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ABSTRACT 

The “s or more threshold trespassings out of N consecutive 

watch periods” detection verification strategy is known to 

offer advantages in terms of threshold value not too extreme 

under the constraint of low false alert rate, PFA. Typically 

PFA < 5%. The definition of PFA here considered is P(No 

degradation|Alert). It means the probability that there is no 

degradation given that degradation has been detected. The 

alert threshold placement has previously been addressed in 

the case where the abnormality score with no degradation 

has a stationary distribution and may be approached with a 

continuous non parametric Parzen distribution. This is 

illustrated on an abnormality score of the daily lubricant 

consumption estimation of an aircraft engine. The watch 

period is a day. The N consecutive watch periods are seven 

consecutive service days. The s or more trespassings are six 

or more trespassings out of seven consecutive days. In such 

configuration, the threshold is 0.21 l/h, which is inside the 

observed distribution. With an abnormality alert strategy 

with no verification, i.e. s = N = 1, the threshold is a more 

extreme value of 0.31 l/h which is outside the observed 

distribution. Two steps were considered. Step 1: Learning of 

the abnormality score distribution with no degradation by a 

non parametric Parzen fit. Step 2: Threshold set by quintile 

interpolation on the adjustment. This is extended to the case 

where the abnormality score with no degradation has a 

discrete distribution close to a Dirac distribution. This is 

typically the case for abnormality scores based on “out of 

range” counts for measurement chains along M clock 

increments of a watch period, corresponding to a flight 

cycle. With no degradation, most of the counts during a 

flight, but not all, are zero. Another example is an 

abnormality score based on a rough quantification of the 

time, “t SAV open”, between the open command and the 

start of movement of a starter air valve, during a watch 

period corresponding to a start sequence. With no 

degradation, most of the t SAV open of a start sequence are 

reported “zero”. Only a few start sequences trespass the few 

first quantification times. In these discrete cases close to 

Dirac the Parzen adjustment is no longer acceptable. A 

discrete degradation detection threshold, l, is set as a “l 

events or more count out of M” clock increments of a watch 

period, at each watch period for an “s out of N watch 

periods” confirmation strategy under the same constraint of 

P(No degradation| Alert) < PFA. This is done according to a 

binomial as well as a Poisson distribution on the number of 

events. Like in the continuous case two steps are considered. 

Step 1: Estimation of the ratio of discrete events with α 

confidence level based on the number, r, of events during a 

learning phase of I time increments over watch periods with 

no degradation. Step 2: Alert threshold set as the limit, l, on 

a watch period of size M for a “s out of N limit 

trespassings” detection strategy. 

1. INTRODUCTION 

This paper concerns PHM, Prognostics and health 

management (Sheppard, Kaufman, Wilmer, 2009). 

Embedded airframe systems are considered. In this area, 

prognosis usually starts with the detection of degradations 

which are precursors of “no go” conditions. It is classical to 

extract, each watch period, corresponding typically to a 

flight cycle or a flight day, a set of health indicators. These 

indicators may be then normalized on ground as differences 

between expected values, according to the recorded context 

parameters, and observed values (Lacaille, 2009). 
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Abnormality scores are built from a set of different health 

indicators or as the value of a single health indicator.  

Degradation detection thresholds on the abnormality scores 

are set, in a learning mode on a dataset of flight cycles with 

given hardware and software with no degradation. A 

concern for alert threshold choice is to find a compromise 

between not too many false alerts and sufficient detection. 

Typically, the probability of false alert (PFA) should be less 

than 5%. The definition of PFA here considered is P(No 

degradation|Alert). This is the probability of the considered 

embarked system to have no degradation given that a 

degradation alert has been emitted. PFA expresses the needs 

of the airlines’ line maintenance seeking to limit unfounded 

component removals leading to “No fault found”. False alert 

is different from the popular false positive detection 

(Wickens, 2002). Probability of false positive detection 

(PFP) is P(Alert|No degradation) . This is the probability of 

the considered embarked system to have a degradation alert 

given that it has no degradation. A link between PFP and 

PFA can be expressed using Bayes rule (Hmad et al., 2011). 

