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ABSTRACT 

The paper presents firstly an overview of various 

definitions/concepts of energy efficiency and their related 

applications in different contexts, especially in industrial 

sectors. Each definition/concept is analyzed and 

recommended for different decision-making levels. Then a 

multi-level approach is described in detail for evaluating 

energy efficiency index of an industrial process. In addition, 

the paper discusses potential prognostic approaches in order 

to forecast energy efficiency index by underlining 

difficulties and opportunities to implement such approaches. 

Finally, a specific example based on an air-fan system is 

introduced to illustrate energy efficiency concepts and the 

added value of the prognostics to predict energy efficiency 

evolution. 

1. INTRODUCTION 

Today, energy is the most concerned issue in economic 

growth (Jollands et al., 2010; Steuwer, 2013; Andrea 

Trianni, Cagno, Thollander, & Backlund, 2013). Energy 

resources are nonetheless limited and become more and 

more costly while manufacturing activities or operation of 

complex products (Lambert, Hall, Balogh, Gupta, & Arnold, 

2014; Urban & Ščasný, 2012) may involve significant 

energy consumption. Energy optimization of plants/centers 

and mobile systems (for example, industrial processes, 

manufacturing, computer data centers, transport, weapons 

systems and vehicles) is therefore an important issue to be 

solved in order to keep economic competitiveness and to 

reduce environmental impacts (Al-mofleh, 2009). This 

should be primarily reflected on by improving energy 

efficiency (EE), i.e. reducing the amount of energy required 

to provide products and services. Indeed, energy efficiency 

is considered as a key to sustainability (Oikonomou, 

Becchis, Steg, & Russolillo, 2009), industrial ecology 

(Boardman, 2004), and circular economy (Dixon, 

McGowan, Onysko, & Scheer, 2010; Wiel, Egan, & delta 

Cava, 2006).  

To support these sustainability issues, Europe has set 

ambitious goals to promote the development of new 

methodologies, new technologies or disruptive technologies 

that can improve the energy efficiency and reduce energy 

costs by up to 20% in the most energy-intensive industrial 

sectors  (European Commission, 2013). 

To face with this challenge, one of powerful solutions is to 

implement the energy efficiency as an important indicator 

for various decision-makings related to monitoring, 

operation management, modernization and maintenance 

plans, etc. It is important to note that the decision-makings 

are essentially based on age or/and reliability/remaining 

useful life  of components/system (Do Van, Voisin, Levrat, 

& Iung, 2013; Nicolai & Dekker, 1997; Wang, 2002). To be 

able to implement energy efficiency in decision-makings, 

the evaluation of energy efficiency is essential. This is the 

first objective of the present paper.  

Moreover, it is shown that Energy Efficiency Performance 

(EEP) is an upheaval during process-lifetime (Hasan & Arif, 

2014; Zhou & Ang, 2008). Predicting the degradation 

behavior of energy efficiency of components/systems is 

therefore crucial. It is however not very well founded. In 

fact, prognostics approaches have been basically used for 

predicting the remaining useful life (RUL) of 

components/systems (Byington, Roemer, Kacprzynski & 

Drive, 2002; Saha, Goebel, Poll, & Christophersen, 2007; 

Sankararaman, Daigle, Saxena, & Goebel, 2013; Saxena, 

Celaya, Saha, Saha, & Goebel, 2010). Enlarging this scope 

of prediction, several variants have been proposed to  

predict some other kinds of system features such as health 

or performance of components/systems (Cocheteux, Voisin, 

Levrat, & Iung, 2010). In that way, the second objective of 

the paper is to propose a new concept for the EE prediction. 

Thus, with regards to this global EE optimization and 

forecasting context, an overview of energy efficiency is 

presented in Section 2. The assessment of EE indicators in 

the case of industrial applications is also investigated. Then 

Section 3 focuses on describing potential prognostic 

approaches for EE prediction. An air-fan system is 
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introduced in Section 4 as an example to illustrate not only 

the proposed EE concepts but also the added value of 

prognostics implementation. Finally, Section 5 concludes 

the paper and prospects to prognostic-based energy 

efficiency in future works. 

2. CONCEPTS OF ENERGY EFFICIENCY 

2.1. General concepts 

Over the past decades, many governments and industrialists 

have focused on energy efficiency (EE) assessment which 

can be used for decision-making on strategy and priority 

actions in order to reduce energy consumption, energy 

demand and environmental problems.  

