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ABSTRACT

In the field of machine health monitoring, vibration analy-
sis is a proven method for detecting and diagnosing bearing
faults in rotating machines. One popular method for interpret-
ing vibration signals is envelope-demodulation, which allows
the maintainer to clearly identify an impulsive fault source
and its severity. In some cases, in-band noise can make im-
pulses associated with incipient faults difficult to detect and
interpret. In this paper, we use Wavelet De-Noising (WDN)
after envelope-demodulation to improve the accuracy of bear-
ing fault diagnostics. This contrasts the typical approach of
de-noising raw vibration signals prior to demodulation. We
find that WDN removes low amplitude harmonics and spuri-
ous reflections which may interfere with FFT techniques to
identify low-frequency peaks in the signal spectrum. When
measuring impact frequencies in the time-domain using a peak-
thresholding method, the proposed algorithm exhibits increas-
ingly confident periodicity at bearing fault frequencies.

1. INTRODUCTION

1.1. Bearing Fault Diagnosis

A faulty bearing will typically create periodic, impulsive vi-
brations, which are proportional to rotational speed. These vi-
brations may be recorded and analyzed to reveal the nature of
a given fault. Systems with multiple bearings and gear reduc-
tion systems will exhibit unique fault frequencies due to vary-
ing component dimensions and operating speeds. This sim-
ple observation may be exploited to determine exactly which
component is failing (Qui, Lee, Lin, & Yu, 2006). In more
sophisticated systems, multiple sensors are often used to in-
dicate fault locations based on local vibration power levels
(Waters & Beaujean, 2013).
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1.2. Envelope Analysis

Within a given structure, fault-induced impulses will amplitude-
modulate mechanical resonances (McFadden & Smith, 1984).
Research on which this paper is based (Waters & Beaujean,
2013) utilizes envelope analysis to extract impulses from the
modulated signal, which allows for quick diagnosis of appar-
ent mechanical problems.

However, incipient faults are rather difficult to detect using
this method, due to lower signal-to-noise ratio (SNR). Extra-
neous noise sources such as nearby modal resonances, vibra-
tional reflections, and vibrational harmonics corrupt the enve-
lope signal. We find that low SNR degrades early-detection
abilities and in turn deteriorates estimates of Remaining Use-
ful Life (RUL). These noise sources are in-band and non-
white, so their removal is less than trivial.

To combat a low SNR in the demodulated signal, we require
a “de-noising” technique. This research focuses on wavelet
de-noising and its use in vibration analysis, particularly as a
post-processing scheme for envelope analysis. A secondary
objective is to reduce user-interaction with the algorithm’s pa-
rameters to obtain beneficial results.

1.3. Wavelet De-Noising

Many techniques have been devised for noise removal via sig-
nal processing. For our purposes, the algorithm must process
non-stationary signals with good time-resolution. Vibration
statistics will be in constant flux, given changes in bearing
wear, speed, and operating environment. More importantly, it
must perform without a priori knowledge of the noise.
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As far as the aforementioned requirements specify, Wavelet
De-Noising (WDN) is a proven candidate. The wavelet trans-
form outperforms the Short-Time Fourier Transform (STFT)
in terms of temporal resolution, allowing it greater flexibility
in analyzing non-stationary signals (Rioul & Vetterli, 1991).
It has also been demonstrated that WDN requires no knowl-
edge of the noise level in order to optimally remove it (Donoho,
1995).

1.4. Paper Structure

Section 2 provides a brief overview of wavelet de-noising
and its function, and reviews previous literature pertaining to
PHM applications. Section 3 explains the proposed method-
ology, then sections 4 and 5 contain results supporting the use
of WDN to help interpret demodulated vibration signals, and
Section 6 contains a few concluding remarks.

2. BACKGROUND

2.1. Discrete Wavelet Transform

A more in-depth discussion of wavelet techniques can be found
in (Daubechies, 1992). The wavelet transform, given as the
operator W , is easily visualized in the continuous domain:

Wf (a, b) =

∫ ∞
−∞

f(t)ψa,b(t)dt (1)

where f is an arbitrary function of the independent variable
t, and ψa,b is a family of wavelet functions defined by scaling
and shifting – respectively a and b,

ψa,b(t) =
1√
a
ψ

(
t− b
a

)
(2)

where ψ is a prototype function, or wavelet kernel.

In order to utilize this transform for sampled data, we dis-
cretize the scaling and shifting parameters in the following
manner:

am = am0 (3)

bm,n = nb0a
m
0 (4)

where m and n are the discrete analogues of frequency and
time, respectively.