PFP =  
PFA

1−PFA
∙ P(Alert|Degradation) ∙

P(Degradation)

1−P(Degradation)
   (1) 

where: 

 P(Degradation) is the probability per watch period of 

the considered degradation to occur. A watch period is 

typically a flight cycle or a flight day. A typical value 

for such probability is 10-6. 

 P(Alert|Degradation), called “probability of detection” 

or probability of “true positive”, is the probability of the 

considered embarked system to have a degradation alert 

given that it has a degradation. This probability is 

expected to be close to 100 %, under the constraint of 

PFA being small enough, typically 5 %. 

Consequently, in such typical aeronautical environment, the 

operational requirement of PFA < 5% induces the 

requirement of PFP < 5 . 10-8. This induced requirement is 

orders of magnitude less than the usual academic 

considerations for false positive ratio upper limit. 

The matter of this study is to set alert thresholds on the 

abnormality scores. It is supposed that the distributions of 

the abnormality scores are stationary when there is no 

degradation. The purpose is to base the alert thresholds on a 

change of the distribution. Such change of distribution is 

considered as degradation. The constraint on PFA or PFP 

explained above is applied. Two situations are considered. 

In the first situation, the distribution of the abnormality 

score with no degradation may be approached with a 

continuous non parametric Parzen distribution (Silverman, 

1986). This is illustrated by an abnormality score based on 

an estimation of the daily lubricant consumption. In the 

second situation, the distribution of the abnormality score 

with no degradation is close to a Dirac distribution. Most of 

the values are the same, in general zero. Only a few values 

are different. This is illustrated by abnormality scores based 

on “out of range” counts for measurement chains during a 

flight cycle. With no degradation, most of the counts during 

a flight, but not all, are zero. Another example is an 

abnormality score based on a rough quantification of the 

time, “t SAV open”, between the open command and the 

start of movement of a starter air valve, during a start 

sequence. With no degradation, most of the t SAV open of a 

start sequence are reported “zero”. When there are no SAV 

degradations, only a few start sequences trespass the few 

first quantification times. In these discrete cases close to 

Dirac the Parzen adjustment is no longer acceptable. The 

considered distributions are binomial or Poisson 

distributions on the number of events count during a watch 

period. 

2. “S OUT OF N” VERIFICATION STRATEGY 

In order to come back to more academic considerations than 

PFP upper limit of 5 . 10 -8, an “s out of N” verification 

strategy is set. This means that an alert is emitted only if 

there are s trespassings of a given threshold on the 

abnormality score out of N consecutive watch periods. Such 

verification strategy is used in aeronautics (Pipe, 2011). It is 

considered to “not invoke this compromise” between PFP 

and probability of detection requirements.  

N consecutive watch periods are considered under the 

hypothesis, H0, of a stationary distribution of the 

abnormality score with no degradation. An elementary 

threshold is set on this abnormality score such as the 

probability to trespass this threshold under H0 is Pe. Then, 

the probability to trespass this threshold s times out of N 

may be calculated under H0 according to a binomial 

distribution of parameters N and Pe. Conversely, Pe may be 

adjusted such that under H0 the probability to trespass the 

threshold s times out of N is less than the required PFP. The 

value for Pe may be calculated as 

Pe = (s,N−s+1)
−1 (PFP)     (2) 

where (s,n−s+1)
−1 is the inverse beta cumulative distribution 

function with parameters s and (N-s+1). This is a 

consequence of the well known property of eulerian 

functions (Coullet 1988) that 

(s,N−s+1)
−1 (PFP) is also {p| 1 − F N,p(s − 1) = PFP}  where 

FN,p  is the binomial cumulative distribution function with 

parameters N and p.  

It appears that for N and s > 1 Pe is orders of magnitude 

higher than PFP. Typically, with a “s out of N”, N=9 and 

s=7 verification strategy, according to equation (2), Pe =

(s,N−s+1)
−1 (5 .10−8)  = {p| 1 − Fs−1,N(p) = 5 .10−8}  5,5. 

10-2. 

For consistency, (1,1)
−1  being the identity function, it can be 

noticed that when s=1 and N =1, the “1 out of 1” alert is the 

basic alert with no verification.  

