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ABSTRACT

Systems health management, and in particular fault diagno-
sis, is important for ensuring safe, correct, and efficient op-
eration of complex engineering systems. The performance
of an online health monitoring system depends critically on
the available sensors of the system. However, the set of se-
lected sensors is subject to many constraints, such as cost and
weight, and hence, these sensors must be selected judiciously.
This paper presents an offline design-time sensor placement
approach for complex systems. Our diagnosis method is built
upon the analysis of model-based residuals, which are com-
puted using structural model decomposition. Sensor place-
ment in this framework manifests as a residual selection prob-
lem, and we aim to find the set of residuals that achieves
single-fault diagnosability of the system, uses the minimum
number of sensors, and corresponds to the best model decom-
position for the best distribution of the diagnosis system. We
present a set of algorithms for solving this problem and com-
pare their performance in terms of computational complexity
and optimality of solutions. We demonstrate the approach
using a benchmark multi-tank system.

1. INTRODUCTION

Fault diagnosis, an important aspect of systems health man-
agement, is essential for ensuring safe, correct, and efficient
operation of complex engineering systems. Fault diagnosis
involves fault detection (whether system behavior is off-nom-
inal), fault isolation (what is the root cause of the off-nominal
behavior), and fault identification (what is the fault magni-
tude). The performance of the fault diagnosis system depends
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on the available sensors from which diagnostic information
can be extracted. However, the set of selected sensors are sub-
ject to many constraints, such as cost and weight, and hence,
these sensors must be selected judiciously.

For fault isolation, a valid placement of sensors should be one
in which the system is diagnosable, i.e., all single faults can
be uniquely isolated from each other, which is a design met-
ric for diagnostic performance (Narasimhan, Mosterman, &
Biswas, 1998). We utilize a fault isolation framework that is
based on the analysis of model-based residuals, where each
residual is computed as the difference between a measured
sensor output and the predicted value of that sensor output.
Local models of the system, that are used to make predic-
tions of measured outputs, are generated by decomposing the
global model of the system using structural model decom-
position (Roychoudhury, Daigle, Bregon, & Pulido, 2013).
Therefore, the problem of sensor placement is directly related
to one of residual selection.

In this paper, we formulate the sensor placement problem and
establish its search space through the novel concept of a com-
plete residual set, based on structural model decomposition.
We present three algorithms for solving this sensor placement
problem and compare their performance in terms of compu-
tational complexity and optimality of solutions. The different
algorithms are: (i) exhaustive search, (ii) stochastic search,
and (iii) structured search. The exhaustive search is a brute
force search over the residual space, and so guarantees opti-
mality but is not scalable. The stochastic search selects ran-
dom residual sets and modifies them randomly to try to im-
prove the current set of candidate solutions. The structured
search algorithm uses knowledge of what solutions are pre-
ferred in order to search a reduced space in a structured fash-
ion. We demonstrate the approach using a benchmark multi-
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tank system (Daigle, Bregon, Biswas, Koutsoukos, & Pulido,
2012). In this work, we focus on continuous systems and
adopt the single fault assumption.

This paper is organized as follows. Section 2 presents re-
lated work to set the context for our contributions. Section 3
provides the necessary background information on structural
model decomposition and our qualitative fault isolation frame-
work. The problem formulation, which defines the problem
and establishes its search space, is presented in Section 4. The
diagnosability-based measurement selection approach and the
three algorithms are described in Section 5. Experimental re-
sults are provided in Section 6. Section 7 concludes the paper
and discusses future work.

2. RELATED WORK

Efficient solutions to the sensor placement problem have been
explored before. Our work is in contrast to other approaches
present in literature (Basseville, Benveniste, Moustakides, &
Rougee, 1987; Debouk, Lafortune, & Teneketzis, 2002; Roy-
choudhury, Biswas, & Koutsoukos, 2009) in that we look for
solutions that obtain maximum diagnosability by minimiz-
ing the size of the submodels, which yields smaller-sized di-
agnosers and allows its implementation as a distributed ap-
proach. For example, in (Basseville et al., 1987), the authors
propose an approach for optimal sensor location to increase
the fault detection performance in dynamic systems using sta-
tistical tests. In (Debouk et al., 2002) the authors assume that
the system is diagnosable given a set of sensors and look for
the least expensive combination of those sensors under which
the system is still diagnosable. Our decision in favor of dis-
tributed approaches is influenced by the fact that the design of
fault diagnosers can have consequences in terms of computa-
tional efficiency, scalability, single points of failure, and the
quickness of fault diagnosis, among others (Roychoudhury
et al., 2009). For example, centralized diagnosis approaches
suffer from single points of failure, large computational com-
plexity, and scalability issues. Decomposing the diagnosis
problem can address some or all of these issues.

Unlike the related approach of (Roychoudhury et al., 2009),
another focus of our work is in the use of structural informa-
tion to determine the best sensor locations. Several previous
papers make use of structural information for solving the sen-
sor placement problem (Krysander & Frisk, 2008; Rosich,
2012; Travé-Massuyès et al., 2006; Said & Djamel, 2013).
The use of structural information allows to efficiently solve
this problem for large and nonlinear differential-algebraic mod-
els. In (Krysander & Frisk, 2008) the authors propose new a
method, using Dulmage-Mendelson decomposition, for com-
puting which sensors to add to obtain maximum fault de-
tectability and isolability. A related approach is proposed in
(Travé-Massuyès et al., 2006), but following a different strat-
egy. Instead of computing which sensors to add to obtain

a certain isolability performance, in (Travé-Massuyès et al.,
2006) the problem is solved by hypothesizing sensors, then
computing Analytical Redundancy Relations (ARR) with all
possible causalities, and then obtaining the isolability prop-
erties. In this sense, our approach is more similar to the ap-
proach of (Krysander & Frisk, 2008), since we add sensors
looking for maximum diagnosability and then decompose the
system to look for the smaller submodels to obtain that max-
imum diagnosability. However, our approach is different to
both, since we include qualitative and temporal information
within our models, which improves diagnosability; and sec-
ond, the approach in (Travé-Massuyès et al., 2006) only al-
lows solutions where residuals are computed by using mini-
mal submodels.

Other approaches in the literature consider causal informa-
tion within the system model (Raghuraj, Bhushan, & Ren-
gaswamy, 1999; Rosich, Frisk, Aslund, Sarrate, & Nejjari,
2012). In (Raghuraj et al., 1999), the authors use a directed
graph and algorithms based on the graph to look for the op-
timal sensor location to ensure observability and fault reso-
lution. Also, the authors discuss the possibility of including
signs in the graph. However, unlike the approach presented
in this paper, signs are not included in the algorithms. An-
other difference against our approach is that they only con-
sider residuals computed using the global system model. In
(Rosich et al., 2012), the authors only allow residuals com-
puted from minimal submodels and temporal information is
not included.