Notably, the shifting parameter b is a function of scale a. This
illustrates a crucial advantage of the Discrete Wavelet Trans-
form (DWT); the distribution of information in frequency is
dyadic, or octave-band. For analyzing natural signals, this is
highly useful (Rioul & Vetterli, 1991).

The DWT results in a set of wavelet coefficients d, which are
given by the inner product

dm,n = 〈f(t), ψm,n(t)〉 (5)

which, when the proper wavelet family is chosen, represents

a frequency-orthogonal decomposition of the original signal
into subbands which are logarithmically spaced in frequency,
as shown in Figures 1 and 2. In Figure 1, the wavelet inner
product is functionally equivalent to BPF and LPF, or band-
pass and lowpass filtering.

Figure 1. Octave subband tree structure with three levels of
decomposition. Each filtering results in a set of coefficients,
typically referred to as detail (high frequency, cD) and ap-
proximation (low frequency, cA) coefficients. If this pat-
tern is repeated until cD6 and cA6, the 6-level decomposition
shown in Figure 2 will result.

Figure 2. Filter magnitude responses of a six level wavelet
decomposition, using the db6 wavelet. Note the logarithmic
frequency scale.

2.2. Coefficient Thresholding

As originally proposed in (Donoho & Johnstone, 1994), the
linear soft thresholding function is given by

τ(x) =

{
x− λsgn(x), |x| ≥ λ
0, |x| < λ

(6)

where x are the values being thresholded, sgn(x) is the sign
of x, and λ is the threshold below which values are set to zero.
Donoho and Johnstone (1994) prove that the threshold λ for
near-optimality (in the minimax sense) is calculated as

λ = σx
√

2log(N) (7)
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where N is the number of samples in the time series and
σx is the noise deviation. Exact noise statistics are difficult
to estimate without a priori characteristics or reference mea-
surements. A simplifying assumption is to consider Gaussian
noise as the dominant source in an incipient fault situation,
as suggested in Bozchalooi and Liang (2007). Therefore, the
noise deviation sigmax is just the unbiased estimate of the
standard deviation of the input signal.

σx ≈

√√√√ 1

N − 1

N∑
k=1

(xk − µx)2 (8)

where xk are sample values and µx is the arithmetic mean of
the time series.

When the thresholding function is applied to orthogonally de-
rived wavelet coefficients, the result is a de-noised version of
the original signal.

2.3. Existing Literature

Qui et al. (2006) discussed wavelet domain techniques for
vibration analysis applications. The authors use the same
method described in Section 2, but they criticize the use of
WDN for vibration signals due to tuning difficulties:

[...] there are other factors influencing the effec-
tiveness of [wavelet] de-noising, such as the wavelet
decomposition level and threshold rescaling method
selection, which make the de-noising problem even
more intricate. Since there are no explicit guidelines
for how to tune the existing parameters, most of the
time de-noising becomes a trial-and-error process.
(Qui et al., 2006, pg. 1080)

There is much truth to these statements, and using WDN on
raw vibrational signals generally gives unpredictable results.
However, this paper concludes that WDN is quite functional
in the context of envelope-demodulated vibration signals.

3. SIGNAL FLOW & METHODOLOGY

Typically, de-noising algorithms are used as a pre-processing
step to improve the effectiveness of subsequent signal pro-
cessing. However we find that when used prior to envelope
demodulation, WDN removes low-amplitude modal resonances
that allow the Hilbert Transform to work well. If the de-
noising is performed after demodulation, the impulse signal
is more effectively de-noised.

The full signal processing procedure is as follows:

1. The raw vibration signal is Hilbert filtered at a chosen
modal vibration frequency, resulting in a bandpass sig-
nal.

2. A Hilbert transform is performed, bringing the signal
into the baseband.

3. WDN is used to attenuate lower amplitude harmonics
and vibrational reflections.

4. The signal is searched for faults using peak detection in
both time and frequency.

This report mainly focuses on the third step of this process.

3.1. Time-Domain Detection

For time-domain peak detection, the MATLAB R© function
findpeaks is used to find local maxima. These peaks are
thresholded at thre, which is a function of the average signal
power,

thre = α
1

Ne

Ne−1∑
i=0

e2i . (9)

where Ne is the number of samples in the envelope signal e.
The constant α allows for adjustment to this threshold. This
function will remove smaller peaks that are not associated
with larger impacts.

