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ABSTRACT

Predicting whether or not vehicle batteries contain sufficient
charge to support operations over the remainder of a given
flight plan is critical for electric aircraft. This paper de-
scribes an approach for identifying upper and lower uncer-
tainty bounds on predictions that aircraft batteries will con-
tinue to meet output power and voltage requirements over
the remainder of a flight plan. Battery discharge prediction
is considered here in terms of the following components; (i)
online battery state of charge estimation; (ii) prediction of fu-
ture battery power demand as a function of an aircraft flight
plan; (iii) online estimation of additional parasitic battery
loads; and finally, (iv) estimation of flight plan safety. Sub-
stantial uncertainty is considered to be an irremovable part
of the battery discharge prediction problem. However, high-
confidence estimates of flight plan safety or lack of safety are
shown to be generated from even highly uncertain prognostic
predictions.

1. INTRODUCTION

Electric propulsion can provide a number of advantages over
combustion powered vehicles, such as reduced noise, zero
emissions, more responsive control of output power, reduced
part count, and reduced weight. In such vehicles, it is critical
to monitor battery charge and to estimate the ability of the
battery to support flight activities as it is discharged.

As is the case with many applications of prognostics, un-
avoidable uncertainties or inaccuracies in system state esti-
mates, system dynamics modeling, and future input estima-
tion will complicate the prediction problem (Sankararaman
& Goebel, 2013). The presence of substantial uncertainty in
prognostic estimates however does not necessarily rule out
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its usefulness to a decision maker. If prognostic uncertainty
can be represented by a probability distribution or bounded
by a confidence interval, than it may still be extremely useful
for evaluating the potential risk and reward of various control
options (Edwards et al., 2010).

The battery discharge prognostic algorithm described in this
paper uses three primary tools to manage prognostic uncer-
tainty. First, unscented Kalman filtering (UKF) is used to up-
date probabilistic estimates of internal battery states, based on
a series of battery current and voltage observations. Second,
a predefined flight plan is used to identify upper and lower
uncertainty bounds around future system loading demands.
Finally, uncertainty is propagated over a prognostic horizon
to identify uncertainty bounds on prognostic estimates.

This paper extends our previous work on battery discharge
prediction for electric vehicles. The battery modeling and
UKF state estimation approaches explained here were re-
cently published in (Quach et al., 2013). The aerodynamic
and aircraft powertrain models used here to estimate future
battery power demand as a function of a flight plan were re-
cently published in (Bole et al., 2013). Our previous work
considered the prediction of remaining flying time given a
flight plan with no fixed termination time. That approach
is supplemented here by introducing new prognostic metrics
that will be used to evaluate the feasibility of completing a
fixed duration mission. This paper also describes the incor-
poration of parasitic resistance faults into prognostic predic-
tions.

This paper is organized as follows. The prototype electric air-
craft used to demonstrate battery charge estimation and dis-
charge prediction techniques is described in Section 2. Esti-
mation of battery SOC using unscented Kalman filtering and
an equivalent circuit model is presented in Section 3. Battery
demand modeling as a function of airspeed, acceleration, and
angle of climb is described in Section 4. The online detection
of parasitic battery loads is described in Section 5. Mission
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Figure 1. Edge-540T during landing

feasibility prediction and battery SOC estimation at the end
of a flight plan is presented in Section 6. Experimental re-
sults are described in Section 7. Finally, concluding remarks
are given in Section 8.

2. PROTOTYPE ELECTRIC VEHICLE BACKGROUND

Battery discharge prognosis is analyzed here in the context of
a prototype battery powered aircraft. The prototype aircraft
is a 33% scaled Edge-540T, with electric propulsion, shown
in Fig. 1. It is 98 inches long, with a 100 inch wing span,
1881 in2 of wing area, and weighs 47.4 lbs. This aircraft is
operated by researchers at the NASA Langley Research cen-
ter, and has been the subject of several publications on battery
discharge prediction and prognostics-based decision making
(Saha et al., 2011, 2012; Balaban & Alonso, 2013).

