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ABSTRACT

Online prognostics of the battery capacity is a major chal-
lenge as ageing process is a complex phenomenon, hardly di-
rectly measurable. This paper offers a new methodology for
real-time estimating of the global battery performances for
Electric Vehicle (EV) use. The presented data-driven frame-
work build a model based on the modifications in battery sig-
nals behavior, according to the performance level. A first pat-
tern extraction step consists in the selection of battery signals
corresponding to specific acceleration profiles in real uses,
allowing to highlight the battery behavior. These extracted
voltage and current patterns are then considered to determine
the battery behavior for each State of Health (SOH) feature.
Studied patterns are compared using signal processing tech-
niques, allowing the estimation of the battery performance,
through statistical learning methods. The application of sig-
nal processing and Relevance Vector Machines (RVM) model
with multiple kernels, provides a powerful tool to diagnose
battery health online, only based on real signals. Further-
more, this methodology also allows the prediction of battery
Remaining Useful Life (RUL) during real use. The proposed
algorithm is validated using datasets from real EV uses. Pre-
sented diagnostics results on real data demonstrate the good
accuracy of this new framework for battery SOH prognostics
in real-time constraints, with uncontrolled conditions.

Anthony Barré et. al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

Lithium-ion (Li-ion) batteries are becoming the battery of
choice in Electric Vehicles (EV) utilization. However, battery
health and lifetime remain a major drawback to the use of Li-
ion batteries in stringent life requirements. In EV context, ac-
curate battery health assessment is primordial to improve the
users confidence in the battery range. Indeed, it is one of the
biggest obstacles to widespread acceptance of EVs. Market
experts evaluated the effects of low range resources of EVs,
as a significant feature for users’ purchases intentions (Peters
& Dütschke, 2014).

The field of prognostics and health management offers differ-
ent approaches for estimating battery age level and remain-
ing lifetime (Saha & Goebel, 2008). There are many data-
driven methodologies that focus on the battery State of Health
(SOH) estimation (Barré et al., 2013). However, most of
these data-driven approaches perform well on their training
data only, under specific operational experiments, inducing
robustness and generalization mistakes. In real life, external
conditions cannot be controlled and these learned models are
subject to misestimations. Thus, an accurate way of estimat-
ing battery capacity in real-time based on real EV uses data-
driven algorithm still requires investigations (Barré, Suard,
Gérard, Montaru, & Riu, 2014).

In this work, we propose an alternative approach by only us-
ing data-driven methodology developed from a set of real EV
uses. Such a methodology requires large amounts of training
data in the development phase. In the EV context this train-
ing data requirement is very restrictive and costly. To face
this problem, we investigate whether it is possible to extract
relevant features from current and voltage signals collected
during real EV uses, under non controlled conditions. A key
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Figure 1. Battery signal analysis framework consisting of the data aquisition, the extraction of specific patterns, the formation
of new feature space and the estimation of the battery health level along with its remaining useful life

issue explored by this paper is how battery capacity can be
estimated during real EV uses, without specific requirement,
based only on real use data.

Section 2 presents the global theoretical framework and de-
tails the methods used for the SOH estimation and RUL prog-
nostic in real time. Then, Section 3 details the obtained re-
sults for SOH estimation and RUL prognosis in real EV uses
context. Finally, Section 4 presents the main conclusions and
discussions of this research.

2. METHODOLOGY

In this section, we present our approach to predict the bat-
tery State of Health (SOH) and its corresponding Remaining
Useful Life (RUL). As a first step, signal patterns were esti-
mated from the acquired data, in order to observe the battery
behavior modification. To quantify these modifications Dy-
namic Time Warping (DTW) is introduced. Then, a multiple
kernel Relevance Vector Machines (RVM) model is learned
to estimate the battery SOH in real time. Based on the SOH
estimations, the RUL is predicted with a bootstrap approach.
The global framework is illustrated in Figure 1.

2.1. Patterns extraction

The proposed methodology is based on the assumption of bat-
tery behavior modification along the battery life. Time series
signal can be used to diagnose health by analyzing battery
behavior. Thus, for a similar battery request, it is possible to
detect battery ageing effects based on signal shapes such as
current and voltage.

