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ABSTRACT

A general framework to approach the challenge of uncertainty
propagation in model based prognostics is presented in this
work. It is shown how the so-called Point Estimate Meth-
ods (PEMs) are ideally suited for this purpose because of the
following reasons: 1) A credible propagation and represen-
tation of Gaussian (normally distributed) uncertainty can be
done with a minimum of computational effort for non-linear
applications. 2) Also non-Gaussian uncertainties can be prop-
agated by evaluating suitable transfer functions inherently.
3) Confidence intervals of simulation results can be derived
which do not have to be symmetrically distributed around
the mean value by applying PEM in conjunction with the
Cornish-Fisher expansion. 4) Moreover, the entire probability
function of simulation results can be reconstructed efficiently
by the proposed framework. The joint evaluation of PEM
with the Polynomial Chaos expansion methodology is likely
to provide good approximation results. Thus, non-Gaussian
probability density functions can be derived as well. 5) The
presented framework of uncertainty propagation is derivative-
free, i.e. even non-smooth (non-differentiable) propagation
problems can be tackled in principle. 6) Although the PEM
is sample-based the overall method is deterministic. Com-
putational results are reproducible which might be important
to safety critical applications. - Consequently, the proposed
approach may play an essential part in contributing to render
the prognostics and health management into a more credible
process. A given study of a generic uncertainty propagation
problem supports this issue illustratively.

This work includes unpublished elements of the Ph.D.-Thesis
(Schenkendorf, 2014).

1. INTRODUCTION

Model based approaches in fault diagnosis and identification
(FDI) have become quite popular in last decades. The value,
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however, of any derived mathematical model is directly linked
to its predictive power. That is, to describe the essential fea-
tures of interest as credibly as possible. In consequence of
a potential model misspecification and measurement uncer-
tainties the statistics of model based results has to be taken
into account adequately. This is especially true in the field of
prognostics and health management. For instance, the derived
remaining useful life (RUL) of an analyzed device might suf-
fer in its significance without any information of its credi-
bility. The underlying problem of uncertainty propagation,
however, is challenging for many real life applications. In
this paper it is demonstrated how Point Estimate Methods
(PEMs) are ideally suited to tackle the problem of uncertainty
propagation efficiently, i.e. utilizing a minimum of computa-
tional effort but ensuring a good approximation power even
for highly non-linear applications - which is usually the case
in RUL calculation.

The remainder of this paper is organized as follows. In Sec-
tion 2 the general problem of uncertainty propagation is ad-
dressed. In Section 3 the basics of the Point Estimate Meth-
ods are summarized. Moreover, it is discussed how non-
Gaussian uncertainties can be considered in the PEM frame-
work. Global sensitivities are addressed in 4. The proposed
framework of uncertainty propagation is illustrated in Section
5. Finally, the conclusion is given in Section 6.

2. UNCERTAINTY PROPAGATION

The continuously rising number of articles devoted to prob-
lems of uncertainty propagation/management in the field of
PHM (Saha, Goeble, Poll, & Christophersen, 2009; Daigle &
Goebel, 2010; Daigle, Saxena, & Goebel, 2012; Lapira, Bris-
set, Davari, Siegel, & Lee, 2012; Williard, He, Osterman, &
Pecht, 2013; Sankararaman & Goebel, 2013; Sankararaman,
Daigle, Saxena, & Goebel, 2013; Daigle & Sankararaman,
2013; Kulkarni, Biswas, Celaya, & Goebel, 2013; X. Zhang
& Pisu, 2014) is an excellent indicator for the significance of
this topic but highlights that there are still unsolved issues to
the same extent. Before introducing the PEM framework as
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a versatile tool for uncertainty propagation, general problems
in uncertainty propagation are briefly summarized.

To a certain extent, variability exists in any physical system.
The uncertainty quantification as well as its adequate repre-
sentation might be challenging in itself. Thus, to have a start-
ing point only problems are going to be analyzed which act in
the probabilistic framework exclusively. In general, the prob-
ability theory provides a comprehensive framework which,
however, may suffer in practicability in the presence of non-
linearity. Consequently, there is a keen demand in a credible
determination of probability density functions (PDFs) which
are associated to computational results in PHM. The concepts
of uncertainty propagation can be divided into analytical and
in approximate methods, respectively. Analytical approaches
might be suitable to illustrate the general concept of uncer-
tainty propagation for deliberately chosen problems, but they
suffer from practicability to the most real life applications.