The times between all successive peaks in the envelope signal
are measured, resulting in a vector of impulse periods. The
inverse of this vector is a set of impulse frequencies. A his-
togram will reveal higher concentrations on fault frequencies.

3.2. Frequency-Domain Detection

We use a Welch PSD estimate to visualize the distribution of
energy in the frequency domain. This allows for smaller time
windows and reduces spurious peaks in the FFT via averag-
ing.

4. SYNTHETIC SIGNAL TESTING

4.1. Setup

A synthetic vibration signal was constructed to test WDN ef-
fectiveness on a controlled envelope signal.

d[n] = e−γτsin(ωτ) (10)

τ =
n

fs
(11)

n is the sample number, fs is the sampling frequency, τ is
time relative to n = 0, and ω is the simulated modal res-
onance frequency (rad/sec). γ is the exponential decay con-
stant. This damped sine function is windowed and repeated in
time to simulate a periodic impact, much like a bearing fault
may produce in rotating machinery.

Modeled after real fault signals from the Case Western Re-
serve University bearing data set (Bearing Data Center, 2013),
these values are inferred by observing real signals:

γ ≈ 1000 ω ≈ 5000π
rad

sec
fs = 48kHz
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White noise is added to the signal at SNRT ≈ 0dB, where
SNRT is the time-domain signal-to-noise ratio. This is calcu-
lated within a window of one time-constant of the exponen-
tially decaying signal. This prevents inclusion of zeros be-
tween pulses, which would artificially reduce the SNR mea-
sure.

4.2. Discussion of Parameter Selection

Sensible parameter choices are derived from this experiment,
which help to effectively de-noise the envelope signal.

The first parameter is nd, or the number of decomposition lev-
els. Selection of this value essentially determines the band-
width of the lowest two subbands. If the desired signal is
placed between subbands, then undesired attenuation may oc-
cur during thresholding.

For baseband envelopes, the number of decompositions de-
pends on the highest possible fault frequency. In the case of
a rolling element bearing, this is usually BPFI (Ball Pass Fre-
quency of Inner raceway) (McFadden & Smith, 1984). There-
fore, to determine the maximum number of decompositions
allowable, we find nd such that

fs
π/2nd

2π
> BPFI. (12)

This will ensure that the frequencies of interest are not lost
between subbands.

The other important parameter is the wavelet, φ, which will
determine the amount of energy leakage between subbands.
Higher-order wavelets decrease subband leakage, but require
more computational power. In the time-domain, baseband en-
velopes simply correspond to a lowpass-filtered impulse train.
In the frequency domain, this corresponds to high energy con-
centrations near DC. Higher order wavelets will more ac-
curately de-noise and reconstruct the low frequency band,
which contains frequencies of interest. Throughout these ex-
periments, the Daubechies 20-tap wavelet (db20) is sufficient.

4.3. Results

The synthesized signal is Hilbert-filtered (bandpass) at ω, Hilbert
transformed (demodulated), and WDN is applied. The wave-
forms in Figure 3 show all stages of the algorithm.

To de-noise the envelope signal, we choose to use 10 levels
of decomposition. The reasoning, using Equation 12, is that
10 levels of decomposition will give a lowpass (scaling fil-
ter) cutoff at ≈ 24Hz. This cutoff needs to be set above the
synthesized fault frequency, which is 20Hz.

4.3.1. Frequency-Domain Detection

Figure 4 shows a low-frequency Welch PSD of the signal
before and after WDN, with the expected fault frequencies

Figure 3. WGN added to damped sine pulses. The fourth
and fifth plots show an increase in SNRT by ≈ +1dB from
applying WDN. The benefits of this procedure are not imme-
diately obvious in the time-domain. Wavelet decomposition
using db20 wavelet at a depth of 10 levels.

in grey. WDN removes higher harmonics that dominate the
PSD, which increases the likelihood of proper fault identifi-
cation using frequency-domain techniques.

4.3.2. Time-Domain Detection

To identify the fault in the time-domain, the signal is run
through a peak detector and thresholded. The confidence in-
terval plot in Figure 5 shows the improvement in detection
ability for a wider range of α. The bands around the estimate
denote 95% confidence intervals. The histograms in Figures
6 and 7 demonstrate what happens as α becomes too high,
and the time-domain plot in Figure 8 shows the location of
the threshold for α = 46.