One of the main problems of the structural approach to sen-
sor placement, especially when a large number of feasible
sensor locations is available, is that the computational effort
to look for the optimal solution could be huge. In (Eriksson,
Krysander, & Frisk, 2012) the authors use a quantitative diag-
nosability analysis to optimize sensor placement for fault di-
agnosis. In (Casillas, Puig, Garza-Castañon, & Rosich, 2013)
genetic algorithms are used for the same task. Unlike the
previous approaches, in (Frisk, Krysander, & Åslund, 2009)
the authors use analytical equations as a solution which can
handle models where structural approaches fail, however, it
is limited only to linear differential-algebraic systems, which
restricts severely its applicability to practical systems.

3. BACKGROUND

In this section, we first describe our approach to structural
model decomposition, which, given a global system model,
creates local models of system behavior. We then describe
our model-based diagnostic framework that is based on anal-
ysis of residuals computed using these local models.

3.1. System Modeling

We adopt here the structural model decomposition framework
described in (Roychoudhury et al., 2013). In the following,
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Figure 1. Tank system schematic.

we review the main details and and refer the interested reader
to (Roychoudhury et al., 2013) for additional explanation. We
define a model as follows:

Definition 1 (Model). A modelM∗ is a tupleM∗ = (V,C),
where V is a set of variables, and C is a set of constraints
among variables in V . V consists of five disjoint sets, namely,
the set of state variables, X; the set of parameters, Θ; the set
of inputs, U ; the set of outputs, Y ; and the set of auxiliary
variables, A. Each constraint c = (εc, Vc), such that c ∈ C,
consists of an equation εc involving variables Vc ⊆ V .

Input variables, U , are known, and the set of output variables,
Y , correspond to the (measured) sensor signals. Parame-
ters, Θ, include explicit model parameters that are used in the
model constraints. Auxiliary variables,A, are additional vari-
ables that are algebraically related to the state and parameter
variables, and are used to reduce the structural complexity of
the equations.

Throughout the paper, we use a benchmark multi-tank sys-
tem as a running example. The system consists of n tanks
connected serially, as shown in Fig. 1. For each tank i, where
i ∈ [1, n], ui denotes the input flow, mi denotes the liquid
mass, pi denotes the tank pressure, qi denotes the mass flow
out of the drain pipe, Ki denotes the tank capacitance, and
Rei denotes the drain pipe resistance. For adjacent tanks i
and i + 1, qi,i+1 denotes the mass flow from tank i to tank
i+1 through the connecting pipe, andRei,i+1 is the connect-
ing pipe resistance. The constraints for tank i are as follows:

ṁi = ui + qi−1,i − qi − qi,i+1,

mi =

∫ t

t0

ṁidt,

pi =
1

Ki
mi,

qi =
1

Rei
pi,

qi,i+1 =
1

Rei,i+1
(pi − pi+1).

For tank 1, q0,1 = 0, and for tank n, qn,n+1 = 0.

The measurements corresponding to pi, qi, and qi,i+1 are p∗i ,

q∗i , and q∗i,i+1 and are described by the following constraints:

p∗i = pi,

q∗i = qi,

q∗i,i+1 = qi,i+1.

Example 1. For a three-tank system measuring the output
flows, the modelM∗ is represented by the variable sets X =
{m1,m2,m3}, Θ = {K1, K2, K3, Re1, Re2, Re3, Re1,2,
Re2,3}, U = {u1, u2, u3}, Y = {p∗1, p∗2, p∗3, q∗1 , q∗2 , q∗3 ,
q∗1,2, q

∗
2,3}, and A = {ṁ1, ṁ2, ṁ2, p1, p2, p3, q1, q2, q3};

and the set of constraints C = {c1, c2, . . . , c22}, where the
constraints are given as follows:

ṁ1 = u1 − q1 − q1,2, (c1)
ṁ2 = u2 + q1,2 − q2 − q2,3, (c2)
ṁ3 = u3 + q2,3 − q3, (c3)

m1 =

∫ t

t0

ṁ1dt, (c4)

m2 =

∫ t

t0

ṁ2dt, (c5)

m3 =

∫ t

t0

ṁ3dt, (c6)

p1 =
1

K1
m1, (c7)

p2 =
1

K2
m2, (c8)

p3 =
1

K3
m3, (c9)

q1 =
1

Re1
p1, (c10)

q2 =
1

Re2
p2, (c11)

q3 =
1

Re3
p3, (c12)

q1,2 =
1

Re1,2
(p1 − p2), (c13)

q2,3 =
1

Re2,3
(p2 − p3), (c14)

p∗1 = p1, (c15)
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p∗2 = p2, (c16)
p∗3 = p3, (c17)
q∗1 = q1, (c18)
q∗2 = q2, (c19)
q∗3 = q3, (c20)
q∗1,2 = q1,2, (c21)

q∗2,3 = q2,3. (c22)

Here, the ∗ superscript is used to denote a measured value of
a physical variable, e.g., p1 is pressure and p∗1 is the measured
pressure. Since p1 is used to compute other variables, it can-
not belong to Y and a separation of the variables is required.

The notion of a causal assignment is used to specify the com-
putational causality for a constraint c, by defining which v ∈
Vc is the dependent variable in equation εc.
Definition 2 (Causal Assignment). A causal assignment α
to a constraint c = (εc, Vc) is a tuple α = (c, voutc ), where
voutc ∈ Vc is assigned as the dependent variable in εc.

We write a causal assignment of a constraint using its equa-
tion in a causal form, with := to explicitly denote the causal
(i.e., computational) direction.
Definition 3 (Valid Causal Assignments). We say that a set
of causal assignments A, for a modelM∗ is valid if

• For all v ∈ U ∪ Θ, A does not contain any α such that
α = (c, v).

• For all v ∈ Y , A does not contain any α = (c, voutc )
where v ∈ Vc − {voutc }.

• For all v ∈ V −U−Θ,A contains exactly one α = (c, v).

The definition of valid causal assignments states that (i) input
or parameter variables cannot be the dependent variables in
the causal assignment, (ii) a measured variable can be used
as the dependent variable, and (iii) every variable, which is
not input or parameter, is computed by only one (causal) con-
straint.

Based on this, a causal model is a model extended with a valid
set of causal assignments.
Definition 4 (Causal Model). Given a modelM∗ = (V,C),
a causal model forM∗ is a tupleM = (V,C,A), where A
is a set of valid causal assignments.