For this assessment, EE is expressed as using less energy to 

produce the same amount of services or useful outputs. In 

that way, EE equation is formulated as: 

        

      

Useful work of a process

Energy input into a process
 (Patterson, 1996). It means 

that a smaller amount of energy input is needed for the same 

useful produced output, or that a higher output is provided 

with the same energy input. In this way, energy efficiency 

can be used in a very wide range of applications and for 

different levels of features (Hilke & Lisa, 2012) in terms of 

energy demand sectors (buildings, appliances, transports, 

industries, services, etc.), sizes (on a local, national, 

international or global scopes), stake-holders (decision-

makers, energy providers, end-users, energy services 

companies, energy audit services companies, or particular 

equipment). For example, EE has already been investigated 

in several sectors such as industries (Boyd, 2014; Fleiter, 

Fehrenbach, Worrell, & Eichhammer, 2012), transport 

(Parry, Evans, & Oates, 2013; Zou, Elke, Hansen, & Kafle, 

2014), and buildings (Centre, Cddex, & April, 1992; 

Chirarattananon, Chaiwiwatworakul, Hien, Rakkwamsuk, & 

Kubaha, 2010). Nevertheless, for each sector (Darabnia & 

Demichela, 2013; Virtanen, Tuomaala, & Pentti, 2013), 

different visions of EE concept have been introduced.  

In fact, there are many ways to quantify energy efficiency 

level of a typical machine, factory or country. The well-

known concept of “energy efficiency indicators” or “energy 

efficiency index” (EEI) is often used basically with the 

evaluation of energy efficiency. Indicators of energy 

efficiency may provide the connection between the energy 

consumption and certain relevant economic and physical 

outputs (Salonitis & Ball, 2013). Four following categories 

of EEI: thermodynamic, physical-thermodynamic, 

economic-thermodynamic, and economic indicators have 

been mentioned by many authors: 

Thermodynamic indicators: They are measured as the 

energy dissipated or consumed by the system compared to 

the amount of energy in the resource processed. Both input 

and output are measured in thermodynamic units (e.g., GJ of 

delivered energy consumed in the production coke for 

coking coal). The importance of efficiency comes from the 

thermodynamic laws, namely the conservation of energy 

and the irreversible energy conversion to uselessness. By 

decreasing the energy loss in the processing, the useful 

energy transformed from energy input is increased. Thus, 

the thermodynamic definition of energy efficiency can be 

expressed as follows: 
          

  

Useful work or energyoutput

Energy input

(Jørgensen, 2010; Udphzrun, 2001). For example, the 

energy efficiency of a steam boiler is calculated as the ratio 

of the energy amount of steam output to the input heat 

needed to boil the water inside. In the case of motors, it 

should be the mechanical energy output divided by the input 

electricity. This type of EE indicators should not be applied 

to unknown thermodynamic characteristics or to the case in 

which there is no or poorly-monitored process because of 

missing information about energy loss. Relatively, 

thermodynamic indicators are not the best choice at the top 

level of national and international energy. According to 

(Tanaka, 2008), thermodynamic energy efficiency can be 

used only at the device level, end-use technology or energy 

conversion technology. 

Physical-thermodynamic indicators: This kind of 

indicators has been introduced to avoid the limit of 

thermodynamic indicators in systems with output units that 

are uncountable or specific energy format like systems in 

transport or agriculture. In fact, the output is evaluated in 

physical units while the input is in energy. In this way, the 

energy efficiency can be evaluated as  follows: 

        
 

  

Useful physical work output

Energy input
 (Ang, 2006; Bor, 2008; 

Giacone & Manco, 2012). It is important to note that the 

units of physical output have to be expressed in the designed 

units of the system capacity (tonnes of cement, passengers, 

kilometers, vehicles, the number of rooms, etc.). Calculated 

in either aggregated or disaggregated methods, these 

indicators directly stick to the technical power flow. As a 

consequence of various physical outputs, multiple forms are 

used for physical-based indicators such as energy 

intensities, specific energy consumption, etc. In spite of 

difficulties in quantifying the higher level of aggregated 

process, the physical-thermodynamic indicators can be 

applied to a variety of levels ranging from a very simple 

component level to a sector level (Farla & Blok, 2000).  

Economic-thermodynamic indicators: These indicators 

are hybrid indicators, in which the energy input is measured 

in thermodynamic units and the output is measured in 

market prices ($). The market prices are measured by the 

gross domestic product (GDP) or the market value of all 

final goods and services produced within a country or a 
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sector (Gavankar & Geyer, 2010; Rosenquist, McNeil, Iyer, 

Meyers, & McMahon, 2006; Scofield, 2009; Tsvetanov & 

Segerson, 2013). In this case, any difference in the output or 

input number can be affiliated to economic, social behaviors 

or calculation methods. The information of technical 

process is unnecessary and the energy output number is 

conveyed through energy price factors. The “Energy:GDP” 

increments may be misunderstood as the positive result of 

energy efficiency investment. But economic-thermodynamic 

indicators can be calculated by multiplying thermodynamic 

indicators with the economic value of output units. Thus, 

these indicators can be applied to high levels of economic 

structures such as the corporate, sub-sector, sector and 

national levels.  

Economic indicators or monetary indicators:  These 

indicators are used to measure changes in energy efficiency 

purely in terms of market values. They are named as the 

energy to GDP ratio, energy coefficient or energy elasticity. 