2.1. Analytical Expressions

In general, the uncertainty propagation describes how a ran-
dom variable, ξ, is transferred by a (non)-linear function, g(·),
to the quantity of interest, η, according to

η = g(ξ) (1)

Occasionally, ξ and η are referred to as the input and the out-
put of an uncertainties propagation problem. For the pur-
pose of readability, the proposed methodologies are intro-
duced without loss of generality for 1-dimensional problems,
i.e., ξ ∈ R1 and η ∈ R1. Additionally, unless otherwise
specified, a standard Gaussian distribution of ξ is assumed,
ξ ∼ N (0, 1). One possible way to represent the uncertainty
about η consists in calculating the associated probability den-
sity function, pdfη . Assuming a monotonic function, g(·),
an analytical solution of the resulting PDF can be derived in
principle (Breipohl, 1970; Hines, Montgomery, Goldsman, &
Borror, 2003)

pdfη = pdfξ
(
g−1(η)

) ∣∣∣∣dg−1(η)

dη

∣∣∣∣ (2)

Any non-monotonic function has to be split up into mono-
tonic sub-parts that are transferred separately (Breipohl, 1970;
Hines et al., 2003).

Another point of interest might be in characteristic quantities
of the associated PDF, i.e, statistical moments of pdfη can be
used as an alternative to characterize the induced uncertainty
about η (Kay, 1993; Hines et al., 2003). For instance, the
mean, E [g(ξ)] , and the related variance, σ2

η , are frequently
analyzed and can be determined by

E [g(ξ)] =

∫
Ω

g(ξ)pdfξdξ (3)

σ2
η =

∫
Ω

[g(ξ)− E [g(ξ)]]
2
pdfξdξ (4)

Here, Ω represents the integration domain, i.e., in case of
probability theory it is equivalent to the sample space (Maitre
& Knio, 2010). Throughout this work, also higher statistical
moments are applied, e.g., the third, µ3, and the fourth central
moment, µ4, are considered as well and expressed by

µ3 =

∫
Ω

(g(ξ)− E [g(ξ)])
3
pdfξdξ (5)

µ4 =

∫
Ω

(g(ξ)− E [g(ξ)])
4
pdfξdξ (6)

Unfortunately, the proposed analytical solutions of the PDF
and/or statistical moments of η can be solved only for a lim-
ited number of uncertainty propagation problems (Breipohl,
1970; Stengel, 1994; Hines et al., 2003). In practice, however,
approximate methods have to be applied. Here, the Taylor se-
ries expansion and sample-based approaches are of current
interest and reviewed subsequently.

2.2. Basic Approaches in Approximate Methods

In real life, the complexity of g(·) - if at all available explic-
itly - prohibits results in closed-form. Consequently, approx-
imate methods aim: (1) to replace g(·) by handy surrogate
functions, ĝ(·), which facilitate closed-form solutions of Eq.
(2)-(6). Or alternatively (2), to solve these integral expres-
sions by numerical routines approximately.

2.2.1. Taylor Series Expansion

To solve equations similar to Eq. (2)-(6) in closed-form the
mapping function, g(·), is approximated by a surrogate func-
tion, ĝ(·), first. Here, the most common approach is the Tay-
lor series expansion. Under the assumption that g(·) is suf-
ficiently differentiable, the uncertainty propagation function
can be expressed by a superposition of Taylor terms:

η ≈ ĝ(ξ) =

N∑
i=0

∂ig

∂ξi

∣∣∣∣
ξ=E[ξ]

(ξ − E[ξ])i

i!
(7)

Generally, this sum is limited to a certain extent, N << ∞,
which may introduce an approximation error but ensures a
manageable computation demand. In the field of uncertainty
propagation, therefore, the first-order Taylor expansion can
be considered as a standard approach with good reasons.
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According to Eq. (1), the first-order Taylor series approxi-
mation is expanded at ξ = E[ξ] as shown below assuming
without loss of generality a one-dimensional problem.

η ≈ η̂ = g(ξ) +
∂g

∂ξ

∣∣∣∣
ξ=ξ

(ξ − ξ) (8)

Here, the resulting function, η̂, acts as a surrogate of the orig-
inal function, η. Now, by evaluating η̂ instead of η, the deter-
mination of statistical moments can be performed easily. For
instance, the resulting mean E[η̂] is expressed by

E[η̂] = g(E[ξ]) (9)

In addition, the expectation of the squared difference of Eqs.
(8) and (9) results into the variance expression of η̂ according
to

σ2
η̂ =

(
∂g

∂ξ

∣∣∣∣
ξ=ξ

)2

σ2
ξ (10)

Obviously, the statistics about η is approximated by a lin-
earization scheme and, therefore, only valid under serious
constraints:

“The Taylor series will be a good approximation
if g(·) is not too far from linear within the region that
is within one standard deviation of the mean.”

A. M. Breipohl (Breipohl, 1970)

Naturally, the utilization of higher-order terms in the Tay-
lor series expansion improves the accuracy gradually. For
instance, it has been shown that even an incorporation of a
moderate number of higher-order terms leads to a significant
improvement in accuracy (Xue & Ma, 2012), but . . .

“In practice, even the second order approxima-
tion is not commonly used and higher order approx-
imations are almost never used.”