For the n-tank system, the causal constraints for tank i are as
follows:

ṁi := ui + qi−1,i − qi − qi,i+1,

mi :=

∫ t

t0

ṁidt,

pi :=
1

Ki
mi,

qi :=
1

Rei
pi,

qi,i+1 :=
1

Rei,i+1
(pi − pi+1),

p∗i := pi,

q∗i := qi,

q∗i,i+1 := qi,i+1.

Example 2. The causal modelM is represented by the same
variables and constraints asM∗, along with the set of causal
assignments A = {α1, α2, . . . , α22}, as given below:

ṁ1 := u1 − q1 − q1,2, (α1)
ṁ2 := u2 + q1,2 − q2 − q2,3, (α2)
ṁ3 := u3 + q2,3 − q3, (α3)

m1 :=

∫ t

t0

ṁ1dt, (α4)

m2 :=

∫ t

t0

ṁ2dt, (α5)

m3 :=

∫ t

t0

ṁ3dt, (α6)

p1 :=
1

K1
m1, (α7)

p2 :=
1

K2
m2, (α8)

p3 :=
1

K3
m3, (α9)

q1 :=
1

Re1
p1, (α10)

q2 :=
1

Re2
p2, (α11)

q3 :=
1

Re3
p3, (α12)

q1,2 :=
1

Re1,2
(p1 − p2), (α13)

q2,3 :=
1

Re2,3
(p2 − p3), (α14)

p∗1 := p1, (α15)
p∗2 := p2, (α16)
p∗3 := p3, (α17)
q∗1 := q1, (α18)
q∗2 := q2, (α19)
q∗3 := q3, (α20)
q∗1,2 := q1,2, (α21)

q∗2,3 := q2,3. (α22)
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Figure 2. Causal graph of the three-tank system.

We can visualize a causal model M using a directed graph
G = (N,A), where N is the set of nodes corresponding di-
rectly to the variables V inM, and A is the set of arcs, where
for every (c, voutc ) ∈ A, we include an arc (v′, voutc ) for each
v′ ∈ Vc − {voutc }.
Example 3. The causal graph corresponding to the three-tank
system model is given in Fig. 2. In the graph, we mark inputs
with dashed circles, state variables with dashed squares, and
outputs with solid squares.

3.2. Structural Model Decomposition

In our approach, a fault f is modeled as a step change in a
system model parameter value, θ ∈ Θ. Faults cause changes
in observed system behavior from model-predicted behavior.
We can detect such changes by computing residuals, defined
as the difference between the measured and predicted value
of some sensor.

Using the causal modelM of a system, we can predict values
of all the sensors in order to compute residuals. However, in
the global model, faults are coupled to all the sensors, i.e.,
they cause deviations in all the sensors eventually. Through
structural model decomposition, we can instead define local
submodels in which each residual responds to only a subset
of the faults, increasing diagnosability (Daigle et al., 2012).

Under this approach, given a (global) model, we can create
(local) submodels that use as additional inputs values from
the sensors (Roychoudhury et al., 2013). Given the set of
potential local inputs (selected from U ∪ Y ) and the set of
variables to be computed by the submodel (selected from Y ),
we create from a causal modelM a causal submodelMYi

, in
which Yi ⊆ Y is computed using Ci ⊆ C. In this way, each
submodel computes its variable values independently from
all other submodels. A causal submodel can be defined as
follows.
Definition 5 (Causal Submodel). A causal submodel MYi

of a causal modelM = (V,C,A) is a tupleMYi
= (Vi, Ci,

Ai), where Vi ⊆ V , Ci ⊆ C, and Ai ∩ A 6= ∅.

When using measurements (from Y ) as local inputs for a
causal submodel, the causality of these constraints must be
reversed, and so, in general, Ai is not a subset of A.

The procedure for generating a causal submodel from a causal
model is given as Algorithm 1 (Roychoudhury et al., 2013).
Given a causal modelM, and an output variable to be com-
puted y, the GenerateSubmodel algorithm derives a causal
submodelMi that computes y using as local inputs only vari-
ables from U∗ = U ∪ (Y − {y}). We briefly summarize the
algorithm below.

In Algorithm 1, the variables queue represents the set of
variables that have been added to the submodel but have not
yet been resolved, i.e., they cannot yet be computed by the
submodel. This queue is initialized to {y}, and the algo-
rithm then iterates until this queue has been emptied, i.e.,
the submodel can compute y using only variables in U∗. For
each variable v that must be resolved, we use Subroutine 2
(GetBestConstraint subroutine) to find the constraint
that should be used to resolve v in the minimal way.

The GetBestConstraint subroutine (which has been up-
dated from (Roychoudhury et al., 2013)) tries to find a con-
straint that completely resolves the variable, i.e., resolves v
without further backward propagation (all other variables in-
volved in the constraint are in Vi∪Θ∪U∗). Such a constraint
may be the one that computes v in the current causality, if
all needed variables are already in the submodel (in Vi) or
are available local inputs (in U∗); such a constraint may be
one that computes a measured output y∗ ∈ U∗, in which case
the causality will be modified such that y∗ becomes an in-
put, i.e., the constraint in the new causality will compute v
rather than y∗; or such a constraint may be one that computes
some y∗ through some v′ in an algebraic relation. If no such
constraint exists, then the constraint that computes v in the
current causal assignment is chosen, and further backward
propagation will be necessary. A preferences list, P , is used
to break ties if multiple minimal constraints exist to resolve
v.

We assume that the differential constraints in the model are
always in integral causality. We assume also that the model
M to be decomposed is free from algebraic loops (which will
prevent Algorithm 1 from terminating), otherwise, the con-
straints may be arbitrarily complex and nonlinear. However,
nonlinear constraints may not be possible in all causalities. If
causality must be changed in order for the decomposition to
proceed, there must be an expression for the constraint in the
new causal form. If some constraints are not available in all
possible causalities, then this may restrict the possible model
decompositions.
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Algorithm 1Mi = GenerateSubmodel(M, U∗, V ∗)

1: Vi ← V ∗

2: Ci ← ∅
3: Ai ← ∅
4: variables← V ∗

5: while variables 6= ∅ do
6: v ← pop(variables)
7: c← GetBestConstraint(v, Vi, U

∗,A)
8: Ci ← Ci ∪ {c}
9: Ai ← Ai ∪ {(c, v)}

10: for all v′ ∈ Vc do
11: if v′ /∈ Vi and v′ /∈ Θ and v′ /∈ U∗ then
12: variables← variables ∪ {v′}
13: end if
14: Vi ← Vi ∪ {v′}
15: end for
16: end while
17: Mi ← (Vi, Ci,Ai)

3.3. Qualitative Fault Isolation

As mentioned in Section 1, the goal of this work is to solve
the sensor placement problem such that all single faults can
be uniquely isolated from each other. The solution of this
problem depends on the diagnosis framework chosen. In this
section, we briefly present our fault isolation approach. For
details, please refer to (Mosterman & Biswas, 1999; Bregon
et al., 2014).