To observe a signal behavior modification, it is necessary to
compare battery signals under comparable uses. For example,
during an identical speed profile criterion, the battery voltage
does not react the same way depending on its health level.
Thus, the common reference here is the speed signal. In the
following study we consider maximal accelerations from 10
to 60 km/h in less than 12.5 seconds as a reference criterion.
This choice allows to extract patterns with a relatively large
length permitting to detect battery behavior. These extracted
training data are consequently issued from real EV uses, pro-
viding a large amount of data under uncontrolled conditions.
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Figure 2. Average signals profile corresponding to a maximal
acceleration under four different health levels, based on 10-60
km/h accelerations - Level 1 (SOH = 100 - 98%, T ' 24◦C)
- Level 2 (SOH = 98 - 96%, T ' 22◦C) - Level 3 (SOH = 96
- 92%, T ' 12◦C) - Level 4 (SOH = 92 - 87%, T ' 30◦C)

To compare the pattern behaviors under different health lev-
els we proceed to an average shape of the patterns for dif-
ferent battery health classes. Thus, the average shapes of the
extracted signals, under four different health classes are pre-
sented in Figure 2. These classes represent four battery health
levels, sorted from the least period ”Level 1” to the most aged
battery level ”Level 4”. The SOH level used to build these
groups, is here extrapolated from several complete charac-
terizations permitting to obtain SOH reference values. The
average temperature values of each class are various, going
from 12◦C for Level 3 to 30◦C for Level 4. It is important
to note that these temperature conditions can induce potential
pattern behavior modification.

Figure 2 illustrates the variations of signals behavior for dif-
ferent battery health levels. The extracted speed profiles are
really close to each other, forming good comparative sam-
ples. However, in real-life context it is impossible to obtain
exactly twice the same speed profile, implying a slight diver-
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sity among the extracted speed signals.

On the contrary, the corresponding extracted current and volt-
age patterns have various shapes. For example, the current
pattern of Level 4 (SOH between 92 and 87 %) is clearly
below the other ones, and its corresponding voltage pattern
increases faster than for the other health classes. This can be
explained by a difference of battery reaction for a same power
demand at different health levels. These behavior modifica-
tions demonstrate the alteration of the battery reaction in cor-
relation with health degradation.

The objective of the following study is to use these battery
behavior modifications to estimate its health level, only based
on the extracted patterns.

2.2. Dynamic Time Warping

In order to compare the signals pattern and quantify their sim-
ilarities, we have to consider a metric adapted to this prob-
lem. Thus, beyond usual measures, the current state-of-the-
art of shape similarity quantification is the Dynamic Time
Warping (DTW). It permits to compare asynchronous signals
of different lengths. The primary goal of DTW is to com-
pare sequences respecting their shapes by finding an optimal
alignment function stretching them. Since its introduction in
the 70s, DTW has commonly been used in signals similarity
problems in many fields : speech processing, signals recog-
nition, data mining and imaging (Aach & Church, 2001; Bar-
Joseph, Gerber, Gifford, Jaakkola, & Simon, 2002; Petitjean,
Kurtz, Passat, & Ganarski, 2012).

This method is based on the Levenshtein distance (Sakoe &
Chiba, 1971) and finds the optimal path between two sequences,
considering temporal distortion. This optimal path produces
an alignment function, along with a shape-based similarity
measure. Formally, we have two sequencesX := (x1, .., xN )
of length N ∈ N and Y := (y1, ..., yM ) of length M ∈ N. In
the following we fix a feature space denoted by F . To com-
pare two different features x, y ∈ F , one needs a local cost
measure, defined by a function c :

c : F × F → R≥0 (1)

Typically, the cost c(x, y) is low if x and y are similar to
each other, otherwise c(x, y) is high. Evaluating the local cost
measure c(x, y) for each pair of elements of the sequences
X and Y , one obtains the cost matrix C ∈ RN×M defines
by C(i, j) = c(xi, yj). The goal is to find the alignment
between X and Y minimizing the overall cost. A warping
path is a sequence p = (p1, ..., pL) with pl = (nl,ml) ∈ [1 :
N ]× [1 : M ], ∀l ∈ [1 : L], satisfying the conditions :

 p1 = (1, 1) and pL = (N,M)
n1 ≤ ... ≤ nL and m1 ≤ ... ≤ mL

pl+1 − pl ∈ {(1, 0), (0, 1), (1, 1)}, ∀l ∈ [1 : L− 1]
(2)

