55Hz * [3..9] Structural looseness (O3..O9)

the fleet-wise behaviour of the traction-motor blowers. Then,
Section 3 aggregates the results, makes some noteworthy re-
marks and proposes a model to conduct the health assessment
procedure. Finally, Section 4 draws the conclusions and sug-
gests future research lines.

2. METHOD

This section describes the vibration signature of the traction-
motor blower component under analysis, and the statistical
modelling approach that has been conducted in order to per-
form the analysis.

The tests have been designed so that the sensors capture the
greatest amount of useful information. To this end, the trains
need to be parked at the depot (zero speed avoids any noise ef-
fect from the wheel-track contact), the blowers need to oper-
ate at the highest speed so as to spread the frequency content
without experiencing aliasing distortion with the acquisition
system, and the ambient temperature needs to be not extreme
(although this is regarded to have little impact on rotational
machinery).

2.1. Traction-motor blower vibration signature

The traction-motor blowers considered in this article have a
turbine with 14 vanes, which will be operated at a constant
speed of 3300rpm (i.e., 55Hz). When such rotational devices
are in good brand-new condition, they display a low vibration
profile, with very little noise. However, as they accumulate
hours in service and degrade, they develop a characteristic
vibration signature. This signature will be used to locate the
source of the problem, along with its severity. Figure 3 shows
an example of such vibration signature. Note that over 800Hz
(approx.) there is no vibration component of relevant interest.

In order to better understand the vibration signature displayed
in Figure 3, Table 1 lists the frequencies of interest that can
be directly related to the components that build the blower
(B. Shannon,2008;M. DiGiovanni and T. R. Spearman,2008).
These have been compiled from the parts datasheets.
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Figure 3. Example vibration signature of one traction-motor blower as it is acquired by TheMotes. Note the salient peaks on
55Hz and 330Hz. The axis with the greatest vibration amplitude (most severe fault) is selected for conducting the analysis.

In this study it is assumed that over order 10 (550Hz) the re-
sulting high-frequency vibration is too attenuated and cannot
be differentiated from the overall background noise level.

2.2. Statistical modelling method

After having monitored almost the complete fleet of traction-
motor blowers (i.e., a “snapshot” sample size of 288 elements),
a statistical analysis of the acquired vibration signature is con-
ducted in order to model the usual behaviour of the compo-
nent being studied, and to detect the presence of anomalous
behaviours, i.e., values that lie out of the confidence interval
of the observed distribution. In order to do so, the former list
of relevant frequencies, see Table 1, is considered as possible
useful indicators. Specifically, their peak amplitude vibration
values is used. In theory, when an incipient failure is de-
veloping, a particular frequency increases its energy (i.e., its
magnitude), and keeps doing so until the failure occurs. Ad-
ditionally, the root-mean square (RMS) of the velocity signal
is included, motivated by the ISO 10816 standard that is cur-
rently considered by the maintenance team.

Then, the distribution of each indicator is inspected through
its histogram. First, a principal concentration of elements is
identified, which denotes the usual behaviour of the traction-
motor blower. Then, isolated events are spotted, which may
denote the presence of a developing failure. It is assumed
that the usual distribution of the fleet follows a Gaussian, and
abnormal elements must lie out of a confidence interval of
99.7% (this article considers that a difference is statistically
significant if it differs from the mean over 3 standard devia-
tions). The appendix shows the results of the statistical anal-
ysis.

Note that the distribution for the O6 indicator, which is rela-

tive to a frequency of 330 Hz, is the only distribution which
appears to be multimodal, and on which the Gaussian nor-
mality assumption is clearly mistaken.

3. DISCUSSION

This section elaborates on the statistical analysis and tries to
establish links with actual service-affecting failures.

3.1. Statistical analysis

It can be observed that more than 40 units, out of the 288 un-
der analysis, display indicators that lie out of the confidence
interval with respect to the overall behaviour of the fleet. Ta-
ble 2 shows a comparative ranking with this information.

Note that for the blowers leading the ranking it is usual to
observe simultaneous outliers on different indicators.

3.2. Reported service-affecting failures

It is a matter of fact that the current maintenance plan has
limitations because service-affecting failures do actually oc-
cur (validated through visual inspection). Table 3 shows the
indicators for some of the failures reported so far.

Note that many of the indicator values for these failing traction-
motor blowers have been masked by the overall behaviour of
the fleet, i.e., they don’t show significantly anomalous values,
except for blower 01-01-01. It is possible that the service-
affecting failure develops so fast that its signature could not
be acquired during the monitoring of the sample. Figure 4
shows an example of such catastrophic failures.

Also note that among the whole set of indicators, there are
two of them that stand out from the rest in all cases due to
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Table 2. Outlier indicator comparison ranking (top 10). The marks correspond to the presence of outlier indicators with respect
to the fleet.

Blower Id RMS BPFI BPFO FTF BSF RE VA O1 O2 O3 O4 O5 O6 O7 O8 O9 Total
04-03-01 x x x x x x x x x 9
17-02-01 x x x x x x x 7
17-02-03 x x x x x x 6
17-02-02 x x x x 4
04-03-03 x x x x 4
19-04-02 x x x x 4
04-01-03 x x x 4
11-02-02 x x x 4
01-04-01 x x x 4
01-01-01 x x 2

Table 3. Indicators for service-affecting failures.