As previously mentioned, in our approach, a fault f is mod-
eled as a step change in a system model parameter value,
θ ∈ Θ. Faults are named by the associated parameter and
the direction of change, i.e., θ+ (resp., θ−) denotes a fault
defined as an abrupt increase (resp., decrease) in the value of
parameter θ. The complete fault set is denoted as F .
Example 4. In the three-tank system in Fig. 1, the complete
fault set F consists of {K−1 , K

+
1 , K

−
2 , K

+
2 , K

−
3 , K

+
3 , Re

−
1 ,

Re+1 , Re
−
2 , Re

+
2 , Re

−
3 , Re

+
3 , Re

−
1,2, Re

+
1,2, Re

−
2,3, Re

+
2,3}.

Faults cause transients in the system variables that are ob-
served as deviations of measured values from predicted val-
ues. This is captured through the concept of a residual.
Definition 6 (Residual). A residual, ry , is a time-varying sig-
nal that is computed as the difference between a measure-
ment, y ⊆ Y , and a predicted value of the measurement y,
denoted as ŷ. A set of residuals is denoted as R.

From the previous subsection, we see that there are several
potential submodels that can compute ŷ, depending on what
local inputs are selected. In the nominal situation all resid-
uals are ideally zero, and when a fault occurs they become
nonzero. It is through analysis of the residual signals that
fault isolation is performed.

The transients produced in the residuals are captured as qual-
itative fault signatures (Mosterman & Biswas, 1999).
Definition 7 (Fault Signature). A fault signature for a fault
f and residual r, denoted by σf,r, is pair of symbols s1s2
representing potential qualitative changes in magnitude and
slope of r caused by f at the point of the occurrence of f .

Subroutine 2 c = GetBestConstraint(v, Vi, U
∗,A)

1: C ← ∅
2: cv ← find c where (c, v) ∈ A
3: if Vcv ⊆ Vi ∪ U∗ then
4: C ← C ∪ {cv}
5: end if
6: for all y ∈ Y ∩ U∗ do
7: cy ← find c where (c, y) ∈ A
8: if v ∈ Vcy and Vcy ⊆ Vi ∪ U∗ ∪Θ then
9: C ← C ∪ {cy}

10: end if
11: end for
12: for all y ∈ Y ∩ U∗ do
13: cy ← find c where (c, y) ∈ A
14: V ′ ← Vcy − {y}
15: for all v′ ∈ V ′ do
16: cv′ ← find c where (c, v′) ∈ A
17: if v ∈ Vcv′ and Vcy ⊆ {v} ∪ U∗ ∪Θ then
18: C ← C ∪ {cv′}
19: end if
20: end for
21: end for
22: if C = ∅ then
23: c← cv
24: else if cv ∈ C then
25: c← cv
26: else
27: C′ ← C
28: for all c1, c2 ∈ C where c1 6= c2 do
29: y1 ← find y where (c1, y1) ∈ A
30: y2 ← find y where (c2, y2) ∈ A
31: if (y1 / y2) ∈ P then
32: C′ ← C′ − {c1}
33: end if
34: end for
35: c← first(C′)
36: end if

The set of fault signatures for f and r is denoted as Σf,r.

The symbols s1 and s2 are selected from {0,+,-}, denoting
no change, increase, and decrease, respectively.

As additional diagnostic information we use also the temporal
order of residual deviation, captured through the concept of
relative residual orderings (Daigle, Koutsoukos, & Biswas,
2007).
Definition 8 (Relative Residual Ordering). If fault f always
manifests in residual ri before residual rj , then we define a
relative residual ordering between ri and rj for fault f , de-
noted by ri ≺f rj . We denote the set of all residual orderings
for f as Ωf,R.

In order to generate signatures and orderings from a model,
we extend the definition of a model to include qualitative
labels on causal constraints. For each independent variable
involved in a constraint, we associate a qualitative label in-
dicating the qualitiative direction of influence the indepen-
dent variable has on the dependent variable. A dt label in-
dicates an integration, a + label indicates that a directly pro-
portional change, and a - label indicates an inversely propor-
tional change. From this representation a Temporal Causal
Graph (Mosterman & Biswas, 1999) (TCG) is obtained, and
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the algorithms described in (Daigle, 2008) may be used to
automatically derive the signatures and orderings.1

Together, fault signatures and relative residual orderings es-
tablish an event-based form of diagnostic information. For a
given fault, the combination of all fault signatures and resid-
ual orderings yields all the possible ways a fault can manifest
in the residuals. Each of these possibilities is a fault trace.
Definition 9 (Fault Trace). A fault trace for a fault f over
residuals R, denoted by λf,R, is a sequence of fault signa-
tures, of length ≤ |R| that includes, for every r ∈ R that will
deviate due to f , a fault signature σf,r, such that the sequence
of fault signatures satisfies Ωf,R.

The set of all fault traces for a fault constitutes its fault lan-
guage.
Definition 10 (Fault Language). The fault language of a fault
f ∈ F with residual set R, denoted by Lf,R, is the set of all
fault traces for f over the residuals in R.

In general, two faults are distinguishable if they always, in
finite time, produce different observations. In our diagnosis
framework, distinguishability between faults is characterized
using fault traces and languages.
Definition 11 (Distinguishability). Given a residual set, R, a
fault fi is distinguishable from a fault fj , denoted by fi �R

fj , if there does not exist a pair of fault traces λfi,R ∈ Lfi,R

and λfj ,R ∈ Lfj ,R, such that λfi v λfj .

One fault will be distinguishable from another fault if it can-
not produce a fault trace that is a prefix2 (denoted by v) of a
trace that can be produced by the other fault. If this is not the
case, then when that trace manifests, the first fault cannot be
distinguished from the second.

Distinguishability is used to define the diagnosability of a di-
agnosis model under a given fault isolation framework. A di-
agnosis model is an abstraction of a system model with only
diagnosis-relevant information, and it is defined as follows.
Definition 12 (Diagnosis Model). A diagnosis model S is a
tuple (F, Y,R, LF,R), where F = {f1, f2, . . . , fn} is a set
of faults, Y is a set of measurements, R is a set of residu-
als, and LF,R = {Lf1,R, Lf2,R, . . . , Lfn,R} is the set of fault
languages.