A warping path p = (p1, ..., pL) defines an alignment be-
tween two sequences X and Y by assigning the element xnl

of X to the element yml
of Y . The alignment conditions im-

ply that the first elements of X and Y as well as their last
elements are aligned to each other. The total cost cp(X,Y )
of a warping path p between X and Y with respect to the
local cost measure c is defined as :

cp(X,Y ) =

L∑
l=1

c(xnl
, yml

) (3)

Furthermore, an optimal warping path between X and Y is
a warping path p∗ minimizing total cost among all possible
warping paths. The DTW distance dDTW (X,Y ) between X
and Y is then defined as the total cost of the optimal warping
path p∗ :

dDTW (X,Y ) = cp∗(X,Y ) = min {cp(X,Y )| ∀p} (4)

The local cost measure c is defined as the distance between
elements of sequences, e.g., the Euclidean distance. An ex-
ample of DTW warping paths is given in Figure 3.
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Figure 3. Illustration of paths of index pairs for a sequence
X of length N = 6 and a sequence Y of length M = 8
(a) Admissible warping path (b) Example of a non admissi-
ble warping path due to boundary conditions and step size
conditions

This DTW distance permits the comparison and the quantifi-
cation of different signals shape. It is particularly adapted to
battery signals evolution. Therefore, this distance measures
the difference between each extracted pattern.

2.3. Relevance Vector Machines

The Relevance Vector Machines (RVM), initially introduced
by (Tipping, 2001), is based on a Bayesian formulation of a
linear model with an appropriate prior that results in a sparse
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representation. Given the set of training patterns {ti|i =
1, ..., N} along with their corresponding health level {hi|i =
1, ..., N}, assume that hi = f(ti) + εi, where εi are assumed
to be independent samples from a Gaussian noise process
with zero mean and σ2 variance, i.e. σi ∼ N (0, σ2), ∀i.
The aim is to learn a dependency model of the targets on the
inputs to make accurate predictions of h for unseen values
of t. Typically, predictions are based on some function f(t)
defined over the input space, and learning is the process of
inferring the parameters of this function. This function takes
the form :

f(t) =

M∑
i=1

wiK(t, ti) + w0 (5)

where f(t) is the function output,K(t, ti) is a kernel function
and w = [w1, ..., wN ]T are the weights.

Therefore, the likelihood of dataset can be written as :

p(h|w, σ2) = (2πσ2)−
N
2 exp{− 1

2σ2
||h− φw||2} (6)

where φ = [φ(t1), ..., φ(tN )]T ,
and φ(tN ) = [1,K(ti, t1),K(ti, t2), ...,K(ti, tN )]T

When attempting to learn the relationship between t and h,
we wish to constrain complexity and hence the growth of the
weights w by defining an explicit prior probability distribu-
tion on w. Our preference for smoother and therefore less
complex functions is encoded by using a zero-mean Gaussian
prior over w. This gives us :

p(w|α) =

N∑
i=1

N(0, α−1
i ) (7)

where we have used αi to describe the inverse variance of
each wi. This means that there is a hyperparameter αi associ-
ated with each weight, modifying the strength of the prior
thereon. To complete the specification of this hierarchical
prior, we must define hyperpriors over α; as well as over the
noise variance σ2.

Having defined the prior, Bayesian inference proceeds by com-
puting the posterior over all unknows given the data from
Bayes’ rule, i.e. :

p(w,α, σ2|h) =
p(h|w,α, σ2)p(w,α, σ2)

p(h)
(8)

Assuming that the new test target is h∗, and the new test input
t∗ are used to make predictions. The predictions are made
according to :

p(h∗|h) =

∫
p(h∗|w,α, σ2)p(w,α, σ2|h)dwdαdσ2 (9)

We can decompose the posterior p(w,α, σ2|h) as :

p(w,α, σ2|h) = p(w|h, α, σ2)p(α, σ2|h) (10)

And so, the posterior distribution over the weights is :

p(w|h, α, σ2) =
p(h|w,α, σ2)p(w|α)

p(h|α, σ2)
∼ N (w|µ,Σ) (11)

where the posterior covariance and mean are respectively :

Σ = (σ−2φTφ+A)−1 (12)

µ = σ−2ΣφTh (13)

with A = diag(α0, ..., αN ). Note that σ2 is also treated as
hyperparameter, which can be estimated from the data.