Economic indicators are given as the ratio of energy 

consumption in an energy unit to an economic activity in a 

monetary unit 
      

    

dollarized of output

dollarized Energy input
 (Ang & Xu, 2013; 

Gvozdenac-Urosevic, 2010; Worrell, Price, Martin, Farla, & 

Schaeffer, 1997; Wu, Chen, Bor, & Wu, 2007). Sometime, 

these indicators would be convertible from their physical-

thermodynamic indicator counterparts by simply 

multiplying the energy input with appropriated added 

energy prices. But, in another way, these economic 

indicators are just seen as a purely economic efficiency 

indicator rather than as an EEI because they are fully 

measured in economic values. This type of indicators should 

not be used in monitoring EEP systems. The economic 

indicators are often used when energy efficiency is 

measured at a high level of aggregation (international, 

national and sector levels), where it is impossible to 

characterize the output by a single physical unit.  

The EEI concepts previously detailed have been used in a 

number of studies as the root definition and referred to by 

various names like thermal energy efficiency (IEA, 2008), 

economic ratios, techno-economic ratios (Gavankar & 

Geyer, 2010), energy intensity or energy efficiency intensity 

(Hsu, 2014), Energy Efficiency Design Index (Lloyd’s 

Register, 2012), or benchmarks for energy efficiency (D. 

Phylipsen, Blok, Worrell, & Beer, 2002). 

From these definitions, it is possible to characterize also 

EEIs with regards to the abstraction level of decision-

makers mainly in terms of energy consumers and usage 

functions. In that way, we propose a classification of EEIs 

based on their potential applications (Figure 1). 

 

In Figure 1, it is illustrating that the more the energy 

consumers, the more chance and benefits energy efficiency 

investment brings about. Therefore, opportunities and 

challenges of energy efficiency applications at industrial 

sectors have to be addressed. 

2.2. Concepts of EEIs for industrial sectors 

As multiple factors are affecting energy efficiency 

performance of industrial sectors (process complexity, 

internal energy transformations various products and 

production rates, etc.), quantifying movement of energy 

efficiency needs explicit definitions and energy efficiency 

measurement.  

In industrial sectors, for measurement and management 

purposes, Specific Energy Consumption(SEC) is the most 

common EEI (“ODYSSEE database,” 2010; G. J. M. 

Phylipsen, Blok, & Worrell, 1997; Sudhakara Reddy & 

Kumar Ray, 2011). SEC is the ratio of the energy 

consumption to the useful physical output of a process or 

activity. By multiplying the physical unit by its economic 

value, the monetary unit can be created and the effect of 

economic factors could be concerned. When the output is 

measured in common physical units, an estimate of physical 

energy intensity is obtained (e.g. TJ/tonne). The total energy 

consumption in an industrial process is the summation of all 

types of energy such as electricity, gas, coal, and oil. The 

SEC for industrial processes is expressed as follows: 

Consumed

out

E
SEC

P
  (1) 

Where: ConsumedE  is the used total energy input, outP  is the 

process output in physical units. 

 

L
ev

el o
f a

g
g
reg

a
tio

n
 

 

 

Country 

Sector 

Sub-sector 

Global System 
Factory/Company 

Sub-system/function 
process 

End-
users/appliances 

Component/equipment 

 

 

 

Operator, 

engineering 

 

International 

 

Product, safety or 

energy manager 

Top plant or 

company managers 

Government or 

International   energy 

efficiency policy, 

standard, and label  

E
E

 p
er

fo
rm

an
ce

 t
re

n
d
 o

f 

g
en

er
al

 s
y
st

em
 

 

E
E

 p
er

fo
rm

an
ce

  
 

b
et

w
ee

n
 d

if
fe

re
n
t 

su
b
/s

ec
to

rs
 

E
E

 p
er

fo
rm

an
ce

 t
re

n
d
 o

f 

co
u
n
tr

y
, 

re
g
io

n
 o

r 
in

te
rn

at
io

n
al

 

 

Figure 1. Potential applications of energy efficiency 

indicators depending on levels of decision-makers and 

aggregation  
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When the output of industrial processes is uncountable or 

invisible (for example, electrical power distribution system 

or production process are pending but auxiliary system still 

running and consuming energy), then SEC is the ratio of 

energy inputs to energy outputs. It will be the inverse 

formula of thermodynamic energy efficiency. In this case, 

the difference between the input and the output is the total 

energy losses during equipment operation or an individual 

task of processes.  

Consumed In

Out Out

E E
SEC

P E
   (2) 

Where: InE is the necessary energy input used by industrial 

processes, OutE is the useful energy output delivered for 

industrial processes. 

In a typical industrial process, there are at least several 

factors affecting the EEI during its life. These factors could 

be classified into: the structure or function of the process 

and facility; management, operation methods and 

maintenance plans; energy categories; raw materials; ages of 

equipment; and production plans or load profiles. These 

factors change over time and depend on other parameters. 

Thus, it is important to discuss methods of EEI evaluation 

or EEP during its life-time for industrial processes. 

2.3. Assessment of EEIs in industrial applications 

For focusing on the assessment step, it is necessary to divide 

the study of energy efficiency into several different 

abstraction levels. Thus potential applications of EEIs 

regarding to aggregation/abstraction levels, are the most 

important factors that affect energy efficiency at each level 

and the inter-level interactions. They need to be detailed and 

discussed. 