If a diagnosis model is diagnosable, then we can guarantee
the unique isolation of every fault in the diagnosis model.
Definition 13 (Diagnosability). A diagnosis model S = (F,
Y, R, LF,R) is diagnosable if and only if (∀fi, fj ∈ F )fi 6=
fj =⇒ fi �R fj .

If S is diagnosable, then every pair of faults is distinguishable
using the residual set R. Hence, we can uniquely isolate all
faults of interest. If S is not diagnosable, then ambiguities
1TCGs can also be derived directly from bond graphs (Karnopp, Margolis,
& Rosenberg, 2000). Our modeling approach is more general in that it is
not restricted to system topologies imposed by bond graphs.

2A fault trace λi is a prefix of fault trace λj if there is some (possibly empty)
sequence of events λk that can extend λi such that λiλk = λj .

will remain after fault isolation, i.e., after all possible fault
effects on the residuals have been observed.

4. PROBLEM FORMULATION

The problem we are trying to solve is one of sensor place-
ment for diagnosability. In our diagnostic framework, diag-
nosability is based on residuals, and so the sensor placement
problem manifests as a residual selection problem. For each
set of sensors, there are many potential residuals that can be
selected to achieve diagnosability. A solution to the problem
is a selection of residuals that achieves diagnosability; an op-
timal solution is one that satisfies some given criteria the best.

As described in Section 3, residuals are defined from sub-
model outputs. Given a modelM, there are many submodels
that can be defined, and residuals can be derived from each of
these. Clearly, this residual space is exceedingly large. How-
ever, many of these residuals are not actually unique, i.e.,
there may be two submodels that use the exact same com-
putations to produce two different residuals; in this case, the
residuals are equivalent. We express this property through the
concept of residual equivalence.
Definition 14 (Residual Equivalence). Given causal submod-
elsMi with inputs Ui and output yi ∈ Yi, andMj with in-
putsUj and output yj ∈ Yj , the residuals ri computed from yi
and rj computed from yj are equivalent, denoted as ri ≡ rj
if the causal constraints used to compute yi are the same as
the causal constraints to compute yj .

We need not consider solutions that contain residuals that are
equivalent, and this reduces the search space. We refer to
such a residual set as minimal.
Definition 15 (Minimal Residual Set). A residual set R is
minimal if there are no two residuals ri ∈ R and rj ∈ R,
i 6= j, where ri ≡ rj .

In fact we need only to search over the space of unique resid-
uals. For a given sensor set, we can define the corresponding
complete residual set, i.e., the largest set of residuals for a
sensor set that is minimal.
Definition 16 (Complete Residual Set). For a set of sensor
outputs Y , the complete residual set is the minimal residual
set RY such that there is no residual for an output in y ∈ Y ,
ry , such that R ∪ {ry} is also minimal.

The complete residual set contains, for a given set of sensors,
every possible way of computing residuals for those sensors.

So, the space of the residual selection problem is defined by
all combinations of residuals in the unique residual set. We
can find the complete residual set by using the model decom-
position algorithm. As described in Section 3, to compute a
submodel we must define the available local input set U∗ and
the local output set V ∗. For an ouput y ∈ Y , U∗ must consist
of U and elements from Y − {y}. For example, say we have
a three-tank system where Y = {q∗1 , q∗2 , q∗3}. Table 1 lists all
possible U∗ to compute each output y. Fig. 3 show the causal
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Mi U∗i V ∗i Ui

M1 {u1, u2, u3} {q∗1} {u1, u2, u3}
M2 {u1, u2, u3, q

∗
2} {q∗1} {u1, q

∗
2}

M3 {u1, u2, u3, q
∗
3} {q∗1} {u1, u2, q

∗
3}

M4 {u1, u2, u3, q
∗
2 , q
∗
3} {q∗1} {u1, q

∗
2}

M5 {u1, u2, u3} {q∗2} {u1, u2, u3}
M6 {u1, u2, u3, q

∗
1} {q∗2} {u2, u3, q

∗
1}

M7 {u1, u2, u3, q
∗
3} {q∗2} {u1, u2, q

∗
3}

M8 {u1, u2, u3, q
∗
1 , q
∗
3} {q∗2} {u2, q

∗
1 , q
∗
3}

M9 {u1, u2, u3} {q∗3} {u1, u2, u3}
M10 {u1, u2, u3, q

∗
1} {q∗3} {u2, u3, q

∗
1}

M11 {u1, u2, u3, q
∗
2} {q∗3} {u3, q

∗
2}

M12 {u1, u2, u3, q
∗
1 , q
∗
2} {q∗3} {u3, q

∗
2}

Table 1. Single-output Submodels

graphs for submodelsM1,M2,M3, andM4. The thicker,
green arrows in Fig. 3 indicate causal assignments that were
reversed to accommodate local inputs.

There are 2|Y |−1 possible subsets of Y − {y} from which
to define U∗, and hence |Y |2|Y |−1 residuals. However, this
residual set may not be minimal. The model decomposi-
tion algorithm finds the minimal submodel to compute the
given V ∗ using U∗, therefore, for a given V ∗ and two dif-
ferent U∗, the derived submodel may have the same Ui and
the same causal constraints. This occurs for the example in
Table 1. Here, the q∗1 residuals fromM2 andM4 are equiv-
alent. Since the Ui are the same, the submodel must be using
the same constraints to compute q∗1 (see Fig. 3). Similarly, the
q∗3 residuals fromM11 andM12 are equivalent. So, in this
case, the complete residual set size is less than |Y |2|Y |−1.

So, a solution to the problem will be a selection of residuals
from the complete residual set that achieves diagnosability.
Among these solutions, we desire only those that require the
minimum number of sensors (where measured values may be
used to compute residuals and/or as local inputs to submod-
els). We may prefer some solutions over others for a variety
of reasons. We define a relational operator � for solutions,
describing which solutions are preferred over others and thus
obtaining a notion of optimality for solutions. The � opera-
tor depends on the particular application, and we will describe
an implementation of it in the following section. The problem
can then be formally defined as follows.
Problem. For a modelM, fault set F , and sensor set Y , the
problem is to find a set of residuals Ri such that there is no
other Rj 6= Ri where Rj � Ri.

5. APPROACH

In this section, we introduce three different algorithms to solve
the problem stated in Section 4. For validation purposes, we
describe an exhaustive search algorithm. We describe also a
stochastic search algorithm and a structured search algorithm.