Therefore, machine learning becomes a search for the most
probable hyperparameters posterior αMP and σ2

MP . Predic-
tions for a new input data t∗ are made according to the inte-
gration of weights to obtain the marginal likelihood for the
hyperparameters :

p(h|αMP , σ
2
MP ) =

∫
p(h∗|w, σ2

MP )p(w|αMP , σ
2
MP )dw

p(h|αMP , σ
2
MP ) = N (h∗|t∗, σ2

∗) (14)

with :
h∗ = µTφ(t∗) (15)

σ2
∗ = σ2

MP + φ(t∗)T Σφ(t∗) (16)

In order to employ the DTW measure in the RVM process,
we have to use a kernel function K considering the DTW
measure. Several attempts were made to derive kernels based
on the DTW distance (Lei & Sun, 2007). We consider in this
paper the Gaussian Dynamic Time Warping (GDTW) kernel
(Bahlmann, Haasdonk, & Burkhardt, 2002), with a parameter
γ, defined as :

KGDTW (t, ti) = exp(−γdDTW (t, ti)) (17)

2.4. Extension of RVM to Multiple Kernel

The use of different kernels in a same process allows the com-
bination of different characteristics. In the case of complex
phenomena, a multiple kernel approach can be useful as each
used kernel is subject to extract a different characteristic, ob-
tained with different kernel formations or parameters (Suard
& Mercier, 2009). In order to assign specific kernel for each
patterns, the prediction function is written :

f(t) =

N∑
i=1

k∑
j=1

wi,j ·Kj(t, ti) + w0 (18)

One possible way to write this function is to define a kernel
basis. This definition decomposes the kernel K into different
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blocks. The multiple kernel, for k kernels, is then composed
like a kernel basis :

K = [1 K1 K2 ... Kk] (19)

If we consider that all columns are independent, we can fi-
nally write the prediction function with :

f(t) =

N∗k∑
i=1

wi ·Ki(t) + w0 (20)

Thus, this formulation shows that we can extend RVM to mul-
tiple kernel with a kernel basis approach.

2.5. RUL prediction

The fitted model is used to estimate battery health at different
times. Based on these SOH estimations {hi∗|i = 1, ..., N},
the aim is to predict the battery Remaining Useful Life (RUL).
The RUL is defined as the remaining time until the battery
reaches an End of Life (EOL) criterion, commonly chosen as
80% SOH level.

Remaining Useful Life (RUL) is derived by projecting out the
capacity estimates into the future until expected capacity hits
the certain predetermined End of Life (EOL) threshold. As
opposed to the SOH estimations, this process does not require
to be done in real time as the SOH dynamic is too slow to
modify the RUL at every EV use. Thus, at a given time T ,
the proposed methodology considers a polynomial regression
to fit all the past SOH estimations {hi∗|i = 1, ..., N}, with
N ≤ T . The polynomial regression finds the coefficients
of a polynomial p of degree d that fits p(T ) to the estimated
battery health level hi∗ at a time i, in a least square sense.
The polynomial p of degree d is defined as :

p(T ) = p0 + p1T + ...+ pdT
d =

d∑
j=0

pjT
j (21)

Considering this polynomial construction, the aim is to build
a RUL probability density function. For this, we use a boot-
strap technique to predict the value of the RUL with a statis-
tical sampling.

Thus, we sample past SOH estimations {hi∗|i = 1, ..., N},
with replacement, obtaining bootstrap data {hBi∗|i = 1, ..., N}.
For this bootstrap data we calculate the corresponding poly-
nomial p and then use this polynomial to predict its associated
RUL.

Repeating these steps L times, we obtain a family of boot-

strap RUL predictions {R̂UL
B

g |g = 1, ..., L}. The distribu-

tion of the R̂UL
B

g allows the construction of a predicted RUL
probability density function (pdf) at a time T.

Even with few SOH estimations, this bootstrap permits the

obtention of RUL pdf. Note that, in battery RUL prediction
context, we will consider in the following study a polynomial
degree d = 2 to fit the SOH dynamics. This choice is a con-
sequence of the slow variations of SOH evolution observed in
the literature.

3. RESULTS

3.1. Model learning

The described framework is applied on battery real dataset.
The considered methodology is here tested with patterns ex-
tracted with a 10-60 km/h in less than 12.5 seconds as an
acceleration criterion. Note that a long acceleration pattern
contains more information and less variability than the short
ones. However, the longest acceleration profiles require larger
datasets to obtain enough patterns for the methodology pro-
cess.