The aircraft powertrain is illustrated in Fig. 2. The pro-
peller of the UAV is driven by two tandem mounted outrun-
ner brushless DC motors that are each powered by a series
connection of two lithium polymer battery packs. Each of
the battery packs consist of five series connections of two
3900mAh lithium polymer pouch cells wired in parallel. The
total rated capacity of each pack is 7800 mAh with a 50 C
max burst discharge. When fully charged, each 5-cell pack
has an open circuit voltage of 21 V (4.2 V per cell).

Power flow from the battery packs to the driving motors is
controlled by a Jeti 90 Pro Opto electric speed controller
(ESC). The ESC sends synchronized voltages to the propeller
motors at a duty cycle determined by a throttle input, which
is either sent by remote control from a pilot or by an onboard
autopilot.

Inductive loop current sensors are mounted on the positive
lead feeding each ESC. Additional current sensors are also
mounted on the positive feed from each of the four batteries.
The positive lead of each battery is also tapped to provide
the data system with battery voltage measurements. These
are the signals that online battery discharge prognostic algo-
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Figure 2. Motor System Diagram

rithms will use to estimate battery SOC and to predict SOC
at end of mission.

3. BATTERY MODELING

The equivalent circuit model shown in Fig. 3 is used to repli-
cate battery current and voltage dynamics as a function of
estimated battery state of charge (SOC). This battery model
containes six electrical components that are tuned to recreate
the observed current-voltage dynamics of the Edge-540T bat-
tery packs. Battery charge is stored in the equivalent circuit
model capacitor, Cb. The Rs, Cs and Rcp, Ccp circuit ele-
ment pairs are used to capture standard battery phenomenon,
such as internal resistance drops and hysteresis effects.

Because the equivalent circuit model is used to model the
input-output response of a battery rather than its internal elec-
trochemical states, the number of electrical components used,
and there arrangement within an equivalent circuit can vary
widely in application (Chen & Rincon-Mora, 2006). Addi-
tionally, because battery input-output dynamics are known
to change as a function of internal battery charge, is often
the case that some of the parameters in an equivalent cir-
cuit model are parameterized as functions of battery state of
charge (SOC) (Zhang & Chow, 2010). There is no universal
guidance on how equivalent circuit parameters should be var-
ied as functions of SOC, and many differing approaches are
seen in literature. It was decided based on qualitative obser-
vation that defining Cb, Ccp, and Rcp as parameterized func-
tions of battery SOC gave an acceptable trade-off between the
number of parameters to be identified and model error.

The following SOC parameterizations were used for the Cb,
Ccp, and Rcp parameters in Fig. 3:

Cb = CCb0 +CCb1 ·SOC+CCb2 ·SOC2 +CCb3 ·SOC3 (1)

Ccp = Ccp0 + Ccp1 · exp (Ccp2 (SOC)) (2)
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Figure 3. Equivalent circuit battery model.

Rcp = Rcp0 +Rcp1 · exp (Rcp2 (SOC)) (3)

where the coefficients in the parameterized models for Cb,
Ccp, and Rcp must be tuned based on observed current-
voltage battery data over a range of battery SOC values.

Battery SOC is defined here as:

SOC = 1− qmax − qb
Cmax

(4)

where qb represents the charge stored in Cb, qmax is the
maximum charge that the battery can hold, and Cmax is the
maximum charge that can be drawn from the battery. Note
that, the maximum charge that can be drawn from the bat-
tery will be lower than the amount of charge stored in the
battery due to electrochemical side-reactions that lock some
portion of charge carriers in the battery. The term coulombic
efficiency is used to refer to the portion of stored charge that
is recoverable during the discharge of the battery. There are
some mechanisms including resting the battery that can un-
lock some of its lost capacity, however, the overall trend is
inevitably downward.