Blower Id RMS BPFI BPFO FTF BSF RE VA O1 O2 O3 O4 O5 O6 O7 O8 O9
09-04-03 1.14 .01 .03 .00 .03 .02 .03 .23 .08 .03 .02 .01 1.46 .03 .11 .07
05-01-02 .75 .04 .06 .01 .10 .06 .10 .35 .10 .06 .06 .04 .48 .05 .46 .08
05-03-03 .62 .08 .15 .01 .03 .02 .03 .43 .03 .15 .02 .08 .34 .03 .05 .06
15-02-01 1.03 .01 .12 .01 .06 .03 .06 .30 .06 .13 .03 .01 1.20 .03 .90 .09
01-01-01 3.07 .03 .12 .00 .16 .05 .16 .04 .16 .12 .05 .03 3.64 .02 .09 .06
11-03-02 .82 .06 .09 .00 .17 .03 .17 .49 .17 .09 .03 .06 .62 .21 .10 .03

Figure 4. Service-affecting failure of a traction-motor blower.
Note how the turbine has been heavily deformed before
breaking.

their greater magnitude: RMS and O6. They are further dis-
cussed in the following section. Note that this work specifi-
cally focuses on the indicators related to actual failures. Other
tails of anomalies from the statistical analysis that are not ob-
served among the reported failures are not taken into account
as they may be due to other issues that are out of the scope of
this article.

3.3. RMS and O6 indicators

The RMS indicator operates directly on the velocity wave-
form of the signal and it is related to the energy of the noise

that is perceived. It is considered by the ISO 10816 standard
(current maintenance approach) to detect the presence of a
failure and its corresponding level of alarm (usually when the
peak goes over the threshold of 3mm/s, although this only
happened for one single failure case, 01-01-01). According
to the expert feedback received from the maintenance team
with respect to the service-affecting failures, it seems reason-
able to take it into account to note one particular condition
state, and then relate it to the rest of the indicators more fo-
cused on the location of the source of the problem. However,
the threshold values stated in the ISO standard may need to
be revised because they don’t seem to apply to this particular
component or test characteristics.

The O6 indicator, which is related to a structural looseness
problem, is the only one that displays a multimodal distribu-
tion. Because of this, it would appear to be the key indicator
that denotes the presence of turbine deformation because this
is arguably the most common issue that has been reported by
the maintenance team. In addition, this distribution does not
show a smooth degradation transition from a good condition
to a bad one: the blowers either display it or not. It must also
be noted that the O6 indicator currently gets smoothed when
computing the velocities via numerical integration with the
current maintenance process (it works like a low-pass filter),
and that’s maybe why it cannot be detected at present.

3.4. Predictive functions

In order to be compliant with the ISO 13374, which defines
the way PHM systems should be implemented with respect
to the data analysis pipeline, this section deals with the health
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Figure 5. Indicator map and function learning.

assessment function that is to be produced in order to ap-
proach the deployment of this predictive approach.

It should be noted that the statistical outlier indicators hardly
match the service-affecting failure indicators: they overlap
and don’t display a clear differentiating feature. Figure 5 dis-
plays a scatter plot of the RMS indicator vs the O6 indicator.

Additionally, a multilayer neural network is employed to fit
a function to discriminate the failing traction-motor blowers,
with a moving margin (bias) to allow for measurement un-
certainty. Its performance is rather good, showing an overall
sample accuracy of 99.31%, with a precision of 75.00% using
a small margin, as recall easily gets to the maximum. How-
ever, we admit the the shape of this learnt function is too tight
to be generalised with confidence so as to clearly explain the
failures (note that to this end the model has been trained with
all failure cases).

The fitting function depicted above may be used as a diagnos-
tic function if the distance of a new sample point to the func-
tion is computed and normalised, as it would be done with a
soft classification approach, but this is hard to interpret.

4. CONCLUSIONS

The degradation analysis of the traction-motor blowers is com-
plex and unclear. The ISO 10816 norm that has been used by
the maintenance team to establish the threshold alarm lev-
els has resulted to be inefficient to detect developing failures
ahead of time. Thus, this criterion is necessary but not suffi-
cient to attain spotting the incipient points of failure, which is
the main goal of the predictive maintenance approach.

With the study presented in this article it has been observed
that the joint analysis of a set of indicators extracted from the
vibration signal may be of help when their values are signif-
icantly different from the behaviour of the fleet, especially

with respect to the structural looseness of 6th order, which is
supposed to be indicative of a turbine deformation degrada-
tion. Nevertheless, the relationship between the indicator and
the state condition of the degradation is not clear today.

In order to progress with the addition of value to the know-
how of the traction-motor blower maintenance process, we
suggest collecting more diverse data, including the mileage,
which is also necessary for conducting the prognosis. Addi-
tionally, delving into the machine learning approach focused
on the recognition of patterns may be of great help to gain
insight into the nature of this degradation function.
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APPENDIX

Statistical analysis of the indicators through the histogram:
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