The data used in this study wascollected from a real and non-
controlled EV use, during 460 days, generating 50 000 km.
Thereby processing data are representative of a large vari-
ety of conditions an EV battery can be faced with. More-
over, using real data ensures compatibility of the developed
methodology for embedded uses. The presented results here
come from a unique EV battery to illustrate the methodol-
ogy performances. This experiment also contains several bat-
tery characterizations permitting to measure the real SOH of
the battery, through a complex specific process done a test
bench. Thus, these measured SOH values compose the tar-
geted health levels h, and the aim is to produce SOH estima-
tions ĥ, with the explained methodology.

To illustrate the frequency of pattern extraction, on the stud-
ied real data, an acceleration profile corresponding to the de-
fined criterion happens in average every 150 km of EV use.
This value is given here as an indication as it is of course
highly dependent on the driving style and to driving condi-
tions. This property induces that during a real EV use, the
model provides a new SOH estimation on average every 150
km, which represents a good frequency compared to the total
battery lifetime estimated to be approximately of 160 000 km.
Thus, for a utilization of 15 000 km per year, the algorithm
produces two SOH estimations every week.

The extracted voltage and current patterns, as presented in
Figure 1, along with capacity references obtained from spe-
cific tests are then used. The training data sets are composed
of patterns issued from real EV uses and of frequent battery
measurements. Thus, each extracted pattern is associated to a
battery health level, permitting the training of the RVM algo-
rithm. In this study we use 75% of the data to train the RVM
algorithm and the other 25% compose the test data permitting
to evaluate the methodology accuracy.

The first step of the presented methodology is to create a
RVM model to estimate online the battery health during its
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real uses. As explained in Section 2.3, the use of several ker-
nels can add information into the model. Thus, in this study
we consider a multiple kernel RVM approach, with the as-
sociation of three different kernels. Two GDTW kernels are
respectively built with the extracted current patterns and with
the extracted voltage patterns. The other kernel is a Gaus-
sian kernel calculated from the values of the battery tempera-
ture measured at each pattern extraction. Battery temperature
measures are here introduced into the model construction to
avoid adding information about the variable external condi-
tions. Indeed, it is well known that the battery temperature
highly influences its reaction and its signals behavior. The
SOH targets h are here the extrapolations of the measures ob-
tained with the battery characterizations. Note that this model
learning step is computationally constraining, as it requires a
lot of DTW calculations. But this model construction is done
just once, before real time application context. The complex-
ity of this step is consequently not a drawback to the applica-
tion in a real EV use.

Therefore, the inputs of the learning RVM model are the ker-
nels corresponding to the current and voltage patterns along
with a kernel based on their associated battery temperature
measures, the output is an estimation ĥ of the battery SOH
level.

3.2. Results

Based on the learned RVM model, the methodology allows
the SOH diagnosis whenever a specific 10-60 km/h acceler-
ation in less than 12.5 seconds, is detected during EV use.
Thus, the embedded trained algorithm produces a new SOH
estimation at each acceleration corresponding to our criteria
defined in Section 2.1. The pattern extraction step is done in
real time, as it only requires a criteria comparison step. Once
a speed pattern is detected as satisfying, the extraction crite-
ria, the corresponding voltage and current patterns are then
extracted, along with the temperature value. These informa-
tions are then directly used as input in the SOH estimation
model, producing a SOH estimation. This estimation step is
done in real time, and the calculus time is highly dependent
to the variety of training datasets. Indeed, the estimation pro-
cess require the quantification of DTW distance between new
extracted patterns and all of the corresponding training pat-
terns. However, this implementation is done in a few seconds
and permits the application in real time. Figure 4 illustrates
the obtained performances by this methodology with a battery
under real EV use.

The global error between the estimations {ĥi|i = 1, ..., N}
and their respective targets {hi|i = 1, ..., N} is calculated
with the relative error as follows :

η =
1

N

N∑
i

∣∣∣∣∣1− ĥi
hi

∣∣∣∣∣ (22)
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Figure 4. Estimation of the battery SOH in real-time, with a
mean corresponding relative estimation error of η = 0.81%

The SOH estimations demonstrate the good accuracy of the
proposed methodology as the average relative error η of the
results illustrated in the Figure 4 is 0.81%. Note that the stan-
dard deviation of the obtained errors is 1.1%, inducing an
interesting stability of the estimations. Moreover, the estima-
tions trend fits with the SOH measurements, validating the
reliability of this new innovative framework. Thus, Figure 4
shows that the use of machine learning process with battery
patterns allows the estimation of the battery SOH. This result
level is highly interesting as it performs to estimate the bat-
tery SOH with a good accuracy in real time during EV uses.