Two laboratory experiments were used to fit all of the param-
eters in the equivalent circuit model to the lithium polymer
packs used on the Edge-540T. Adapting the equivalent circuit
model to account for manufacturing variation and differences
in battery state-of-health is performed by varying only the
battery charge storage capacity term, qmax, and the series re-
sistance term, Rs, in equivalent circuit model. All other fitted
parameters in the equivalent circuit model are unvaried across
all Edge-540T packs. The qmax and Rs terms are identified
by running separate characterization cycles for each battery
pack prior to flight testing. A sample implementation for the
online adaptation of these parameters to track age-dependent
changes in battery dynamics is found in (Bole et al., 2014).

Examples of measured and modeled battery voltage curves
for two laboratory characterization cycles are shown in
Figs. 4 and 5. The results shown in Fig. 4 demonstrate a char-
acterization experiment in which a battery is discharged at a
low current from a fully charged state. During this low cur-
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Figure 4. Comparison between measured and predicted bat-
tery voltage over a low current discharge.
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Figure 5. Comparison between measured and predicted bat-
tery voltage over a pulsed current discharge.

rent discharge test, the voltage across the Cb capacitor plays
a dominate role. Thus, this experiment allows the Cb param-
eters in the equivalent circuit model to be fit in isolation.

Fig. 5 shows sample results from a second characterization
experiment in which a battery is discharged using a series of
current pulses. This experiment exposes voltage dynamics
that must be fit by the Rs, Cs, Ccp and Rcp parameters in the
equivalent circuit model.
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3.1. Battery State Estimation

The identified battery model can then be used to implement
an observer for the internal battery states based on sampled
voltage and current data. The observer will attempt to esti-
mate the internal states of each of the capacitors (Cb ,Cs, and
Ccp) in the equivalent circuit model.

The unscented Kalman filter (UKF) (Julier & Uhlmann, 1997,
2004) is a flexible tool for computing probabilistic belief in
system state estimates based on stochastic (and possibly non-
linear) models of system dynamics. The UKF assumes a gen-
eral nonlinear form of the state and output equations, and ef-
ficiently propagates model and state uncertainties without the
need to calculate Jacobians (unlike the extended Kalman fil-
ter). The UKF is restricted to additive Gaussian noise random
processes; however use of the unscented transform, a deter-
ministic sampling method, allows random variables with non-
Gaussian distributions to be incorporated using a minimal set
of weighted samples, called sigma points (Julier & Uhlmann,
1997).

The UKF takes as inputs the system inputs, u(k), and the
measured system outputs, y(k). The UKF gives as output,
performing estimation using the battery model, a probabil-
ity distribution for the state, p(x(k)|y(0 : k)), described in
the form of weighted sigma points (X ,w). From the sigma
points, estimates of SOC, and voltage can be directly derived
to obtain probability distributions of these quantities.

The number of sigma points needed is linear in the dimension
of the random variable, and so the statistics of the transformed
random variable, i.e., mean and covariance, can be computed
much more efficiently than by random sampling (Daigle et
al., 2012). Readers interested in the application of UKF and
UT to the estimation of battery SOC are referred to our previ-
ous papers (Bole et al., 2013; Daigle et al., 2012) and the ref-
erences therein. Here, it is sufficient to say that model based
filtering approaches such as UKF will be much less suscepti-
ble to initialization and measurement errors than the Coulomb
counting method currently used in many battery monitoring
systems (Dai et al., 2006).

4. FUTURE MOTOR POWER DEMAND MODELING

The characterization of net battery power required by aircraft
motors over a given set of maneuvers was recently described
in (Bole et al., 2013). The powertrain load estimation model-
ing introduced in (Bole et al., 2013) made use of a set of rel-
atively simple aerodynamics and powertrain dynamics equa-
tions that will be recreated here.

The equations presented here make use of the following as-
sumptions: (i) the propeller is mounted on the aircraft nose;
(ii) the angle between the thrust vector generated by the pro-
peller and the velocity vector of the aircraft is small; and (iii)

aircraft turning forces are small in comparison to the thrust
and drag forces on the aircraft in its direction of travel.