U. N. Lerner (Lerner, 2002)

The same is true, in case of non-Gaussian distributions and/or
correlated random variables, see (Kay, 1993; J. Zhang, 2006;
Mekid & Vaja, 2008; Anderson, 2011; Mattson, Anderson,
Larson, & Fullwood, 2012) and references therein.

Additionally, the Taylor series is limited to problems of dif-
ferentiable transfer functions, g(·). At first, that means, the
transfer function has to be known explicitly. Therefore, black-
box type functions cannot be addressed immediately. Sec-
ondly, even in case of explicit expressions, functions might
be non-differential at all, e.g, the maximum function belongs

to those terms. Hence, the Taylor series is likely to suffer in
precision as well as in applicability.

3. POINT ESTIMATE METHODS

The method of Unscented Transformation (UT), which had
been introduced by Julier and Uhlmann in 1994 (Julier &
Uhlmann, 1994), have become quite popular in non-linear fil-
ter theory over the last two decades. The mathematical basics
of UT, however, date back approximately 60 years in time
(Tyler, 1953) to the so-called Point Estimate Methods. For-
mulas had been of interest to solve multi-dimensional inte-
gration problems over symmetrical regions, e.g., symmetric
probability functions (Evans, 1967, 1974). Due to this sym-
metry, numerical integration techniques can be derived which
at best scale linearly to an n-dimensional integration prob-
lem. The general basics of PEMs are shortly summarized be-
low following the annotations given in (Tyler, 1953; Lerner,
2002).

In Point Estimate Methods, the fundamental idea is to choose
sample points, ξi, and associated weights, wi, in relation to
the first raw moments of the random input variable, ξ. Here,
the so-called Generator Function,GF [·], (Tyler, 1953; Lerner,
2002) is of vital importance. A GF describes how sample
points are directly determined in Rn by permutation and the
change of sign-combinations. For instance, the first three GFs
are illustrated with a problem inR3:

GF [0] = {(0, 0, 0)T } (11)

GF [±ϑ] = {(ϑ, 0, 0)T , (−ϑ, 0, 0)T , (0, ϑ, 0)T ,

(0,−ϑ, 0)T , (0, 0, ϑ)T , (0, 0,−ϑ)T }
(12)

GF [±ϑ,±ϑ] = {(ϑ, ϑ, 0)T , (−ϑ,−ϑ, 0)T , (ϑ,−ϑ, 0)T ,

(−ϑ, ϑ, 0)T , (ϑ, 0, ϑ)T , (−ϑ, 0,−ϑ)T ,

(ϑ, 0,−ϑ)T , (−ϑ, 0, ϑ)T , (0, ϑ, ϑ)T ,

(0,−ϑ,−ϑ)T , (0, ϑ,−ϑ)T , (0,−ϑ, ϑ)T }
(13)

Here, the scalar parameter, ϑ, controls the spread of the sam-
ple points, ξi, in Rn. Generally, for the purpose of solv-
ing a n-dimensional integration problem, the idea is to use
a weighted superposition of function evaluations at GF-based
sample points, g(ξi), according to

∫
Ω

g(ξ)pdfξdξ ≈ w0g(GF [0]) + w1

∑
g(GF [±ϑ]) + . . .+

wn
∑

g(GF [±ϑ,±ϑ, . . . ,±ϑ︸ ︷︷ ︸
n times

])

(14)
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In practical applications, however, a balance has to be found
between the total number of used sample points and the re-
sulting precision in calculation. As only a finite number of
raw moments of the input random variable, ξ, is considered,
the transfer function, g(·), is approximated by monomials of
finite degree (Evans, 1967; Lerner, 2002). For instance, by
taking account for the first two non-zero raw moments of
ξ (still assuming a standard Gaussian distribution), the re-
lated monomials of the transfer function, g(·), are g(ξ) = 1
and g(ξ) = ξ[i]2 (any element of the random vector, i ∈
{1, . . . , n}; ξ ∈ Rn, could be evaluated due to symmetry,
ξ[i] = ξ[j] ∼ N (0, 1); i, j ∈ {1, . . . , n}; ξ ∈ Rn). Thus,
the transfer function is approximated correctly for monomi-
als of order three. This approximation scheme is labeled as
PEM3 in what follows. Remember that any odd power term
is zero in association to Gaussian distributions. In this par-
ticular case, only the first two Generator Functions, GF [0] ∩
GF [±ϑ], can be parametrized by solving the following equa-
tion system

w0 + 2nw1 =

∫
Ω

1pdfξdξ = 1 (15)

2w1ϑ
2 =

∫
Ω

ξ[i]2pdfξdξ = 1 (16)

In consequence, for ϑ 6= 0, the related weights can be calcu-
lated via

w0 = 1− n

ϑ2
(17)

w1 =
1

2ϑ2
(18)

As shown in (Julier & Uhlmann, 2004) higher-order moments
of the analyzed PDF can be used for the quantification of ϑ
additionally. For instance, considering the 4’th raw moment
of the standard Gaussian distribution leads to

2w1ϑ
4 =

∫
Ω

ξ[i]4pdfξdξ = 3 (19)

Therefore, applying ϑ =
√

3 might be an optimal choice in
case that the probability distribution of η is close to the nor-
mal distribution, but different values might be appropriate as
well depending on the problem at hand.