Other examples are developed further. Two situations are 

considered. 
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3. FIRST SITUATION: CONTINUOUSLY ADJUSTABLE 

ABNORMALITY SCORE DISTRIBUTION. 

In the first situation, the distribution of the abnormality 

score with no degradation may be approached with a 

continuous non parametric Parzen distribution (Hmad et al., 

2011). This is illustrated by an abnormality score based on 

an estimation of the daily lubricant consumption (Figure 1).  

 

 

Figure 1. Daily lubricant consumption estimation with no 

degradation. 

The concern of alert threshold set for continuously 

adjustable abnormality score distributions has been 

addressed by the authors in several papers (Masse, Hmad, 

Boulet, 2012, Massé, Hmad, Grall, Beauseroy, 2013; Hmad, 

et al., 2013). In these contributions, the observed CDF of the 

abnormality score with no degradation may be fit with a 

Parzen non parametric continuous CDF.  

A Parzen fit (Hmad et al., 2013) is appropriate for 

continuous abnormality scores such as engine lubricant 

consumption (Demaison, Flandrois, 2010). This is 

confirmed on the example of figure 1 by the p-value of the 

Kolmogorov Sirnov test which is much higher than the 

usual limit of 5 %. (Figure 2). 

 
Figure 2. Parzen adjustment of an observed CDF of an 

engine lubricant daily consumption with no 

overconsumption. 

The abnormality detection threshold is then the quantile of 

1-PFP with no verification strategy or 1-Pe with a 

verification strategy.  

Figure 2 shows two abnormality score thresholds:  

 0.31 l/h for a “one shot” with no verification 

abnormality alert strategy with PFP = 5.10-8 

 0,21 l/h for a “6 out of 7” alert verification strategy 

with Pe = 4.4.10-2 ≈ (6,7−6+1)
−1 (PFP). 

In the first case, with no verification strategy, the threshold 

is outside the observed distribution. In the second, with 

verification strategy, the threshold is inside the observed 

distribution. This is better in terms of threshold accuracy. 

In terms of probability of detection, P(Alert|Degradation), 

the other side of the requirements, it can only been imagined 

at that stage what would be the consumption distributions at 

a level with impact on operations (Figure 3). Translations in 

mean have just been applied to the initial observed 

distribution with no overconsumption. These over 

consumptions are stated in the maintenance manual. 

 
Figure 3. Histograms of the daily consumptions with no 

over consumptions and alert thresholds of figures 1 and 2 to 

be compared to imagined over consumption histograms. 

With the no verification threshold, 90% of the mean over 

consumption (0.38 l/h) are alerted and 100% of strong over 

consumptions (0.76 l/h) are alerted. With the ‘’6 out of 7’’ 

verification threshold, 97 % of the mean over consumptions 

are alerted and 100% of strong over consumptions are 

alerted.  

Using formula 1, a posterior evaluation of PFA may be 

estimated, close to 5% in all cases, due to the high levels of 

probabilities of alerts. 

4. SECOND SITUATION: ABNORMALITY SCORE 

DISTRIBUTION CLOSE TO A DIRAC DISTRIBUTION 

4.1. Use cases 

The novelty of the present study is when the abnormality 

score distribution is close to a Dirac distribution.  

Such situation is encountered with an embedded redundant 

sensing system monitored by an abnormality score based on 

SST (Selection status) counting (Foiret, 2013). At each 

clock increment the status, “regular” or “out of range” is 
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issued. The abnormality score, extracted at each flight is the 

number k of transitions from “regular” to “out of range” or 

from “out of range” to “out of range”. In the case with no 

degradation, most of the flights have k = 0 such transitions 

among m clock increments. In the example of figure 2 

among 750 flights, only one has k=1 and one has k=18. All 

the others have k=0. It is not appropriate to adjust a Parzen 

non-parametric distribution to an observed distribution on 

only three values with one prominent. 

 

Figure 4. Example of a “close to Dirac” abnormality score 

distribution with no degradation. 

Such situation of a distribution of the abnormality score 

close to a Dirac distribution may also be encountered with a 

continuous abnormality score with a rough sampling.  