2.3.1. At the component level      

According to the evaluation of changes in the efficiency of 

production equipment or a particular production process, the 

lower the disaggregation level can be analyzed, the more 

accurate the measurements of achieved technical energy 

efficiency improvements can be improved. Applying the 

component, process unit or sub-system concept offers a way 

to divide the energy use in an industrial system into smaller 

parts. A process unit can be considered as the smallest 

component of an industrial energy system (Schenk & Moll, 

2007). A single process/component unit is based on the 

function of the industrial process, for example, cooling, 

heating, and packing or air compressors. Input variables of 

operation conditions are classified into physical indicator 

(PI) and nonphysical indicator (NPI) categories. Total 

energy input 
t

iE , and total output 
t

iP  of one component i at 

time t (the time unit could be one hour, one day, one month, 

etc) can be expressed as: 

( , )t t E E

i i i iPI PIE f N  (3) 

( , )t t P P

i i i iPI PIP g N  (4) 

( , )

( , )


t E E

t i i i

i t P P

i i i

PI PI

PI P

f
C

g N I

N
SE  (5) 

Where:  

- E

iPI is a set of physical indicators affecting energy 

consumption of component i such as energy 

transformation, working duty cycles, available capacity, 

deterioration levels of elements, quality of raw materials, 

etc; 

- E

iNPI is a set of nonphysical indicators affecting energy 

consumption of component i such as ages, production 

planning, product programs (load profiles or process 

productivity), human skills, etc; 

- P

iPI  is a set of physical indicators affecting output of 

component i such as supplier availability, waste 

products, product types, etc; 

- P

iNPI is a set of nonphysical indicators affecting output 

of component i such as storage, transport stations, etc. 

It should be noted that t

if  and t

ig  are the functions of PIs 

and NPIs. These functions can be built up based on the data 

collected from the system or the understanding of the 

dynamics of the system. Both PIs and NPIs should be 

specified before applying the aggregation method to 

calculate energy inputs and useful outputs for each 

individual component. The PIs and NPIs should be 

collected. After determining and filtering processes to 

identify clear trends indicators, the EE threshold can be set 

from the requirement or field data. In that way, EEP for 

separated components can be foreseen. 

2.3.2. At the function/system level 

Together with using EEIs for separated components, the 

EEP of the global system should be taken into account. It 

has been shown that each component has its own energy 

profile depending on its operation modes (stop, on-load, off-

load, standby, etc.) and operation modes may be modified 

by system functions. During the operation process, the EEP 

at the function/system level may not be equal to the total 

value of all components. Many studies have shown that 

energy consumption varies with product capacity. 

Moreover, the system function has a strong impact on EEP 

and operation sustainability. The biggest challenge is to 

compute the volume of outputs of largely diverse products 

produced by industrial processes. For example, it is widely 

accepted that ‘tons of steel’ is a well-known measure of 

capacity and real output in the steel industry. But the output 

evaluation of a beverage factory by summing liters of beer, 

alcohol, mineral water, and nutria drink, is inaccurate. The 
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aggregation method to add multiple forms of outputs should 

be considered. Converting various physical output units into 

a common unit is commonly applied. In this case, it is 

needed to consider the weighting factor of separate 

subsystems or unit processes to produce one output type as 

Eq. (6). 

.t t t

i iP P   (6) 

Where: tP  is the total system output at time point t. t

i is 

the output weighting physical factor of the separated 

disaggregated component i at time point t. 

In comparison with Eq. (4), the value of t

i  is a function of 

total PIP and NPIP, which affect the role/duty or position of 

components in production sequences. 

At the component or separated process/sub-system level, the 

individual activities and processes in the complex process 

have to be disaggregated. The energy inputs can be simply 

summed to generate an aggregate energy indicator. But, in a 

general system, load profile and operation/process functions 

decide the available productivity, operation mode of 

production equipment and influence the energy 

consumption. In this case, in computing energy input, 

integration of load profile into function factors is highly 

recommended. The total energy consumption is defined by 

aggregating the individual energy consumption multiplied 

by the corresponding weighting energy factor as Eq. (7).   

.t t t

i iE E   (7)  

Where t

i  is the energy weighting energy factor of the 

separated component i at time point t. 

The energy weighting energy factor t

i is based on the 

energy used within one complete component. At the 

function/system level, t

i is deeply depended on PIE and 

NPIE of the structure of function/system production 

sequence. Together with weighting factors of outputs, the 

impact of weighting factors of each component can be 

shown clearly in comparison with other components. The 

higher the values of t

i  and t

i , the higher the contribution 

of component i. With the Eq. (6) and (7), formula (1) can be 

changed to:  

.

.

t tt
i it

t t t

i i

EE
SEC

P P










 



 (8) 

By conducting energy measurement, the total energy input 

and total system output at the global system level can be 

evaluated. The dependence of each component on the others 

ones and function/system process can be shown in Figure 2. 

 
Nevertheless, these two types of weighting factors are 

defined by the share of each component in the total of 

contribution of the function/system at the upper level of 

aggregation. They are used to get the weighted aggregate. 