After a proper selection of points, ηi = g(ξi), and associated
weights, w0 & w1, the mean and the variance of η can be
determined approximatively according to

E[η] ≈ η = w0η0 + w1

2n∑
i=1

ηi (20)

σ2(η) ≈ w0(η0 − η)(η0 − η)T+

w1

2n∑
i=1

(ηi − η)(ηi − η)T
(21)

In the same manner also higher order moments of η can be
approximated according to

µ3 ≈ w0(η0 − η)(η0 − η)T (η0 − η)+

w1

2n∑
i=1

(ηi − η)(ηi − η)T (η0 − η)
(22)

µ4 ≈ w0(η0 − η)(η0 − η)T (η0 − η)(η0 − η)T+

w1

2n∑
i=1

(ηi − η)(ηi − η)T (η0 − η)(η0 − η)T
(23)

Naturally, the general precision of the PEM approach can be
increased gradually by considering higher order raw moments
of ξ. For instance, an approximation scheme can be applied
which represents monomials of g(·) correctly up to the preci-
sion of 5 via

E[g(ξ)] =

∫
Ω

g(ξ)pdfξdξ ≈ w0g(GF [0])+

w1g(GF (±ϑ)) + w2g(GF (±ϑ,±ϑ))

(24)

This approximation scheme is labeled as PEM5 subsequently.
In this case, the number of generated sample points, ξi, cor-
relates to 2n2 + 1 for a n-dimensional integration problem.
Here, for the purpose of parametrization of wi and ϑ an equa-
tion system can be derived taking into account monomials of
degree 5 or less

w0 + 2nw1 + 2n(n− 1)w2 =

∫
1pdfξdξ = 1 (25)

2w1ϑ
2 + 4(n− 1)w2ϑ

2 =

∫
ξ[i]2pdfξdξ = 1 (26)

2w1ϑ
4 + 4(n− 1)w2ϑ

4 =

∫
ξ[i]4pdfξdξ = 3 (27)

4w2ϑ
4 =

∫
ξ[i]2ξ[j 6= i]2pdfξdξ = 1 (28)

Therefore, the four unknowns can be uniquely determined by
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the previous equation system as

ϑ =
√

3 (29)

w0 = 1 +
n2 − 7n

18
(30)

w1 =
4− n

18
(31)

w2 =
1

36
(32)

Obviously, in case of an 1-dimensional input problem, ξ ∈
R1, the PEM3 and PEM5 scheme become equivalent for ϑ =√

3. In this very special constellation the PEM3 scheme has
the same precision as PEM5. This might be one reason why
the approximation potential of PEM3 is sometimes overrated
in n-dimensional input problems. Alternatively, the following
considerations may provide an assessment of the associated
approximation power in a readily comprehensible manner.

First, the Eq. (21) is reformulated according to

σ2
η ≈

(
w0g(ξ0)2 + w1

2n∑
i=1

g(ξi)
2

)
− g(ξ)2 (33)

σ2
η ≈ g(ξ)2 − g(ξ)2 (34)

Obviously, by calculating the variance, σ2
η , any sample-based

approach has to provide a good approximation of g(·) - but
of g(·)2, too. Here, the Taylor expansion is in favor as it is
sufficient to represent g(·) appropriately. This issue is illus-
trated in Fig.(1) by an generic 2-dimensional problem, g(ξ) =
ξ[1]c1ξ[2]c2 . In case of, g(ξ)2 = ξ[1]2c1ξ[2]2c2 , monomi-
als of order 4 and higher show up for ci > 1, ∀i = 1, 2.
Thus, the application of PEM3, which is correct up to mono-
mials of order 3, suffers in precision. In summary, only the
PEM5 scheme outperforms the 2. Order Taylor expansion
for multi-dimensional input problems and is applied in sub-
sequent considerations for this very reason. (Technical Re-
mark: The same is true when applying PEM3 and PEM5 as
an inherent part of Kalman Filtering. Only PEM5 is likely to
outperform a so-called second-order Extended Kalman Fil-
ter.)

3.1. Non-Gaussian Inputs

So far only the standard Gaussian distribution has been con-
sidered. In principle, the PEM concept can be applied for
any symmetric distribution. That means, distribution specific
sample points and weights can be determined by adapting Eq.
(15)-(16) and Eq. (25)-(28), respectively.