Before defining the � operator it is first important to note
that residuals can be associated with submodels larger than
those computing only themselves. Consider Table 1. For

Mi Ui Yi

M1 {u1, u2, u3} {q∗1 , q∗2 , q∗3}
M2 {u1, u2, q

∗
3} {q∗1 , q∗2}

M3 {u2, u3, q
∗
1} {q∗2 , q∗3}

M4 {u1, q
∗
2} {q∗1}

M5 {u2, q
∗
1 , q
∗
3} {q∗2}

M6 {u3, q
∗
2} {q∗3}

Table 2. Multi-Output Submodels

any Ui that can compute more than one residual, the sub-
models computing these residuals can be easily merged into a
multi-output submodel computing all the residuals. This sub-
model can be computed by taking the union of the variable
and constraint sets of the individual submodels. For exam-
ple, in Table 1, we see that M1, M5, and M9 all have the
input set {u1, u2, u3}; merging these submodels recovers the
global model. Also, the input set {u1, u2, q∗3} can be used
to compute both a residual for q∗1 and one for q∗2 (M3 and
M7, respectively). So for a given residual set, there is also an
associated submodel set, defined by the sets of inputs used to
compute the residuals in the set. All the associated submodels
for the example in Table 1 are given in Table 2.

For a given set of sensors such that diagnosability can be
achieved, what we desire is a solution that corresponds to
some notion of the best model decomposition (for the sub-
model set associated with the residual set). The more in-
dependent submodels that are used, the more distributed the
solution becomes. Since the submodels are computationally
independent, they can be executed in parallel and thus natu-
rally take advantage of distributed computational paradigms.
Further, model decomposition can lead to improved diagnos-
ability (Daigle et al., 2012).

We define the � operator using five metrics: (i) diagnosabil-
ity, (ii) the number of sensors used, (iii) the minimality of the
involved submodel set, (iv) the number of residuals per sub-
model, and (v) the total number of residuals. We explain each
of these in turn, starting with the minimality of a submodel
set, which is defined as follows.
Definition 17. For a given set of residualsR, the correspond-
ing submodel set M is minimal if for anyMi ∈ M , there is
no other Mj ∈ M , Mi 6= Mj , that can be created by de-
composing that submodel.

We do not prefer such solutions because they are likely to
include residuals that do not improve diagnosability. For ex-
ample, if the global model is in the submodel set, it is unlikely
that adding additional submodels, for which there are already
residuals for their outputs, will add diagnosability, since there
is much redundant information in a residual for the same out-
put over two different submodels.

We prefer fewer residuals per submodel because this implies
a greater level of decomposition, and we prefer fewer residu-
als, since that implies the solutions are minimal, i.e., they do
not include additional residuals that are not needed to obtain

8
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(a) M1 Causal Graph
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(b) M2, M4 Causal Graph
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(c) M3 Causal Graph

Figure 3. Causal graphs for submodelsM1,M2,M3, andM4.

Algorithm 3 R∗ = ExhaustiveSearch(R)

1: R ← combos(R)
2: R∗ ←R1

3: for all Ri ∈ R do
4: if Ri � R∗ then
5: R∗ ← Ri

6: end if
7: end for

diagnosability.

We next present the three algorithms, in which the inputs will
be the complete residual sets as defined here. Other resid-
ual sets, computed using different methods, may also be used
with no or little changes to the algorithms.

5.1. Exhaustive Search

As described in Section 4, the search space is defined by
the complete residual set. The exhaustive search algorithm
is shown as Algorithm 3. The combos function returns all
possible combinations of the residual set (this is the same as
the power set of R, excluding the empty set). The algorithm
tries each candidate solution, keeping track of the best solu-
tion observed so far. Because it tries all possibilities, it is
guaranteed to find the optimal solution, so it can be used to
validate the solutions of the other algorithms. However, it is
not scalable, as it must consider in the worst case |Y |2|Y |−1
candidate solutions.

5.2. Stochastic Search

The stochastic search sacrifices optimality for scalability. It
is given as Algorithm 4. It begins with k random candidate
solutions generated using the randomCombos function. Be-
ginning with multiple solutions rather than a single solution
helps reduce the chances of getting stuck in a local minimum.
For each candidate solution, it randomly adds or deletes a

Algorithm 4 R∗ = StochasticSearch(R, k,N)

1: R ← randomCombos(R, k)
2: for i = 1 to N do
3: for all Ri ∈ R do
4: R′i ← randomModify(Ri)
5: if R′i � Ri then
6: Ri ← R′i
7: end if
8: end for
9: end for

10: R∗ ←R1

11: for all Ri ∈ R do
12: if Ri � R∗ then
13: R∗ ← Ri

14: end if
15: end for

residual using the randomModify function, and, if this im-
proves the solution, then this solution is kept. This process
repeats for N iterations, therefore it explores only kN solu-
tions, where both k and N are selected by the user. For larger
search spaces, it is more likely to find a good solution with
larger values of k and N . If there are many good solutions in
the solution space, then this algorithm is likely to find at least
one of them, given enough iterations.

5.3. Structured Search

The exhaustive and stochastic search algorithms represent ap-
proaches at two opposite ends of the spectrum. We want scal-
ability as well as guarantees of optimality. We can do this by
searching through the residual space in a structured way, try-
ing to avoid parts of the search space that we know will not
contain optimal solutions.

First, we note that we desire solutions with the minimum
number of required sensors. Therefore, as a first stage in the
algorithm, we try to find minimum sensor sets that can pro-
vide complete diagnosability. To do this, we start with sin-
gle sensor solutions, one for each potential sensor. The only

9
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available residuals for single-sensor solutions are those from
the global model. If any of these are diagnosable, then we
have found an optimal solution. Otherwise, for each of these
candidates, we add a second sensor, and check if the candi-
date solution containing all available residuals for that sensor
set provide complete diagnosability. If so, we add this solu-
tion to a set of solutions to analyze later. We continue in this
manner, adding sensors, until diagnosability is achieved, thus
resulting in initial minimum sensor solutions.

As a second stage, for each of these initial minimum sen-
sor solutions, we select residuals, in a structured way, for the
given sensor set. We select residual sets using knowledge
of what kind of solutions we consider to be optimal. First,
instead of selecting residuals, we select submodels, and for
the selected submodels, select all associated residuals for the
given sensor set. Since the submodel space is much smaller
than the residual space, this shrinks the search space signif-
icantly. Second, we know that for a given sensor set, diag-
nosability cannot be achieved if any one sensor is removed,
therefore, we must consider only solutions in which residuals
for each sensor are provided. Therefore, we try only com-
binations that cover all the sensors. So, for each sensor, we
select a submodel that computes a residual for that sensor.
Over those combinations there are much fewer to consider.

For example, consider again Table 1. Assume the sensors for
q∗1 , q∗2 , and q∗3 are all required. There are 6 distinct input sets
that can be used to compute the 10 residuals of the complete
residual set for this sensor set, and these are shown in Table 2.
So, there are only 26 − 1 = 63 combinations of submodels
to consider, versus 210−1 = 1023 combinations of residu-
als. Now, if we consider only combinations of submodels
that cover all the residuals, there are only 36 combinations.