The function/system factors with characteristics like flexible 

organizations of process sequence, multi-functional 

production should be taken into account. The movement of 

weight factors during time-line depends on the contribution 

of components to the global system. Thus, weight factors of 

components will not only influence EEIs and EEP at 

function/system levels, but also point out the critical 

components in the archived EEI target. 

Based on historical data and measured parameters via 

conducting energy audit or power management system, 

EEIs at current time and EEP can be reviewed. Industrial 

system performances with a variety of system functions, 

flexible processes and complex equipment are one main 

target to apply prognostics. Thus predicting the movement 

of EEIs or EEP is an issue to be supported by prognostics 

approaches. 

3. PROGNOSTIC APPROACHES FOR ENERGY EFFICIENCY 

3.1. Prognostics conventional approaches: an overview 

With the demand to anticipate the failure of a 

component/system, prognostics concepts have been 

introduced and successfully applied for different application 

fields (Muller, Suhner, & Iung, 2008; Si, Wang, Hu, & 

Zhou, 2011). The most obvious and widely used prognostic 

consists in predicting how much time is left before a failure 

occurs given the current condition, past and future operation 

profiles. The time left before an occurring failure is usually 

called remaining useful life (RUL). To support this 

prediction, various approaches have been developed from 

experience-based prognostics to model-based prognostics. 

The required information (depending on the type of 

prognostics approach) include: engineering model and data, 

failure history, past operating conditions, current conditions, 

identified fault patterns, transitional failure trajectories, 

maintenance history, system degradation and failure modes. 
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Figure 2. Aggregation approach to calculate EE parameters 

for the upstream level from separated component levels   
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The main prognostics approaches that have successfully 

been applied on different types of problems are: 

- Experience-Based Prognostics. Use statistical reliability 

to predict probability of failure at any time (Dragomir, 

Gouriveau, Dragomir, Minca, & Zerhouni, 2009; Muller 

et al., 2008); 

- Evolutionary/Statistical Trending Prognostics. 

Multivariable analysis of system response and error 

patterns compared to known fault patterns (Muller et al., 

2008; Si et al., 2011; Yang, Yu, & Cheng, 2007); 

- Data-driven prognostics. These approaches are used to 

determine the remaining useful life by trending the 

trajectory of a developing fault and predicting the 

amount of time before it reaches a predetermined 

threshold level (Goebel, Saha, & Saxena, 2008; 

Sankararaman & Goebel, 2014). The strong points of 

data-driven techniques are their ability to link with 

recognized system behavior by experience methods and 

simple in installation and implementation. 

- Model-Based (Physics of Failure Based Prognostics). 

These approaches need fully understanding of system to 

be expressed by mathematic functions or existing 

accurate mathematical models (Dai, Das, Ohadi, & 

Pecht, 2013; Fan, Yung, & Pecht, 2014; Medjaher, 

Skima, & Zerhouni, 2014). The accuracy of model and 

also the provided parameters of variables decide the 

precision of technical approaches. The main advantage 

of model-based approaches is reusing of model and 

flexible in configuring input data. 

3.2. Prognostic formulation method for energy 

efficiency: a generic approach 

As mentioned above, the existing prognostics concepts 

concern basically with the prediction of RUL or the failure 

date. Thus, they seem difficult even no longer to be applied 

for energy efficiency prediction since the energy efficiency 

behavior of a machine may be independent with its failure 

behavior. In this context, prognostic approaches should be 

used to predict the potential evolution of EEI of a machine, 

which is directly linked to its energy efficiency behavior, 

given the current condition, past and future operation 

profiles. Based on the evolution of EEI of a machine, it is 

possible to determine the time when EEI reaches its critical 

value related to the energy efficiency property of the 

machine. In this way, we propose an extension of RUL, 

namely REEL, in the framework of prognosis-based EE as 

follows: 

Remaining energy-efficient lifetime (REEL) is defined by 

the time left before a machine loses its energy efficiency 

property, which is technically and/or economically fixed in 

advance, given the current condition, past and future 

operation profiles. Mathematically, REEL can be expressed 

as:  

   { :  | }t T t

Threshold ThresholdREEL t E T SEC SEC SEC SEC     (9) 

Where: T is a random variable; E[T] is mathematic 

expectation of T and SECThreshold  is an energy efficiency 

threshold as Figure 3. 

  
Figure 3. EE deterioration behavior and REEL prediction 

effect on decision-making  

It cannot be denied that there are many difficulties to control 

global EEP because the system environment is changing. EE 

and system functioning mode are dependent on product flow 

and component ageing continuously modifies the system 

characteristics. There is a lack of decision support when it 

comes to questions of procuring, distributing and accounting 

for energy in production systems. Decisions in planning and 

operating production systems are mainly based on 

traditional metrics such as cost, quality and flexibility and 

rarely consider energy efficiency (Apostolos, Alexios, 

Georgios, Panagiotis, & George, 2013; Seow & Rahimifard, 

2011; Thiede, Bogdanski, & Herrmann, 2012; Weinert, 

Chiotellis, & Seliger, 2011). New forecast REEL situations 

can be seen in the vision deployment of combination the 

current degradation and EEP deterioration trends.  