In most practical applications, however, one is usually inter-

ested in an easy to implement, robust, as well as efficient
algorithm. Therefore, a more practicable framework might
be desirable. Instead of adapting the weights and sample
points according to the distribution at hand, pdfξ′ , a (non)-
linear transfer function can be derived, q(·), which renders
a standard Gaussian distribution into the desired distribution,
ξ′ = q(ξ). Here, the inverse Rosenblatt transformation (Lee
& Chen, 2007) is applied to represent given PDFs associated
to ξ′ by random variables of standard Gaussian distributions,
ξ. Generally, the transformation can be expressed by

ξ′ = q(ξ) = F−1 (Φ(ξ)) (35)

Here, F−1(·) represents the inverse of the cumulative distri-
bution function (CDF) of the desired random variable ξ′, and
Φ(·) denotes the CDF of the standard Gaussian random vari-
able ξ. In the same manner even correlated random variables
can be transformed into independent standard Gaussian rep-
resentatives (Mandur & Budman, 2012). Moreover, empirical
(data driven) probability density functions might be incorpo-
rated as well, see (Schöniger, Nowak, & Franssen, 2012) for
details. In conclusion, the PEM becomes applicable for cor-
related non-Gaussian random variables. For example, in Tab.
1 some resulting transformation functions are given for fre-
quently used PDFs. Additional transformation formulas can
be found in (Isukapalli, 1999).

Type of pdfξ′ Transformation: q(ξ) =
Normal(µ, σ) µ+ σξ
Uniform(a, b) a+ (b− a)

(
1
2 + 1

2 erf(ξ
√

2)
)

Log-normal(µ, σ) exp(µ+ σξ)

Gamma(a, b) ab
(
ξ
√

1
9a + 1− 1

9a

)3

Exponential(λ) − 1
λ log

(
1
2 + 1

2 erf
(
ξ√
2

))
Table 1. Probability density function transformation formulas
adapted from (Isukapalli, 1999). Here, the term erf means the
error function.

Obviously, in most cases, the transformation function, q(·),
is a non-linear expression. Hence, as an inherent part of the
original uncertainty propagation problem, η = g(q(ξ)), the
overall non-linearity may become more severe. That means,
PEMs may suffer in precision to a certain extent additionally.
In many practical applications, however, this precision flaw
might be acceptable in the light of the easiness in implemen-
tation. The numerical results given in Sec. 5 confirm the
usefulness of the transformation approach convincingly.

3.2. Non-Gaussian Outputs

The problem of an adequate representation of the resulting
output uncertainty, η,is addressed in this subsection. As shown
previously, an approximation of the mean, E[η], and the vari-
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Figure 1. Benchmark of approximate methods: light gray circles represent the approximation power of the method given in
the caption of the sub-figures. Dark gray circles represents the approximation power of PEM5, which is considered as the
gold standard. In general, a high number of circles indicates a good approximation power, i.e., the associated monomial,
η = ξ[1]c1ξ[2]c2 , is approximated correctly. First row is devoted to the mean approximation. Here, the best performance shows
the PEM5 approach followed by PEM3, 2. Order Taylor, and, 1. Order Taylor expansion. Second row is devoted to the variance
approximation. Here, the best performance shows the PEM5 approach followed by 2. Order Taylor, PEM3, and, 1. Order
Taylor expansion.

ance, σ2
η , can be determined by PEM. Commonly, a Gaus-

sian PDF associated to the simulation result is parameterized
by these two quantities. In cases, however, where the actual
distribution of η diverges strongly in comparison to a Gaus-
sian PDF misleading inferences might be expected. Here, the
additional information of higher order moments of η, e.g.,
skewness, µ3, and the kurtosis, µ4, provided by PEM (Eq.
(22)-(23)) might be used as correction factors. For instance,
by considering confidence intervals related to η the Cornish-
Fisher expansion might be put in operation according to

qcfp = qp +
(q2
p − 1)µ3(η)

6σ3(η)
+

(q3
p − 3qp)µ4(η)

24σ4(η)
−

(2q3
p − 5qp)µ

2
3(η)

36σ6(η)

(36)

Here, qcfp is a corrected confidence limit associated to a con-
fidence level p, for more details see (Usaola, 2009) and refer-
ences therein.