So, in summary, we have at most |Y |2|Y |−1 residuals but only
at most 2|Y | − 1 submodels. So there are 2|Y |2

|Y |−1

combi-
nations of residuals, versus 22

|Y |−1 combinations of submod-
els, shrinking the search space considerably. By consider-
ing only combinations of submodels that cover all residuals,
since there are at most 2|Y |−1 ways to compute each residual,
there are only at most (2|Y |−1)|Y | = 2|Y |

2−|Y | such combina-
tions to consider. So we have reduced our search space from
2|Y |2

|Y |−1

residual combinations to 22
|Y |−1 submodel combi-

nations to 2|Y |
2−|Y | submodel combinations that ensure there

are residuals for all sensors. Clearly, this last number grows
the slowest, and so we have decreased the search space over
the exhaustive search algorithm by a significant factor, offer-
ing much improved scalability.

The structured search is described by Algorithm 5. An ini-
tial solution queueR is first constructed using single sensors.
Until the initial solution queue is empty, the algorithm pops
the first element off the queue, and checks if it is diagnos-
able. If so, it is added to a new solution setR′, otherwise, we

create new candidate solutions with one additional sensor, for
each of the remaining sensors. Note here that Y (R) is used
to denote the sensors involved in residual set R. New candi-
date solutions are created only if we have not already found a
diagnosable solution with smaller size (L∗). The solutions at
this stage include the complete residual set for the minimum
sensor sets. The purpose of this stage of the algorithm is to
find the minimum sensor sets that can achieve diagnosability.

The purpose of the second stage of the algorithm is, given
these minimum sensor solutions, to find optimal residual sets
for each sensor set. Given one of these minimum sensor sets,
we generate, for each sensor in the set, the list of potential
residuals. Note here that Ry,Y denotes the set of residu-
als for y that can be computed using the sensors in Y . We
then use the selectCombos function to generate all com-
binations of residuals from these sets. For example, if we
have two sensors y1 and y2 where Ry1,Y = {r1, r2} and
Ry2,Y = {r3, r4}, selectCombos would generate four
residual sets: {r1, r3}, {r1, r4}, {r2, r3}, and {r3, r4}. Each
of these combinations that result in diagnosability is added to
a new solution set R∗. After this loop, the best solution is
picked fromR∗.

6. RESULTS

As a case study scenario, we apply the algorithms to an n-
tank system with the output flows as the available sensors, and
consider as the fault set allK+

i ,K−i ,Re+i ,Re−i ,Re+i,i+1, and
Re−i,i+1 faults. In this case, the system is only diagnosable if
all the output flow sensors are included, and this should be
discovered by the algorithms.

The inherent scalability of the system itself is shown in Ta-
ble 3. As the number of tanks increases, the size of the com-
plete residual set increases, as does the number of unique
submodel inputs. Each tank adds a new sensor, so in the
worst case, the number of unique residuals is n2n−1. For this
system, measuring the output flows allows for a substantial
amount of model decomposition, so this number is reduced
significantly. In fact, |RY | increases only polynomially (third
order). The number of unique Ui for the submodels grows in
the worst case with 2n− 1, but because of the decomposition
provided by the sensors, it grows only polynomially in this
case (second order). Since these parameters of the tank sys-
tem scale only polynomially, this cuts the worst-case search
space size drastically.

Results for exhaustive search are shown in Table 4. The ex-
haustive algorithm finds the optimal solutions, but quickly be-
comes unusable due to its poor scalability. For only 4 tanks,
the number of solutions that must be searched (2|RY | − 1) is
already over a million, and the search did not complete within
a reasonable amount of time.

For 2 tanks, the optimal solution is to use only the global
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Algorithm 5 R∗ = StructuredSearch(F,R, Y )

1: R ← ∅
2: for all y ∈ Y do
3: R← R∪R{y}
4: end for
5: L∗ ← inf
6: R′ ← ∅
7: whileR not empty do
8: R1 ← pop(R)
9: if diagnosable(F,R1) then

10: L∗ ← |R1|
11: R′ ←R′ ∪R1

12: else
13: if |R1| < L∗ then
14: for all y ∈ Y − Y (R1) do
15: Y ′ ← (Y − Y (R1)) ∪ {y}
16: R′1 ← RY ′

17: R← R∪ {R′1}
18: end for
19: end if
20: end if
21: end while
22: R∗ ← {R′
23: for all Ri ∈ R′ do
24: Yi ← Y (Ri)
25: R′′ ← ∅
26: for all y ∈ Yi do
27: R′′ ← R(y, Y )
28: end for
29: R′′ ← selectCombos(R′′)
30: for all R′′i ∈ R′′ do
31: if diagnosable(F,R′′i ) then
32: R∗ ← R∗ ∪ {R′}
33: end if
34: end for
35: end for
36: R∗ ←R∗1
37: for all Ri ∈ R∗ do
38: if Ri � R∗ then
39: R∗ ← Ri

40: end if
41: end for

model. If we use the submodel that computes q∗1 using q∗2
and the submodel that computes q∗2 using q∗1 , the system is
not diagnosable, and so the global model is the optimal solu-
tion. For 3 tanks, we can improve over the global model as
a solution by using two submodels computing {q∗1 , q∗2} and
{q∗2 , q∗3}. This decomposition is better than the global model,
uses just as many sensors, and obtains complete diagnosabil-
ity. We find that considering only the pressure sensors gives
similar results. When considering both flow and pressure sen-
sors, we still need one sensor for each tank, and the pressure
and flow measurements can be interchanged.

The structured search algorithm attempts to avoid searching
this entire space by (i) finding only minimum sensor sets
required for diagnosability, and (ii) for each of these sets
searching only over residual sets in which all sensors are cov-
ered. Downselecting to only residuals for a given minimum
sensor set reduces the search space significantly, as does, for
that given sensor set, considering only the residuals sets that
cover all the sensors.

Table 3. Scalability of Tank System

Number Size Number of
of Tanks of RY Unique Ui

2 4 3

3 10 6

4 20 10

5 35 15

6 56 21

7 84 28

8 120 36
9 165 45

10 220 55

Table 4. Exhaustive Search Results.