Given these assumptions, the sum of the forces acting in the
aircraft direction of travel can be expressed as:

Txw = D(v) +m · g · sin (α) +m · v̇ (5)

where Txw
represents the thrust produced by the aircraft in the

direction of travel, D represents the drag force acting in the
opposite direction of aircraft motion, v represents the aircraft
airspeed in units of meters/second, v̇ represents acceleration,
α represents angle of climb in units of radians, m represents
the vehicle mass, and g represents the earth’s gravity.

The drag force on the airframe was fitted to the following
polynomial function of airspeed and angle of climb,

D(v, γ) = c1 + c2 · v + c3 · v2 + c4 · α
for v ≥ 15m/s (6)

During take-off and landing maneuvers when the aircraft
speed is less than 15m/s the drag force is approximated
as D = 3 · v. The fitted parameter values used here are:
c1 = 53.9, c2 = −2.4, c3 = 0.07, c4 = 0.56

The product of thrust and airspeed gives the motive power
exerted by the aircraft on its environment,

Pp =
1

ηp
· Txw

· v (7)

where Pp represents propeller output power and ηp repre-
sents the approximate propeller output power conversion ef-
ficiency. The fitted value ηp = 0.7652 was found using a
commercial aerodynamics simulator.

A fixed power conversion efficiency is assumed here for the
aircraft motors and other power electronics,

PESC = ηe · Pp (8)

where ηe represents a power conversion efficiency factor and
PESC represents net power at the input to the aircraft’s two
ESCs. The average efficiency of aircraft motors and power
electronics was estimated here to be about 85%, ηp = 0.85.

The net ESC input power is equal to the sum of the power
outputs from the two series connected battery strings,

PESC = PB1,2 + PB3,4 (9)

where PB1,2 and PB3,4 represent the battery power output for
batteries B1,B2 and B3,B4 as denoted in Fig. 2.

Although both ESCs receive the same throttle input com-
mand, their individual power draw is known to have a pro-
portional relationship.

PB1,2 = λ · PB3,4 (10)
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where λ is constant of proportionality. This constant λ was
estimated to be about 1.37 over typical use cases for the Edge-
540T powertrain.

Substitution of Eqs. (5) - (8) yields an expression for the
approximate ESC input power required to fly at a particular
airspeed and angle of climb,

PESC =
1

ηeηp
· Txw · v

=
v

ηeηp
· (D (v, α) +mg · sin (α) +mv̇) (11)

The power demands on battery strings B1,2 and B3,4 are then
estimated as,

PB1,2
=

λ

1 + λ
· PESC

PB3,4 =
1

1 + λ
· PESC (12)

4.1. Uncertainty Representation

Uncertainty in future powertrain loading demands are con-
sidered here to be unavoidable in environmental and system
dynamics modeling. Uncertainty in future load prediction is
represented here by defining a median future demand predic-
tion with an upper and lower uncertainty bound.

Fig. 6 shows predicted and measured battery output power
and battery output energy respectively for the battery string
B1,B2 over a sample flight of the Edge-540T. The upper
and lower uncertainty bounds shown in Fig. 6 represent
±30% deviation from the future battery power estimated us-
ing Eqns. (11) and (12) with the following sample flight plan.

1. Takeoff and climb to ∼200 meters (duration = 60 s)
(α = 2.8◦, v0 = 0m

s , v̇ = 0.4m
s2 )

2. Maintain altitude and approximate airspeed of v = 23m
s

(duration = 265 s) (α = 0◦, v = 23m
s , v̇ = 0m

s2 )
3. Maintain altitude and approximate airspeed of v = 29m

s
(duration = 225 s) (α = 0◦, v = 29m

s , v̇ = 0m
s2 )

4. Maintain altitude and approximate airspeed of v = 22m
s

(duration = 140 s) (α = 0◦, v = 22m
s , v̇ = 0m

s2 )
5. Land aircraft (duration = 120 s) (α = −3◦, v0 = 22m

s ,
v̇ = −0.18m

s2 )