Moreover, the entire PDF of η can be reconstructed efficiently
by combining PEM with the Polynomial Chaos Expansion
(PCE) concept. In uncertainty analysis, PCE has become
quite popular in the last two decades. The essential idea is
to represent a random variable, η, by a weighted superposi-
tion of an infinity number of basis functions, Ψi(·),(Maitre &
Knio, 2010) according to

η = g(ξ) =

∞∑
i=0

aiΨi(ξ) (37)

Similar to the Taylor series expansion computational feasibil-
ity has to be addressed. Therefore, the expansion in Eq. (37)
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is implemented in a truncated form

η̂ =

lpce∑
i=0

aiΨi(ξ) (38)

By a proper choice of basis functions, Ψi(·), the determina-
tion of the unknown coefficients, ai, can be simplified. In
particular, different sets of orthogonal basis functions are pro-
vided depending on the associated PDF of the random in-
put variable, ξ. For instance, Hermite polynomials are uti-
lized in case of a Gaussian distribution. In literature, differ-
ent approaches are known to determine the coefficients, ai,
see (Templeton, 2009; Maitre & Knio, 2010) and references
therein. Here, the focus is on the least-square approach solely
as PEM can be utilized here, too. In practical implementa-
tions, a residual, r(ξ), emerges due to the truncation of PCE
terms, lpce <<∞,

r(ξ) = g(ξ)−
lpce∑
i=0

aiΨi(ξ) (39)

Now, the expected sum of squared errors can be defined as a
suitable cost function

JPCE =

∫
Ω

[r(ξ)]2pdfξdξ (40)

The additivity of the expectation operator enables the follow-
ing reordering

JPCE =

∫
Ω

g(ξ)2pdfξdξ − 2

∫
Ω

g(ξ)

lpce∑
i=0

aiΨi(ξ)pdfξdξ+

∫
Ω

lpce∑
i=0

aiΨi(ξ)

2

pdfξdξ

(41)

The minimum of this cost function can be found by differ-
entiation of Eq. (41) with respect to ai, and by setting the
resulting derivative equal to zero. Here, due the orthogonal-
ity of Ψi the mathematical expression results in

∂JPCE
∂ai

= −2

∫
Ω

g(ξ)Ψi(ξ)pdfξdξ+

2ai

∫
Ω

Ψi(ξ)
2pdfξdξ

!
= 0

(42)

Therefore, the ith coefficient can be calculated according to

ai =

∫
Ω
g(ξ) Ψi pdfξ dξ∫

Ω
Ψi(ξ)2 pdfξ dξ

(43)

In case of Hermite polynomials, the denominator can be de-
termined immediately, see (Maitre & Knio, 2010) for details.
The numerator of Eq. (43), however, has to be derived nu-
merically. Obviously, instead of solving one of the original
integrals, Eq. (2)-(6), a modified integration problem has
to be tackled. Here, a proper quantification of the coeffi-
cients, ai, ensures an optimal parametrization of PCE, Eq.
(38). By combining PCE with PEM5 an overall number of
2n2 + 1; (ξ ∈ Rn) function evaluations has to be performed.
Subsequently, associated moments of η̂ can be calculated an-
alytically, e.g., the mean and the variance are determined by

E[η̂] = a0 (44)

σ2
η̂ =

lpce∑
i=1

a2
i

∫
Ω

Ψi(ξ)
2pdfξdξ (45)

In addition, a PDF approximation of η̂ can be derived in com-
bination with Monte Carlo simulations and standard Kernel
density estimation algorithm which are available in standard
computation/statistic tools, e.g., routines available in MAT-
LAB or in R!. Please bear in mind that η̂ is an algebraic ex-
pression of ξ, Eq. (38). Therefore, MC simulations based on
η̂ can be performed at low computational costs. In summary,
PCE benefits from its versatility and its good convergence be-
havior, see (Maitre & Knio, 2010) for additional details.

4. GLOBAL SENSITIVITY ANALYSIS

To assess the influence of the uncertain quantities (called in-
puts in what follows), ξ, on simulation results, η(t), related
sensitivities have to be analyzed. Whenever the considered
inputs are almost certainly known, i.e. the variance of ξ is
low, the sensitivities can be determined by a local approach
evaluating the Sensitivity Matrix (SM)

SM(tk) =
∂η(tk)

∂ξ

∣∣∣∣
ξ

(46)

Usually, this is not the case and global methods which take
the scatter of inputs explicitly into account have to be applied.
Variance-based approaches are tailored to cope with this situ-
ation well. Hence, treating inputs, ξ, and the output, η(t), as
random variables, the amount of variance that each element,
ξ[i], adds to the variance of the output, σ2(η(t)), can be quan-
tified.
The ranking of an input ξ[i] is done by the amount of output
variance that disappears, if this input ξ[i] is assumed to be
known, σ2(ξ[i]) = 0. For any input ξ[i], which is assumed

7



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

to be known, a conditional variance, σ
−i

2(η|ξ[i]), can be de-

termined. Here, the subscript −i indicates that the variance
is taken over all inputs other than ξ[i]. As ξ[i] itself is a ran-
dom variable in reality, the expected value of the conditional

variance, E
i

[
σ
−i

2(η|ξ[i])
]

, has to be determined. Here, the

subscript E
i

indicates that the expected value is only taken

over the input ξ[i]. Finally, the output variance, σ2(η), can be
separated (Saltelli, Ratto, Tarantola, & Campolongo, 2005)
into the following two additive terms

σ2(η) = σ
i

2(E
−i

[η|ξ[i]]) + E
i
[σ
−i

2(η|ξ[i])] (47)

The variance of the conditional expectation, σ
i

2(E
−i

[η|ξ[i]]),

represents the contribution of input ξ[i] to the variance σ2(η).
The normalized expression in Eq. 48 is known as the first
order sensitivity index (Sobol’, 1993) and is used in the fol-
lowing for sensitivity analysis.