4.4. Remarks

The WDN algorithm successfully attenuates non-fault related
envelopes in the signal, increasing the probability of proper
fault identification using both frequency-domain (PSD) and
time-domain (peak thresholding) methods. The confidence
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Figure 4. Welch PSD of signals shown in Figure 3 before (top) and after (bottom) WDN. Gray area shows ±10% of possible
fault frequencies

Figure 8. A high threshold causes peaks to be discarded from the first plot, whereas the WDN version of the signal still contains
these peaks.

interval plot in Figure 5 shows a “compression” in confidence
with variation in threshold scaling α. In the sections that fol-
low, this technique is tested on real-world signals to verify
results.

5. REAL SIGNAL TEST RESULTS

5.1. Setup

The Case Western Reserve University bearing data were tested
with the WDN algorithm. The precisely seeded faults were
created with electro-discharge machining, with the smallest
faults at 0.007”. A short time-domain waveform is shown of
the signal at all stages of the algorithm in Figure 9. The fault
frequency is at BPFO (Ball Pass Frequency of Outer race-
way).

The db20 wavelet is used to de-noise at 7 levels of decomposi-

tion. The resulting lowpass (scaling filter) cutoff is ≈ 187Hz.
With a rotational speed of around 1796 RPM (30Hz), the the-
oretical maximum fault frequency (BPFI) for the SKF 6205-
2RS bearing is approximately 107Hz.

5.2. Frequency-Domain Results

The 0.007” outer raceway fault is distinguishable by the large
spectral peak in Figure 10. One small, but noticeable im-
provement is the BPFO harmonic at ≈ 210Hz, marked with
an arrow in the figure, which is removed by WDN.

5.3. Time-Domain Results

The removal of harmonics has implications when attempting
to identify faults in the time-domain. Figure 11 shows that
the threshold method may pick up harmonics as the domi-
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Figure 10. Low frequency PSD of the vibration signal shown in Figure 9. The fault frequency BPFO is approximately 107Hz.

Figure 5. Estimated fault frequency vs. threshold level for the
noisy pulse signal shown in 3, periodic at 20Hz. By thresh-
olding the peaks of this envelope at a variable level α, the
de-noised envelope signal is shown to more accurately reflect
periodicity at the fault frequency.

nant envelope peak frequency. This issue arises when dealing
with the BPFO and BSF (Ball Spin Frequency), since their
harmonics may be near BPFI. In this case, low α makes es-
timation inaccurate for the non de-noised signal. With WDN
applied, this method works well for low thresholds. At large
negative values of α, the algorithm is simply measuring the
distance between local maxima.

5.4. Remarks

WDN successfully improved the time-domain fault identifi-
cation method by reducing its dependence on α. Other data
from the Case Western bearing dataset was tested, with simi-
lar results.

Figure 6. Histogram of impulse frequencies, before WDN.
These values are derived from the threshold shown in Figure
8. Low frequency content is a result of the threshold missing
lower-amplitude peaks.

6. CONCLUSION

In this paper, we have presented a method to improve de-
tection confidence in fault identification using wavelet de-
noising. The method deals with the myriad of in-band noise
sources in narrowband vibration signals without a priori noise
statistics.

Decomposition techniques are more suitable to detecting smooth
signals, therefore, WDN is applied after envelope demodula-
tion. This yields better results than attempting to de-noise a
broadband vibration signal, as in (Qui et al., 2006).

For general purpose signal conditioning, wavelet de-noising
is a low-risk, widely applicable technique. Donoho (1995)
proves that the gains in noise reduction outweigh the costs of
removing low-energy details from the signal. Therefore, un-
less computational limitations are critical, there is little reason
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Figure 7. Histogram of impulse frequencies, after WDN.
With the same threshold as Figure 6, more peaks are included
in the measure, at the proper fault frequency (around 20Hz).

not to utilize such an algorithm.

While this paper demonstrates the function of WDN in the
context of demodulated vibration signals, it also serves as a
guide for parameter choice. The number of parameters that
control this algorithm can be unwieldy, but some sensible de-
cisions and simplifying assumptions allow for ease of use:

• φ – wavelet type – In this paper, we decide upon the
Daubechies wavelet for its flat passband characteristics.
This choice allows for accurate representation of signal
proportions in the scale-space domain. In our experi-
ments, the db20 wavelet is sufficient. We choose a high
order wavelet, so that the passband cutoff is sharp. This
allows for a high number of decompositions without com-
promising the amplitudes of coefficients in the lower pass-
bands.

• λ – soft threshold level – This value was derived by Donoho
(Donoho, 1995) to be a function of noise variance, which
is unknown. We simplify this choice by assuming the in-
band noise is white, so that the resulting threshold is a
function of signal variance, which is known.