It can be seen from Fig. 6 that the actual battery power does
not always fall within the plotted upper and lower uncer-
tainty bounds. Notably the battery loads during the takeoff
and climb portion of the flight plan (from 0-60 seconds) are
seen to exceed the maximum predicted power at some points.
Also, the battery loads during landing maneuver (from 690-
810 seconds) are seen to exceed the minimum and maximum
predicted power. The exceedances seen in takeoff and land-
ing maneuvers are due to unmodeled transient dynamics in
the system. These transients are short lived however, and the
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Figure 6. Plots of measured and predicted B1,2 output power
and energy over a sample flight.

measured battery energy consumed over the sample flight is
seen to fall well within the estimated uncertainty bounds.

5. PARASITIC LOAD ESTIMATION

A potential fault mode for the Edge aircraft is some fault
in the electrical power system that manifests as a parasitic
load on the batteries. Because this fault mode presents an in-
creased load on the batteries, it will have effect of increasing
the battery charge required to complete a flight plan. Future
battery load estimates and battery discharge prediction would
thus be biased if the parasitic load faults were not incorpo-
rated. In such a situation, an integrated diagnostics and prog-
nostics approach is required (Bregon, Daigle, & Roychoud-
hury, 2012).

In our case, we consider a parasitic resistance that is located
in parallel with the batteries. The parasitic current, ip, is the
difference between the total battery current, i, and the current
going to the motors, im. In the aircraft, both i and im are
measured as well as the total battery voltage V .

A residual, defined as the difference between an observed sig-
nal and its model-predicted value, can be defined for the par-
asitic fault detection based on the measured values of i and
im. In the nominal case, our model for i is i = im. We
can then define a residual, ri, as r = i∗ − i∗m, where the ∗

superscript indicates a measured value. Nominally, ri = 0,
and we can define a simple threshold-based fault detector that
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triggers when ri > T for some threshold T . More complex
fault detection methods can also be used, e.g., (Daigle et al.,
2010). Once a fault is detected, we can estimate the parasitic
current at time k using

îp(k) = i∗(k)− i∗m(k), (13)

The parasitic resistance can then be estimated using

R̂p(k) =
V ∗
b (k)

îp(k)
. (14)

The estimate R̂p(k) will be noisy, since it is computed based
on measured values. Assuming that Rp is constant, we take
the median of all computed values to provide a robust esti-
mate of Rp, i.e.,

Rp(k) = median({R̂p(kj) : kd ≥ kj ≥ k}), (15)

where kd is the time of fault detection (and the time that fault
identification begins).

Since we are only interested in diagnosing the parasitic load
fault, the diagnosis approach can be very simple. In general,
one may also be concerned with sensor faults, in which case a
more complex diagnosis approach is required, e.g., (Balaban
et al., 2013; Daigle, Bregon, & Roychoudhury, 2011). In such
an approach, additional information must be used to improve
the analytical redundancy required for diagnosis.

Experimental results are shown in Figs. 7(a) and 7(b). In the
nominal case, parasitic current is estimated to be approxi-
mately zero, which is correct for the no fault case. For the
fault cases, parasitic current is clearly observed, and parasitic
resistances can be estimated. In this data, sensor noise is very
low and so the results are very accurate. Additional sensor
noise will have a significant impact on the computation of
parasitic resistance. Fig. 8 shows the difference in results for
additional noise. With higher noise, accuracy reduces and the
estimate takes longer to converge. Because we are using a
median, the results are still pretty smooth.

6. PREDICTION

We now consider the problem of predicting whether or not the
aircraft batteries contain sufficient charge to complete the re-
mainder of a given flight plan. The aircraft batteries are con-
sidered to be no longer able to safely support flight activities
when any of the battery pack voltages drop below 17V. A 17V
pack output voltage corresponds individual lithium-ion cell
voltages of approximately 3.4V. Discharging the lithium-ion
cells beyond this voltage risks damage or catastrophic failure.