Sηi =
σ
i

2(E
−i

[η|ξ[i]])

σ2(η)
(48)

The integrals associated to σ2(η), E
−i

[η|ξ[i]], and σ2(η|ξ[i])
are commonly evaluated by Monte Carlo (MC) simulations
(Sobol’, 2001). MC simulations, however, come along with a
prohibitively computational load. Thus, the PEM method-
ology is put in operation to reduce the computational de-
mand significantly. In detail, the overall variance, σ2(η), is
determined by the PEM5. A total number of 2n2 + 1 sam-
ple points have to be evaluated and analyzed. Subsequently,
the evaluated samples can be reused to calculate the variance
of the conditional expectation, σ

i

2(E
−i

[η|ξ[i]]), immediately.

That means, the total number of function evaluations corre-
lates to 2n2 + 1, i.e., PEM5 renders the Global Sensitivity
Analysis into a feasible approach which can be applied with
a manageable computational effort to real life scenarios. By
implementing the proposed strategy, precision demands are
fulfilled automatically, i.e., determined variances are related
to monomials of precision 5, whereas the expectations are as-
sociated to monomials of precision 3.

5. CASE STUDY

The proposed concepts are demonstrated by a generic uncer-
tainty propagation problem according to

η(t) = g(ξ′, t) = ξ′[1]e−ξ
′[2](e−ξ

′[3]t) (49)

which may describe the progress in degradation of a technical
device. The independent elements of the random vector, ξ′,
are associated to a non-standard Gaussian, an Uniform, and

Log-Normal distribution, respectively. The detail specifica-
tions of the applied distributions (Fig. 2) are given by

ξ′[1] ∼ N (5, 0.1) (50)
ξ′[2] ∼ U(1, 3) (51)
ξ′[3] ∼ lnN (1, 0.12) (52)

By applying feasible transfer functions, qi(·), the problem of
uncertainty propagation is based on standard Gaussian distri-
bution, ξ[i] ∼ N (0, 1); ∀i = 1, 2, 3, solely:

η(t) = g(q(ξ), t) = q1(ξ[1])e−q2(ξ[2])(e−q3(ξ[3])t) (53)

Obviously, by applying PEM5 there is a need for evaluating
g(·) 19 times (ξ ∈ R3, 2 · 32 + 1 = 19). In comparison to
Monte Carlo simulations (10.000 simulation runs), the pro-
posed PEM5 concept provides working results in approximat-
ing the mean and the variance of η by a minimum of computa-
tional load. The indirect approach, i.e. deriving PCE first and
utilizing its coefficients to represent the first two moments of
η, provides similar results with the same computational ef-
fort. The numerical outcome is illustrated in Fig. 3(a) and
3(b), respectively.

0 1 2 3 4 5 6
0

2

4

ξ′

p
df
ξ
′

Normal
Uniform

Log-Normal

Figure 2. Assumed input uncertainties: ξ[1]′ ∼ N (5, 0.1),
ξ[2]′ ∼ U(1, 3), and ξ[3]′ ∼ lnN (1, 0.12).

In principle, with those approximated values confidence in-
tervals, CI(t) = E[η(t)] ± qp · σ2

η , can be derived. Due
to a potential non-Gaussian distribution associated to η sym-
metric confidence intervals might lead to misinterpretation in
the prognostic framework as indicated by Fig. 4(a). Here,
confidence intervals corrected by higher-order statistical mo-
ments, i.e. by applying PEM5 and the Cornish-Fisher expan-
sion jointly, might be more credible as demonstrated in Fig.
4(b). Moreover, the indirect approach based on PCE mim-
ics the real uncertainty propagation problem adequately (Fig.
4(c)), too. The entire PDF of η(t) might be derived econom-
ically by Monte Carlo simulations which evaluate the PCE
based surrogate expression, ĝ(·), but not a potential CPU-
intensive function, g(·). Corresponding snapshots at t = 0.2
and t = 1.0 are illustrated in Fig. 5 and Fig. 6, respectively.
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(a) Approximation error of E[η]
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(b) Approximation error of σ2
η

Figure 3. Here, the relative approximation error is illustrated
in percentages. PEM5 as well as PCE have an excellent ap-
proximation power in relation to the mean, E[η]. In case of
the variance, σ2

η , PEM5 shows an improved convergence in
comparison to PCE.

Here, the non-Gaussian distribution is captured adequately by
PCE.