With prognostic approach for EE, the EEP will be illustrated 

clearly and REEL can be predicted for various scenarios of 

actions plan. The predicted development of REEL scenarios 

will be used as aided-decision-making factor to select most 

efficient plans. If predicted EE value is not acceptable, 

various corrective actions such as replacement, update, and 

maintenance must be conducted at any identified critical 

level of system. In the other case, the value of EEI value of 

system is considered as under EE threshold and the 

remaining efficient life is long enough for securing 

functions of system, correction action is not necessary 

taken. The process will be repeated when new monitored 

data is updated. The outcomes of prognostic analysis 

combined with a database of traditional commercial 

operation principal will provide the different references of 

deciders. 

From this definition, it is now needed to discuss on how 

prognostic approaches can be applied for predicting REEL 

at component level and function/system one. 

3.2.1. REEL at component level      

New EEP deterioration 

curve 

Lunching 

EEthreshold  

time 

EE degradation 

EE0  

Current 

EEt  

Correct actions 

REEL 

Future Design 

Energy inefficient zone 
 

Energy efficient zone 
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A small number of studies  already mentioned about energy 

aspect with the common issue-energy consumption 

(Balaban et al., 2013; Chiach, Chiach, Saxena, Rus, & 

Goebel, 2013) and highlight prognostics as potential tool for 

prediction of energy demand. But for evaluating the REEL 

of a component, both the energy consumption and the 

output for future operation profiles must be estimated. 

However they depend on several physical and nonphysical 

indicators, see again Eq. (3) and (4). This means that these 

physical and nonphysical indicators must be firstly 

identified and evaluated. Model or experience based 

techniques (Fleiter et al., 2012; Salta, Polatidis, & 

Haralambopoulos, 2009) may be secondly used to evaluate 

the energy consumption at and output from the determined 

physical and nonphysical indicators.  

In general, nonphysical indicators are usually known in 

advance and physical indicators, which may depend on 

component characteristics, related environment conditions 

and nonphysical ones, are often unknown. The deterioration 

evolution of these physical indicators may be predicted by 

prognostic approaches mentioned in the previous section (B. 

lung, M. Veron, M.C. Suhner, 2005; Muller et al., 2008). 

The proposed generic approach is shown in Figure 4. Only 

at this level, the EEP of component without the impact of 

other component or function of system can be evaluated 

directly. Any correction action at this level can help the 

component restore the EEI of individual component. Its EEI 

will be reduced under the EEThreshold or as equal the value of 

launching time. 

3.2.2. REEL at function/system level      

As mentioned in Section 2.3, to evaluate the REEL of a 

function/system, we need not only the information (energy 

consumption, output, REEL) related to all components but 

also the information related to function/system such as 

system structure, dependencies between components, 

production schedule, support system, operation condition 

and management, The link between the global energy 

consumption, the global output and this information are 

crucial. In fact, as proposed in Section 2.3 these 

relationships are represented by the weighting energy 

factors and the weighting physical factors. In this way, 

based on the results at component level, to predict the REEL 

at function/system level, the weighting energy factors and 

the weighting physical ones must be estimated. Figure 5 

illustrates the REEL prediction process for a 

function/system. 

The implementation of the REEL methodology both at the 

component and function levels need now to be illustrated in 

order to show its feasibility and added value. At this level, 

the optimization of operation or function system has strong 

impact in the energy consumption of each component. An 

efficient equipment could have a strong weighting factor 

and have a high opportunities in EE improvement at system 

level, caused of optimized working chain process, lack of 

skills of operator or low awareness of manager (A. Trianni 

& Cagno, 2012). 

 

Figure 5. REEL Prediction process at function/system level 

4. REEL EXPERIMENTATION TO A SPECIFIC 

EXAMPLE  

For illustrating the proposed concepts for energy efficiency 

and related evaluation/prediction approaches, it is chosen an 

industrial sub-system which is composed of a motor 

associated to a fan (Figure 6). The electrical motor-drive 

converts electrical power into mechanical power (via a 

rotating shaft connect to mechanical load). The electrical 

motor-drive has a big amount percentage of total power 

consumption in industrial applications.  

 
Figure 6. Basic components of fan system  

Figure 4. REEL Prediction process at component level 
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The proposed evaluation/prediction is applied at both 

component and function/system level. 

4.1. SEC at component level 

For reviewed air-fan system, we are considering the EE 

effect of three main components which are the control 

system, the electrical motor and the centrifugal fan. The 

power and air flows of the system are shown in Figure 7. 