• nd – decomposition level – For our applications, we are
searching for energy in the baseband (a demodulated AM-
signal). The maximum frequency of a bearing fault is the
inner raceway fault frequency (BPFI). Therefore, the de-
composition level must not be so high as to place the
lowest subband cutoff below this frequency.

Figure 9. The time-domain waveform of a seeded fault with
0.007” diameter in the outer-raceway at all stages of the algo-
rithm.

Figure 11. Estimated fault frequency 95% confidence inter-
vals vs. threshold level for the vibration signal shown in 9.
This figure demonstrates the importance of removing vibra-
tional harmonics from envelope signals when using a peak
thresholding method.
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7. FUTURE WORK

To carry this research one step further, it is recommended that
power levels be trended over long timescales. The improve-
ments provided by WDN have yet to be tested for evalua-
tion of RUL. It may be hypothesized that, due to the early-
detection and confidence improvements demonstrated in this
paper, any RUL measure will benefit from earlier, more accu-
rate fault specifics.

With reference to those algorithms tested by Qui et al. (Qui
et al., 2006), a direct comparison between wavelet filtering
and WDN was never performed, but may be warranted. The
WDN algorithm as presented in this paper requires minimal
interaction to improve results, where wavelet filtering requires
some recursion to tune parameters. Their relative speeds and
effectiveness may be a worthwhile measurement.

REFERENCES

Bearing data center. (2013). Case Western Reserve Univer-
sity. Retrieved Jan 2014, from http://csegroups
.case.edu/bearingdatacenter/

Bozchalooi, I. S., & Liang, M. (2007, July). A combined
spectral subtraction and wavelet de-noising method for
bearing fault diagnosis. IEEE Proceedings of the 2007
American Control Conference, 2533-2538.

Daubechies, I. (1992). Ten lectures on wavelets. Philadelphia,
PA: Society for Industrial and Applied Mathematics.

Donoho, D. L. (1995). De-noising by soft-thresholding. IEEE
Transactions on Information Theory, 41(3), 613-627.

Donoho, D. L., & Johnstone, I. M. (1994). Ideal spatial
adaptation via wavelet shrinkage. Biometrika, 81, 425-
455.

McFadden, P., & Smith, J. (1984). Model for the vibration
produced by a single point defect in a rolling element
bearing. Journal of Sound and Vibration, 96, 69-82.

Qui, H., Lee, J., Lin, J., & Yu, G. (2006). Wavelet filter-based
weak signature detection method and its application on
roller element bearing prognostics. Journal of Sound
and Vibration, 289, 1066-1090.

Rioul, O., & Vetterli, M. (1991, October). Wavelets and
signal processing. IEEE Signal Processing Magazine,

8(4), 14-38.
Waters, N., & Beaujean, P. (2013). Targeting faulty bearings

for an ocean turbine dynamometer. International Jour-
nal of Prognostics and Health Monitoring, 4, 1-15.

BIOGRAPHIES

Edward M. Bertot is an engineer and mu-
sician from Miami, Florida. He gradu-
ated from the University of Miami (Coral
Gables, FL) with a B.S. in Music Engi-
neering Technology in 2010, and recently
received an M.S. in Electrical Engineering
at Florida Atlantic University (Boca Raton,
FL). His current research interests include

signal processing techniques, with emphasis on audio.

Pierre-Philippe Beaujean received the
Ph.D. degree in ocean engineering from
Florida Atlantic University in 2001. He is
an Associate Professor at the Department of
Ocean and Mechanical Engineering, Florida
Atlantic University. He specializes in the
field of underwater acoustics, signal pro-
cessing, sonar design, data analysis, ma-

chine health monitoring, and vibrations control. Dr. Beau-
jean is an active member of the Acoustical Society of Amer-
ica (ASA), the Institute of Electrical and Electronic Engineers
(IEEE) and the Marine Technology Society (MTS).

David J. Vendittis [Ph.D. (Physics) - Amer-
ican University, 1973] is a Research Profes-
sor (part time) at the Department of Ocean
and Mechanical Engineering, Florida At-
lantic University. Additionally, he is the
Technical Advisory Group (ASA/S2) chair-
man for an International Standards Orga-
nization subcommittee, ISO/TC108/SC5 -

Machinery Monitoring for Diagnostics. This committee
writes international standards that support Machinery Con-
dition Monitoring for Diagnostics. He was appointed to this
position by the Acoustical Society of America (ASA).

8