Finally, global sensitivities are analyzed. Assuming the same
configuration given in Eq. (50)-(52) the impact of each ξ[i] to
the overall variability/uncertainty of η(t) is shown in Fig. 7.
Here, too, the corresponding Sobol’ indices are derived very
efficiently. In detail, a total number of 2·32 +1 = 19 function
evaluations is sufficient - a remarkable low computational de-
mand in the field of global sensitivity analysis.

6. CONCLUSION

The PEM is identified to be a credible as well as practical con-
cept for the purpose of uncertainty propagation/management.
It is demonstrated how PEM can e applied to non-Gaussian
distributions by evaluating suitable transfer functions inher-
ently. Moreover, the universal concept of PEM provides an
efficient calculation of global sensitivities. Therefore, PEM
is a versatile approach which may contribute to tackle an ur-
gent issue in PHM - the reliable propagation of uncertainty in
prognostics and health management.

0 0.5 1 1.5 2 2.5 3

0

2

4

6

η
(t

)

99%-CI
MC simulations

(a) Original PEM5 99%-Confidence Intervals

0 0.5 1 1.5 2 2.5 3

0

2

4

6

η
(t

)

99%-CI
MC simulations

(b) Cornish-Fisher corrected 99%-Confidence Intervals

0 0.5 1 1.5 2 2.5 3

0

2

4

6

t

η
(t

)

MC simulations

(c) PCE based Monte Carlo simulations, i.e., instead of applying g(·) its effi-
ciently to evaluate surrogate ĝ(·) is used

Figure 4. Benchmark Monte Carlo simulation vs. approxi-
mate concepts. The 99%- CI derived by PEM5 encloses the
MC simulations, see (a). The performance can be improved
by applying Cornish-Fisher, see (b). Here, the 99%- CI en-
capsulates the Monte Carlo simulations more reliably. The
MC simulations based on PCE (c) fits to original MS simula-
tions given in (a) and (b) quite well.
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APPENDIX

Following Hermite polynomials have been applied:

Ψ0(ξ) = 1

Ψ1(ξ) = ξ[1]

Ψ2(ξ) = ξ[1]2 − 1

Ψ3(ξ) = ξ[1]3 − 3ξ[1]

Ψ4(ξ) = ξ[2]

Ψ5(ξ) = ξ[2]2 − 1

Ψ6(ξ) = ξ[2]3 − 3ξ[2]

Ψ7(ξ) = ξ[3]

Ψ8(ξ) = ξ[3]2 − 1

Ψ9(ξ) = ξ[3]2 − 3ξ[3]

Ψ10(ξ) = ξ[1]ξ[2]

Ψ11(ξ) = ξ[1]2ξ[2]− ξ[2]

Ψ12(ξ) = ξ[2]2ξ[1]− ξ[1]

Ψ13(ξ) = ξ[3]

Ψ14(ξ) = ξ[1]2ξ[3]− ξ[3]

Ψ15(ξ) = ξ[3]2ξ[1]− ξ[1]

Ψ16(ξ) = ξ[2]ξ[3]

Ψ17(ξ) = ξ[2]2ξ[3]− ξ[3]

Ψ18(ξ) = ξ[3]2ξ[2]− ξ[2]

Ψ19(ξ) = ξ[1]ξ[2]ξ[3]

Following coefficients have been utilized:∫
Ω

Ψ0(ξ)2 pdfξ dξ = 1∫
Ω

Ψ1(ξ)2 pdfξ dξ = 1∫
Ω

Ψ2(ξ)2 pdfξ dξ = 2∫
Ω

Ψ3(ξ)2 pdfξ dξ = 6∫
Ω

Ψ4(ξ)2 pdfξ dξ = 1∫
Ω

Ψ5(ξ)2 pdfξ dξ = 2∫
Ω

Ψ6(ξ)2 pdfξ dξ = 6∫
Ω

Ψ7(ξ)2 pdfξ dξ = 1∫
Ω

Ψ8(ξ)2 pdfξ dξ = 2∫
Ω

Ψ9(ξ)2 pdfξ dξ = 6∫
Ω

Ψ10(ξ)2 pdfξ dξ = 1∫
Ω

Ψ11(ξ)2 pdfξ dξ = 2∫
Ω

Ψ12(ξ)2 pdfξ dξ = 2∫
Ω

Ψ13(ξ)2 pdfξ dξ = 1∫
Ω

Ψ14(ξ)2 pdfξ dξ = 2∫
Ω

Ψ15(ξ)2 pdfξ dξ = 2∫
Ω

Ψ16(ξ)2 pdfξ dξ = 1∫
Ω

Ψ17(ξ)2 pdfξ dξ = 2∫
Ω

Ψ18(ξ)2 pdfξ dξ = 2∫
Ω

Ψ19(ξ)2 pdfξ dξ = 1
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