 
Figure 5. Parzen adjustment of an observed CDF of 

abnormality score with no degradation close to a Dirac 

CDF. 

This is the case with a starter air valve (SAV) where the 

health indicator, “t SAV open” is the time between the open 

command and the start of movement. When there is no 

degradation of the SAV, t SAV open is mainly reported 0 

seconds. In fact, the time increment is 0.125 second. 

Consequently, a “0” report means that t SAV open is less 

than 0.125 second, which is often the case with no 

degradation. For instance, considering 50 starts with no 

SAV degradation, 43 were reported “0” for t SAV open, 5 

were reported  between 0.125 and 0.25 second, one between 

0.375 and 0.5 s and one between 0.5 s and 0.625 s (Figure 

5). 

A Parzen fit is no longer appropriate for such continuous 

abnormality scores with rough sampling. This is confirmed 

by the p-value of the Kolmogorov Sirnov test which is much 

lower than the usual limit of 5 %. 

4.2. Principle 

It is more appropriate to consider, rather than a threshold on 

a continuous score value, the number of times, k, out of M 

clock increments, during a flight that an undesirable event 

has occurred. In the example of figure 4, the undesirable 

events considered are  

 The shift from the status “0k” to the status “out of 

range value” on one channel or “out of range gap” 

between two channels 

 The confirmation of the status “out of range value” 

on one channel or “out of range gap” between two 

channels.  

In the example of figure 5, the undesirable event considered 

is a t SAV open increment of 0.125 s. 

Therefore, it is referred to a binomial or a Poisson 

distribution. Two steps are established: Estimation and 

threshold set.  

 Estimation of the undesirable event ratio, �̂�, or ̂ on 

a dataset of flights with no degradation with given 

hardware and software. 

 Threshold, l, set on the number, k, of events out of 

M trials where the ratio of undesirable events is 

higher than �̂� or ̂ with a probability of error  

o < PFP, where PFP is defined by formula 

(1) for a “one shot” abnormality alert 

strategy 

o < Pe, where Pe is defined by formula (2) 

for a “s out of N” trespassing alert 

verification strategy. 

4.3. Estimation 

Estimation, �̂�𝛼, with a confidence level α, typically α = 50% 

or 90 %, of p, the ratio of unexpected events, in accordance 

with a binomial distribution of the number of unexpected 

events among the I cumulated time increments on a dataset 

of flights with no degradation with given hardware and 

software: 

�̂�𝛼 =  {𝑝|1 − 𝐹I,𝑝(𝑟) = 𝛼} = 𝐵𝑟+1,I−𝑟
−1 (𝛼)  (3) 

where: 

 𝐹I,𝑝 is the binomial CDF of parameters I and p 

 𝐵𝑟+1,I−𝑟
−1  is the inverse beta CDF of parameters r+1 

and I-r  

 r is the number of unexpected events observed 

during the I time increments. 
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On figure 4, I = 750 flights x 1200 time increments in 

transient phase = 900000 increments. The unexpected event 

occurrence number is r = 1 + 18 = 19. With these data, 

�̂�90 % = 2,88 10-5, �̂�50 % = 2,19 10-5 . The maximum 

likelihood estimation is �̂�𝑀𝐿= 
r

I
  �̂�44 %=2,11 10-5. 

Estimation, ̂α, with a confidence level α, typically α = 50% 

or 90 %, of , the occurrence rate of unexpected events, in 

accordance with a Poisson distribution of the number of 

unexpected events among the 𝑡𝑐 cumulated time increments 

on a dataset of flights with no degradation with given 

hardware and software: 

̂α= {|1 − F∙tc
(𝑟) = α}= 𝑟+1,𝑡

  −1

𝑐
(α) = 

2∙𝑟+2
2 (α)−1

2∙𝑡𝑐
 (4) 

where: 

 F∙tc
 is the Binomial CDF of parameter  ∙ tc 

 𝑟+1,𝑡
  −1

𝑐
 is the gamma CDF of parameters r+1 and tc 

 
2∙𝑟+2
2 −1

 is the inverse chi-square CDF with 2.r + 2 

degrees of freedom 

 r is the number of unexpected events occurrence 

during the 𝑡𝑐 cumulated time increments. 