 
Figure 7. Energy flow and Air flow output of fan system 

 

According to the disaggregation method, the detailed 

mathematic function of EEI at component level have to 

include both physical and thermal laws in time point t as 

below: 

1. Centrifugal fan: Centrifugal fan is used for 

applications requesting low noise and vibration. It can 

produce high air pressure, lower noise than axial fan. Fan 

consumes transformed input energy and converts it to the 

air-flow power. Fan efficiency is the ratio between the 

power transferred to the air stream and the mechanical 

power delivered by the motor. In that way, SEC of 

centrifugal fan t

MSEC  is the ratio of electrical input power 

to air-flow power output: 

t

t F in

F t

F out

E
SEC

E





  (10) 

Where: 
t

F inE  is mechanical input of fan and 
t

F outE  is air-

flow power of drive system.  

With the direct connection, an adjustment of fan speed can 

cause different airflows and pressures or performance 

levels. According to fan law, power input varies with the 

cube power while air flow rates vary in direct proportion to 

the rotational speed of the fan (International Energy agency, 

2011). The energy efficiency of the centrifugal fan is shown 

in Figure 8a. 

2. Electrical motor: An electric motor converts 

electricity into mechanical power, usually in the form of a 

shaft delivering torque at a defined rotational speed to an 

application machine. SEC of motor 
t

MSEC is the ratio of 

electrical input power to mechanical output power.  

t

t M in

M t

M out

E
SEC

E





   (11) 

Where: 
t

M inE   is electrical input and depends on different 

physical and nonphysical indicators. However, in this work, 

it is assumed that 
t

M inE   depends only on the speed of 

motor. More precisely, by connected in serial with 

centrifugal fans, that power input 
t

M inE  and power output 

t

M outE   are proportional with the cube power of the 

operating speed of motor (U.S. Department of Energy 

Energy Efficiency and Renewable Energy, 1989). This 

means that SEC of the motor depends on its operating 

speed. The energy efficiency of the motor in function of its 

speed is shown in Figure 8b. 

It is important to note that the operating speed of the motor 

may depend on different physical and/or nonphysical factors 

such as deterioration of the bearing, temperature, control 

strategy, etc. In this work, only the deterioration of the 

bearing is considered. Based on the condition/deterioration 

level, motor speed is set, for example, when the 

deterioration of bear increases, the speed of motor should be 

reduced due to a limited noise level constraint. It is assumed 

also that the motor is considered as failed if the deterioration 

level of the bearing reaches a limit level, usually called the 

failure threshold. In this study, this threshold is equal to 

200. To predict the deterioration behavior of the bearing, a 

model-based prognostic is implemented with noise and 

vibration level as the main indicators of bearing health 

(Fernández-Francos, Martínez-Rego, Fontenla-Romero, & 

Alonso-Betanzos, 2013; Satish, Member, Sarma, & 

Member, 2005). More precisely, stochastic Gamma process 

is used to model the deterioration behavior of the bearing. 

The illustration of the bearing deterioration according to 

physical vibration signal and its corresponding speed are 

shown in Figure 9.  

 

3. Control system is adjusting working-point of fan 

according to demand of fan or control strategies (noise, 

positive pressure or negative pressure…). We are 

considering controller with variable-speed drive (VSD) and 

limitation of vibrations noise. So that, speed of motor will 

be reduced when the bearing deterioration level is 
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Figure 9. Illustration of the motor deterioration and 

its corresponding speed 
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increasing. We estimate the SEC of control system
t

CSEC  

as: 

t t

t C in Electrical in

C t t

C out C out

E E
SEC

E E

 

 

 

 

(12) 

Where: 
t

C inE  is electrical input and 
t

C outE  is electrical power 

output of control system. 
t

Electrical inE  is the electrical input for 

the air-fan system during at time t. 

It is show that the energy efficiency of VSD depends 

principally on the operating speed of the motor (Rooks & 

Wallace, 2004).  The energy efficiency of VSD in function 

of the speed of the motor is shown in Figure 8c. 

 

4.2. SEC and REEL evaluation at function/system level 

As discussed above, the energy efficiency performance at 

function/system level is the most important issue. In fact, it 

is possible to show the reusability of SEC concept for 

function/system. For the air-fan system, two cases are 

considered: 

- If we consider that useful output is the air-flow power. 

EE of fan system is defined by the ratio of power transferred 

to the airstream to the power input to the fan. the SEC of the 

air-fan system has to be calculated as: 

1

. .dt

t t t
System in Electrical in Electrical in

System t t h

t tSystem out F out

p

o

E E E
SEC

E E
V

  

 

  



 
(13) 

Where: h is operating hours; Vt is air flow (m3/hour) and 

Δtp is pressure difference from the fan inlet to the outlet (Pa) 

- If we calculate the useful output as air-flow, in this 

case, SEC or usually called as “Specific air-fan power 

(SFP)” is used to estimate the specific power consumption 

per volume of air delivered and the energy consumption 

required for transporting air: 

2

dt

 



 



t t
System in Electrical in

System t h

tSystem out

o

E E
SEC

P
V

 
(14) 

The Eq. (13) and (14) clearly show that with different types 

of useful outputs, the final SECs of system may be 

dramatically different. With complex air-fan systems, in 

which demanded air-pressure is varied according to the 

technical process or many types of air distribution existing, 

the impact of pressure has to be taken into account for EEP. 