Number Solutions Final
of Tanks Searched Solution

2 15 ({u1, u2}, {q∗1 , q∗2})
3 1023 ({u1, u2, q

∗
3}, {q∗1 , q∗2})

({u2, u3, q
∗
1}, {q∗2 , q∗3})

4 1048575 N/A

Results for the structured search algorithm are shown in Ta-
ble 5. Here, the number of candidates searched grows signifi-
cantly slower than with the exhaustive search. Once the struc-
tured search finds a minimum sensor set from which to select
residuals, the remaining search space is searched in a some-
what exhaustive way, i.e., it tries all combinations of residual
sets for which the sensors are covered. Therefore, its growth
is still exponential although its scalability is much improved
over the exhaustive search algorithm.

Upon inspection of the solutions searched by the algorithm,
we find that only a small subset are actually only worth search-
ing. All other solutions are considering submodel sets that
are not minimal. By the definition of �, as long as a solution
exists using a minimal submodel set, a solution with a non-
minimal submodel set will never be optimal. It is very likely
that if there is a solution with a nonminimal submodel set,
there is one with a minimal submodel set. If this is true, then
the search space of the algorithm can be reduced even more,
further improving scalability.

Table 5. Structured Search Results.

Number Solutions Final
of Tanks Searched Solution

2 7 ({u1, u2}, {q∗1 , q∗2})
3 34 ({u1, u2, q

∗
3}, {q∗1 , q∗2})

({u2, u3, q
∗
1}, {q∗2 , q∗3})

4 277 ({u1, u2, q
∗
3}, {q∗1 , q∗2})

({u3, u4, q
∗
2}, {q∗3 , q∗4})

5 3427 ({u1, u2, q
∗
3}, {q∗1 , q∗2})

({u3, u4, q
∗
2 , q
∗
5}, {q∗3 , q∗4})

({u4, u5, q
∗
3}, {q∗4 , q∗5})
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Table 6. Stochastic Search Results.

Number Solutions Final
of Tanks Searched Solution

2 1000 ({u1, u2}, {q∗1 , q∗2})
3 1000 ({u1, u2, q

∗
3}, {q∗1 , q∗2})

({u2, u3, q
∗
1}, {q∗2})

({u3, q
∗
2}, {q∗3})

4 1000 ({u1, u2, u3, q
∗
4}, {q∗1 , q∗3})

({u2, u3, u4, q
∗
1}, {q∗2})

({u3, u4, q
∗
2}, {q∗4})

5 1000 ({u1, u2, u3, u4, u5∗}, {q∗1 , q∗5})
({u2, u3, u4, q

∗
1 , q
∗
5}, {q∗2 , q∗3 , q∗4})

Another way to increase scalability is by adding more struc-
ture to the search process, in a way that attempts to search first
solutions more likely to be optimal, if diagnosable, than oth-
ers. For example, we can try first the most decomposed solu-
tion (single-output submodels with the maximum number of
local inputs), and then working up towards the global model.
Because � prefers more decomposed solutions, if we search
candidates solutions with better decomposition first, we can
terminate the search once a solution is found (since less de-
composed solutions will not then be optimal). The first stage
of the algorithm could also be improved by starting first with
the maximum sensor set, then reducing it to find minumum
subsets that still achieve diagnosability. In this case study,
since all sensors are required for diagnosability, this would
have resulted in finding the required sensor set much faster.
In many cases it is more likely that a large subset of the sen-
sors are needed for diagnosability rather than a small subset.

Scalability can be improved by considering heuristics to guide
the search. A greedy search heuristic, for example, can im-
prove significantly the scalability, but the resulting solutions
may not be optimal.

The stochastic search algorithm is the most scalable, as the
number of solutions it searches are completely defined by the
user. Results for the stochastic search are given in Table 6.
Here, we used k = 10 and N = 100, so 1000 candidate
solutions are always searched independent of n. For 3, 4,
and 5 tanks, the optimal solutions are not found. However,
the solutions found are still diagnosable and represent a good
model decomposition. The solutions found are nonoptimal
because the submodel sets are not minimal. So, the solution
space is such that there are very few optimal solutions (in this
case only 1), but many good solutions. So if optimality is not
a requirement, the stochastic algorithm is a suitable choice
because it is likely to find a good solution since many exist
in the search space. For 5 tanks, the solution is much further
from optimal, so since the space is much bigger k and N
should be increased.

Based on the ideas of the structured algorithm, the stochas-
tic algorithm performance may potentially be improved. For

example, it can search only a reduced space in which all sen-
sors required for diagnosability are covered by the residual
set. With a reduced space to search, with the same number of
iterations it is more likely to find a better solution.

7. CONCLUSIONS

In this work, we have presented a diagnosability-based sensor
placement solution by using structural model decomposition.
The solution proposed in this paper analyzes the diagnosabil-
ity of a system to determine the minimum set of sensors re-
quired to uniquely isolate all single faults in the system. Then,
once the minimum set of sensors for complete diagnosability
is computed, several criteria are taken into account to select
among the set of equivalent solutions. In particular, we used
three different metrics: the minimality of the involved sub-
model set; the number of residuals per submodel; and the
total number of residuals.

In the paper we presented three different solutions for the
problem. The first one, an exhaustive search, finds the op-
timal solutions but is not scalable. A second one, a stochastic
search algorithm, sacrifices optimality for scalability. And a
third one, a structured search algorithm, is more scalable than
the exhaustive search while still guaranteeing optimality.

Experimental results on a multi-tank system demonstrated the
performance of the algorithms and suggest possible improve-
ments to the algorithms that will inform future work. In this
paper, we considered only single faults and a continuous sys-
tem for the case study, but, in future work, we will study how
the to extend this solutions to multiple fault diagnosis and hy-
brid systems. Future work will also apply the algorithms to
practical large-scale systems.
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A. (2013). Optimal sensor placement for leak lo-
cation in water distribution networks using genetic
algorithms. Sensors, 13(11), 14984–15005. doi:

12



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

10.3390/s131114984
Daigle, M. (2008). A qualitative event-based approach to

fault diagnosis of hybrid systems. Unpublished doc-
toral dissertation, Vanderbilt University.

Daigle, M., Bregon, A., Biswas, G., Koutsoukos, X., &
Pulido, B. (2012, August). Improving multiple fault
diagnosability using possible conflicts. In Proceedings
of the 8th IFAC symposium on fault detection, supervi-
sion and safety of technical processes (p. 144-149).

Daigle, M., Koutsoukos, X., & Biswas, G. (2007, April).
Distributed diagnosis in formations of mobile robots.
IEEE Transactions on Robotics, 23(2), 353–369.

Debouk, R., Lafortune, S., & Teneketzis, D. (2002). On
an optimization problem in sensor selection. Discrete
Event Dynamic Systems, 12(4), 417–445.

Eriksson, D., Krysander, M., & Frisk, E. (2012, August).
Using quantitative diagnosability analysis for optimal
sensor placement. Mexico City, Mexico.
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