Predictions of the future evolution of battery voltage over a
flight plan are generated using estimates of the present bat-
tery state, as well as estimates of the future loads to be placed
on the battery. As explained in Section 3.1, uncertainty in
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Figure 7. Parasitic current and resistance estimates.
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Figure 8. Parasitic resistance estimation with additional sen-
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battery state estimates is represented using a weighted set of
sigma points. As explained in Section 4.1, uncertainty in pre-
dictions of the future battery power to be demanded over the
remainder of a flight plan are represented here by upper and
lower uncertainty bounds.

The experimental results presented in the next section demon-
strate that high confidence assessments on the safety of com-
pleting the remainder of a flight plan can be generated by sim-
ulating all of the current sigma point state estimates against
the extreme upper and lower bounds of anticipated future bat-
tery load. If the maximum and minimum sigma points result-
ing from the application of these future loading extremes are
safe, then we must have very high confidence that the mis-
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sion will be completed. If some of the simulated sigma points
reach a failure state, then we can attempt to further qualify the
risk of failure by applying additional analysis techniques.

7. EXPERIMENTAL TESTING OF BATTERY PREDIC-
TION

Fig. 9 shows an electrical schematic for a test stand that is
used to simultaneously subject batteries to both a static resis-
tive loads and a dynamic current loads. The B1 and B2 bat-
teries shown in Fig. 9 represent two batteries under test. Our
test articles are batteries with the same chemistry, capacity,
voltage, and manufacturer as the Edge-540T batteries. The
if component in Fig. 9 represents a dynamic current sink that
is programmed to sink the same current as was measured for
the B1,2 battery chain over a given flight of the Edge-540T.
The Rp component in Fig. 9 represents a resistive load that
can be switched in parallel with the batteries on command.

A Maccor Series 4000 automated battery cycler is used for
the tests described in this section, and for the battery char-
acterization cycling experiments described in Section 3. This
programmable test system can be configured to draw or apply
static loads or time dependent loads. The testing equipment
is capable of sourcing or sinking up to 5kW of power, with
current limited to 100A, and voltage limited to 50V. The cy-
cler can be programmed to terminate a loading profile based
on current, voltage, or temperature safety thresholds. In the
case of the experiments conducted here, a low-voltage safety
threshold of 17V per pack was used prevent over discharging
the batteries. If this threshold is crossed, the battery loading
experiment is terminated immediately and the batteries will
be considered failed for the purposes of that simulation run.

Four battery discharge experiments are described here. In all
of these experiments the if component in Fig. 9 is set equal
to a 10 Hz sampling of the iB1,2

current as measured over a
sample flight of the Edge-540T. One experiment is performed
with the Rp branch of Fig. 9 open. The resultant battery volt-
age response should closely follow the trends seen on bat-
teries B1 and B2 in the flight test, because they are being
subjected to the same current loads. The addition of a para-
sitic resistance to the battery circuit is tested in the remaining
three discharge experiments. Parasitic resistances are added
into the battery circuit at approximately 200 seconds into a
replayed flight. The lower the value of parasitic resistance in-
jected, the higher the parasitic current draw on the batteries.
The additional current drawn by this parasitic load effectively
increases the demand on the battery over a simulated flight,
and correspondingly increases the risk that the battery lacks
sufficient charge to complete a given flight plan. The parasitic
resistance values tested were: {Rp = 10 Ω, Rp = 5 Ω, and
Rp = 1 Ω}.

Fig. 10 shows B1 and B2 voltage measurements and SOC
estimates collected during a sample flight, and during four

Figure 9. Schematic of battery tester, showing current sources
and voltage measurement points.

battery discharge tests conducted in the laboratory. The flight
data was collected over an Edge-540T flight that followed the
sample flight plan described in Section 4.1. The battery volt-
age and SOC measurements for the nominal experiment (with
no parasitic load injected) are in fact seen to follow the flight
measurements. The injection of 10 Ω and 5 Ω parasitic resis-
tances is seen to result in lowered battery voltage and SOC
over a sample flight profile. Finally, the injection of a 1 Ω
resistance is seen to result in the early termination of the dis-
charge test due to an exceedence of the low-voltage safety
threshold at approximately 500 seconds.