The SFP is a good energy‐performance indicator for the 

whole system, but it does not necessarily indicate the 

efficiency of the fan. The SFP will be calculated by the real 

operating conditions, and maximum SFP will be specific by 

energy standard. So the first one will be used more common 

in industrial application where air-fan is seen as one 

component of complex system but the second one will 

prefer for designing and standalone air-fan system. Thus to 

be able to evaluate SEC for a function/system, the outputs of 

the function/system have to be standardized by a unique 

one.  

According to energy flow and air flow shown in Figure 7, 

the global energy consumption and useful physical output 

can be calculated as follows:  

0 0t t

FP P     (15) 

0. 0. 1.t t t t

C M FP P P P     (16) 

t t t t

System C Consumed M Consumed F ConsumedE        (17) 
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b) 
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Figure 8. Energy efficiency indicator of (a)- fan head, (b)- motor and (c)- flow control with operation conditions  (CML 

Northern Blower Incorporated, 1991; Rooks & Wallace, 2004; U.S. Department of Energy Energy Efficiency and 

Renewable Energy, 1989) 
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1 1
(1 ) (1 ) 1.t t t t

System C in M In F Int t

C M

E
SEC SEC

           (18) 

Where: 

t

CP , 
t

MP  and 
t

FP are useful output produced by control 

system, motor and centrifugal fan at time t. 

t

C Consumed , t

M Consumed  and t

F Consumed are the energy 

consumed by at controller, motor and fans, which are 

considered equal to the total energy losses during 

component operations at time t. 

From Eq. (6) and (16) we have the weighting factor for air 

output of each component as: 

 ,, 0,0,1   λ
t t t t

C M F     (19) 

From Eq. (7) and (18) we have the weighting factor for 

energy consumption of each component as: 

,, (1 1/ ),(1 1/ ),1         ω
t t t t t t

C M F C MSEC SEC    (20) 

At system level, these vectors ωt and λ
t
are closely related 

to energy consumption, useful output of control system, 

motor and centrifugal fan at time t. By applying an 

aggregation method, we can assess the EEP deterioration of 

the air-fan system in the future. The illustration is shown in 

Figure 10b.   

 

Based on the EEI (SEC) behavior predicted, REEL is 

evaluated by using Eq. (8). Figure 11a describes the 

potential evolution of SEC. Given a SEC threshold (herein

1.5thresholdSEC  ) the distribution of REEL is reached, see 

Figure 11b. The failure distribution of the motor is 

illustrated in Figure 11c. When compared with the 

distribution of REEL, it have a dramatically differences. 

Air-fan system is seen to reach the energy inefficient zone 

before it can touch the limit of physical life. This means that 

air-fan is available to deliver air, but consumed more energy 

than usual to distribution air and high level of noise and 

vibration of fan can have bad affections to the convenience 

of general system.  The SEC of any component (motor, 
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controller, etc.) and its EEP evaluation are used to identify 

the key component to maintain the general EEP of air-fan 

system. The benefits and complexity of conducting correct 

actions to maintain EEP with can be consider as a main 

additional factor for plan-making process. For example, the 

dust removing of fresh air-filter or air duct should be 

conducted more often to maintain the EEP than waiting for 

the next shutdown time of air-system for general inspection 

period. Thus, various decisions making based RUL may be 

no longer appropriate when considering the EE performance 

criterion.  

5. SUMMARY AND CONCLUSIONS 

In this paper, it is first described an overview on energy 

efficiency concepts. Different concepts are classified 

according to the related decision-making levels. Then an EE 

concept for industrial sector is deeply discussed and 

developed. It leads to focus on the assessment of the energy 

efficiency behavior of an industrial component/system. In 

that way, an energy efficiency indicator (EEI) is introduced. 

Furthermore, it is proposed a mathematical formulation for 

calculating the proposed EEI at both component and 

function/system level. This formulation is illustrated by the 

implementation of an electrical fan-blower system. In 

addition, a novel concept related to the remaining 

efficiency-efficient lifetime, named REEL, of a 

component/system is proposed. In relation to conventional 

RUL providing information about failure date, REEL 

provides the remaining efficient lifetime of a 

component/system before it loses the energy efficiency 

property. REEL may be an interesting tool for decision 

making, for example, in areas such as maintenance, 

production scheduling, etc. In addition, the paper proposes a 

prognostic formulation approach which can help to predict 

the REEL at component and function/system level. This 

formulation is also tested on the case of electrical fan-

blower system. To add the human experiences about EE in 

modeling need extra interesting studies and also analyze the 

model properties (big data problems, combinatorial 

explosion, metrics, etc.). These both conceptual and 

analytical proposals for evaluating the EEI seem powerful. 

It should be however validated on real industrial system 

applications to prove its added value and benefits. The later 

will be our future works.  

NOMENCLATURE 

EE Energy Efficiency  

EEI Energy Efficiency Indicators/Index 

EEP Energy Efficiency Performance 

REEL  Remaining energy-efficient lifetime 

SEC Specific Energy Consumption 

VSD Variable‐Speed Drive 
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