On figure 4, the 𝑡𝑐 cumulated time increments = 750 flights 

x 1200 time increments in transient phase = 900000. The 

unexpected event occurrence number is r = 1 + 18 = 19. 

With these data, ̂90 %= 2,88 10-5, ̂50 %= 2,19 10-5 . The 

maximum likelihood estimation is ̂ML = 
𝑟

𝑡𝑐
  ̂44 % = 2,11 

10-5. 

On this example �̂� and ̂ are equal. 

4.4. Threshold set 

Set of a threshold, l, on the number k, of unexpected events, 

out of M time increments, during a flight cycle for which it 

may be considered that the ratio of unexpected events is 

higher than �̂� or ̂ with a probability of error lower than:  

 Pa defined by formula (1) for a “one flight” 

trespassing detection strategy or  

 Pe defined by formula (2) for a “s out of N flights” 

trespassing detection verification strategy. 

Set of a threshold according to a binomial reference. The 

threshold l, out of N clock increments for a flight for 

detection of a increase of p in reference to �̂� is set such as  

P(No degradation|Detection) < PFA, typically, PFA = 5 %.  

𝑙 = 𝑀𝑖𝑛{𝑘|1 − 𝐹𝑀,𝑝(𝑘 − 1) ≤ PFP or Pe} =

𝑀𝑖𝑛{𝑘| 𝑘 ,   𝑀−𝑘+1(�̂�) ≤ PFP or Pe}  (5) 

where: 

 𝐹M,𝑝 is the binomial CDF with parameters M and �̂� 

  𝑘 ,   M−𝑘+1 is the beta CDF with parameters k and 

M-k+1. 

In other words, l is the limit on the number of occurrences 

of the unexpected event out of M clock increments for 

rejecting the hypothesis that the true ratio of unexpected 

events, p, is equal or more than �̂� with a probability of error 

less than PFP or Pe.  

In the previous example, for M = 6000 observation 

increments per flight and �̂�=2,19 10-5 per increment 

If Pa = 5.10-8 for a “one flight” abnormality detection 

strategy then l = 6 unexpected events out of 6000 

observation increments per flight. 

If Pe  5,5. 10-2 for a “7 trespassing of l out of 9 flights” for 

detection then l = 2 unexpected events out of 6000 

observation increments per flight. 

Set of a threshold according to a Poisson reference. The 

threshold l on the number, k, of unexpected events during a 

flight of duration t, for detection of a increase of  in 

reference to ̂ is set such as P(No degradation|Detection) < 

PFP, typically, PFP = 5 %. may also be set according to a 

Poisson reference: 

𝑙 = 𝑀𝑖𝑛{𝑘|1 − 𝐹̂∙𝑡(𝑘 − 1) ≤ PFP or Pe}

= 𝑀𝑖𝑛{𝑘| 𝑘,𝑡 (̂) ≤ PFP or Pe} 

= 𝑀𝑖𝑛{𝑘|
2∙𝑘
2 (2 ∙ ̂ ∙ 𝑡) ≤ PFP or Pe}  (6) 

where: 

 𝐹̂∙𝑡is the Poisson CDF of parameter ̂ ∙ t 

  k,   t  is the gamma CDF of parameters k and   t 

 
2∙k
2  is the chi square CDF with 2 ∙ k degrees of 

freedon 

In the previous example, for a flight duration t = 6000 time 

increments, and ̂=2,19 10-5 per time increment 

If PFP = 5.10-8  for a ‘’one flight’’ abnormality detection 

strategy then l = 6 unexpected events per flight.  

If Pe  5,5. 10-2 for a “7 trespassing of l out of 9 flights” for 

detection then l = 2 unexpected events per flight. 

On this example both approaches lead to the same 

thresholds. 

4.5. Operational illustration 

This is illustrated on the example of figure 5 concerning the 

abnormality score based on t SAV open, the time between 

open command and start of movement of a starter air valve. 