Next we consider the generation of prognostic estimates for
the aircraft at regular time-indexes over a UAV mission. At
each time-index the inputs to the prognostic estimator are (i)
a set of sigma points representing battery state estimates; (ii)
estimated ±30% uncertainty bounds on motor system power
demands over a planned set of aircraft maneuvers; and (iii)
online estimates of parasitic load faults. Prognostic estimates
will be reported in terms of two metrics; (i) the predicted
battery SOC at the end of a flight plan, and (ii) the predicted
time to reach either the battery low-voltage cut-off threshold
or the end of a flight plan.

Fig. 11 shows the evolution of prediction uncertainty bounds
for the two prognostic metrics over five battery discharge data
sets. The starting uncertainty bounds for the prediction of
battery SOC at the end of the flight plan is seen to span from
approximately 55% SOC to 10% SOC. The battery EOD esti-
mate is seen to span from approximately 700 seconds to 810
seconds, where 810 seconds marks the expected end of the
aircraft flight plan. These uncertainty bounds indicate a pre-
dicted worst-case outcome where the batteries reach the low-
voltage cut-off threshold at approximately 700 seconds, and
a best-case predicted outcome in which the mission will be
safely completed.

During the time interval [0,180], all of the worst-case EOD
estimates are seen to converge on a belief that the mission will
not cause the batteries to fail prior to flight plan completion.
This convergence occurs because the battery state evolution
observed over the time interval [0,180] turns out to be better
that was predicted for the worst-case.
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Figure 10. Comparison of voltage measurements (top) and
SOC estimates (bottom) for batteries B1 and B2 over a sam-
ple flight and four test cases that include injected parasitic
resistances of various magnitudes.

Around 200 seconds into the mission a parasitic resistance is
injected in parallel with the batteries. The effect that this new
parasitic resistance has on predicted future battery loads is
clearly seen the predictions of SOC at end of flight plan. For
the case of the 1 Ω injected parasitic resistance, predictions
of SOC at end of flight plan are seen to rapidly converge to a
prediction that the battery charge will be fully depleted prior
to the end of the flight plan. The EOD prediction plots show
an initial drop in the confidence that batteries will survive the
remainder of the flight plan with 5 Ω and 10 Ω of parasitic
load. The confidence in flight plan safety for the 5 Ω and
10 Ω cases is then seen to converge to predicting the safe
completion of the mission.

This example demonstrates the combination of system state
estimation uncertainty and future system load uncertainty into
an estimate of prognostic uncertainty. Upper and lower un-
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Figure 11. Prediction uncertainty bounds for two prognostic
metrics plotted at 30 second time intervals over five battery
discharge data sets. Predicted battery SOC at EOM is shown
in the top plot, and predicted time to reach a battery EOD
threshold is shown in the bottom plot

certainty bounds on the space of future outcomes are derived,
and the utility of these bounds for making high confidence es-
timates of flight plan safety is demonstrated. Consideration of
situations in which uncertainty bounds indicate that a range of
both safe and unsafe evolutions of the system state are possi-
ble is identified as a topic for future work. In such situations,
knowledge of a probability distribution for the prognostic un-
certainty between upper and lower uncertainty bounds, may
be needed to quantify the risk and reward of potential super-
visory control actions. Extending the prognostic results pre-
sented here in this way is possible, but is left as a topic for fu-
ture work. Flight demonstrations of autonomous and pilot-in-
the-loop decision making based on online battery discharge
predictions is also planned for future work.
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8. CONCLUSIONS

This paper describes an approach for identifying upper and
lower uncertainty bounds on predictions that aircraft batteries
will continue to meet output power and voltage requirements
over the remainder of a flight plan. Uncertainty bounds were
generated using uncertain estimates of a battery’s state and
uncertain predictions of future battery demands. The estab-
lishment of upper and lower bounds on prognostic estimates
was shown to enable high confidence assessments of amount
of safe flying time remaining before there is appreciable risk
of the battery output voltage dropping below specified lower
limits.
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