Annoyingly, the 50 starts with no degradation represented 

on figure 5 have been followed twice by a SAV removal for 

reason of no opening. The t SAV open are reported on 

figure 6. Both estimation windows with no degradation 

conclude on a negative Parzen fit as on figure 5. Therefore a 

close to Dirac distribution estimation is set according to § 

4.3 “Estimation”. The first estimation is run on 50 starts 

with no degradation, represented on figure 5 and figure 6. 

The input parameters are: 

 I = 50 flights x 130 time increments per flight = 

6500 time increments. 
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 r = 5 x 1 time increment + 1 x 3 time increments + 

1 x 4 time increments = 12 undesirable events 

 

Figure 6. Example of figure 5 continued twice to SAV 

removal foreseen by degradation detection and affirmation. 

According to formula (3) or (4) of § 4.3 “Estimation”, the 

frequency of occurrence of undesirable event may be 

approached by �̂�50% ≈  ̂50% ≈ 1.95 . 10−3. 

Two alerts are set: 

 A detection alert based on a 4 trespassings out of 5 

consecutive flights  

 An affirmation alert based on a 7 trespassings ot of 

9 consecutive flights.  

According to formula (2) of § 2. “s out of N verification 

strategy”, Pe  10-2 for 4 out of 5 detection alert verification 

strategy and Pe  5.51 . 10-2 for 7 out of 9 affirmation alert 

verification strategy. According to formula (6) of § 4.4 

“Threshold set”, the thresholds are 3 and 1 t SAV open 

increments. 

With these parameters, both SAV removals are foreseen 

(Figure 6).  

The profiles of distribution change before SAV removal are 

different. In the first case, it may be explained by an 

electromechanical intermittent contact. In the second case, 

by a mechanical seize root cause. 

 

 
Figure 7. t SAV open observed on several engines. 

Degradations leading to removals were reported on engine 

A only. 

Except the outstanding case with two SAV removals of 

engine A, all the other cases represented on figure 7 did not 

lead to SAV removal. Consequently, it is expected that the 

detection and affirmation strategy does not alert for possible 

degradation. Watching the profiles, a doubt is possible with 

engines C and E, which scatter the values of t SAV open.  

 

Figure 8. Parzen adjustment of the observed CDF of t SAV 

open on the 50 first flights. 

The Parzen Kolmogorov fit test allows continuous 

adjustment on engine C (Figure 8). 
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Figure 9. t SAV open through 700 starts of engine C. No 

detection or affirmation are alerted. 

Fortunately, no detection or affirmation are alerted (Figure 

9). 

Engine E, unfortunately, presents an occurrence ratio 

change after the estimation window. This leads to detection 

and affirmation alerts. 

Figure 10. t SAV open through 900 starts of engine E. Even 

though no SAV is reported, there is obviously an occurrence 

ratio change after the estimation window. 

 

 

 

 

5. CONCLUSION 

Many PHM solutions may be killed at entry into service for 

two reasons: 

 The first alarm is not appropriate (thresholds too 

low) 

 The first “no go” condition is not predicted 

(thresholds too high). 

The process presented in this paper avoids such 

inappropriate thresholds.  

The Kolmogorov Smirnof test of a non parametric 

continuous Parzen fit of the abnormality score distribution 

allows discriminating continuous distributions from 

distributions close to a Dirac distribution.  

This second situation is processed in two steps: Occurrence 

ratio estimation and alert threshold set. Both are based on 

the count of unexpected events during watch periods such as 

flights or flight days. Both refer to a binomial distribution or 

a Poisson distribution.  

The process is completely manageable in terms of maximal 

false positive detection of the distribution change. The 

process is generic and may be used as in-service fleet follow 

up of a set of abnormality scores. Only the abnormality 

scores which have a change in distribution are highlighted. 

Two levels of alert were set: Detection alert, based on a 4 

out of 5 threshold trespass verification and affirmation alert 

based on a 7 out of 9 verification.  

The operational deployment however is based on two 

assumptions: 

 The abnormality scores distributions are stationary 

with no degradation 

 A change of the abnormality score distribution 

means degradation up to operational event to be 

predicted. 

The operational illustration demonstrated a counter example 

of the assumptions. A starter air valve had a change in 

distribution which meant not degradation up to valve stuck.  
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