Based on these SOH estimations, the methodology detailed
in Section 2.4 permits the prediction of the battery RUL at
different times. Figure 5 presents the predicted battery RUL
probability density functions at three different times, based
on the SOH estimations illustrated in Figure 4.

Figure 5. Prediction of the battery RUL probability density
function (pdf) at three different times

The three RUL’s probability density functions (pdf) presented
in Figure 5 demonstrate the robustness of the proposed method-
ology. The chosen times for RUL estimation are made arti-
ficially to illustrate the evolution of the RUL pdfs over time.
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Thus, the predicted RUL pdfs differ depending on the pre-
dicted time. The RUL pdf is indeed sensitive to the SOH
estimation variations. For example we can see the RUL pdf
predicted at 210 days considers a rapid battery capacity de-
crease, due to the last SOH estimations made before the pre-
diction time.

It is also noticeable that RUL prediction improving in both
accuracy and precision with the inclusion of more measure-
ments before prediction. This is clearly visible in Figure 5,
as the RUL pdf predicted at 460 days produces the best confi-
dence level compared to the two others predictions. Thus, at
460 days the EOL criteria is predicted to be reached between
580 and 610 days, which represents a narrow range consider-
ing the total battery life.

4. CONCLUSION

This paper presents the implementation of a machine learn-
ing framework that allows the estimation of the battery State
of Health (SOH) and predicting the Remaining Useful Life
(RUL), and more specifically for Lithium-ion batteries. The
proposed approach is based on the alteration of the battery
signals behavior throughout its life to estimate the battery
SOH, adapting the value of unknown model parameters dur-
ing a preliminary training process. The estimated value of the
battery capacity is then used to predict the battery RUL. Im-
plementation results show the robust performance of the al-
gorithm in real-time SOH estimation under uncontrolled con-
ditions. The presented method performs well in a real life
context, which is not the case of other existing approaches.

This study developed an innovative approach devoted to es-
timate the battery SOH during real EV uses, without specific
requirements. Such a methodology is a particular advantage
for a commercial aspect as it does not require to control the
battery life conditions to make an estimation. The learned
algorithm can indeed be used for estimating the SOH of all
batteries with the same design. Meaning that once the estima-
tion model is built, it can be used as an embedded estimation
model in all EVs.

Furthermore, the average estimation error of less than 1% ob-
tained in the example presented in Figure 4 can be reduced
using more training data coming from different EVs. In a
fleet context, an estimation model can be trained from sev-
eral EVs and then be embedded into all EVs using the same
battery. This would allow accurate SOH estimation in all of
these EVs.

Data driven approaches require large dataset to perform, how-
ever the results presented were obtained from a model built on
a single EV. This study demonstrates a new baseline for SOH
estimation only based on battery signals. It would be interest-
ing to use this algorithm with a large set of data coming from
an EV fleet. Thus, the next step is to test this methodology

with several batteries to demonstrate the robustness and accu-
racy of the developed process with a large EVs fleet. In this
case, the learned model by machine learning process would
deliver even more accurate SOH estimations, as it would be
based on more training datasets. To extend this methodol-
ogy, it can also be considered in future studies to explore new
kernels associations in order to input more information to the
machine learning step.

The presented methodology can also be transposed to every
battery use, to estimate its SOH during real utilizations. In-
deed, this study does not consider any restricting use hypoth-
esis. This methodology is, for example, adjustable in electric
aircraft context.
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Peters, A., & Dütschke, E. (2014). How do consumers
perceive electric vehicles? a comparison of german
consumer groups. Journal of Environmental Policy &
Planning, 0(0), 1-19.

Petitjean, F., Kurtz, C., Passat, N., & Ganarski, P. (2012).

7



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

Spatio-temporal reasoning for the classification of
satellite image time series. Pattern Recognition Let-
ters, 33(13), 1805 - 1815.

Saha, B., & Goebel, K. (2008). Uncertainty management for
diagnostics and prognostics of batteries using bayesian
techniques. Aerospace Conference, IEEE, 1-8.

Sakoe, H., & Chiba, S. (1971). A dynamic programming ap-
proach to continuous speech recognition. In Proceed-
ings of the seventh international congress on acoustics,
budapest.

Suard, F., & Mercier, D. (2009). Using kernel basis with rele-
vance vector machine for feature selection. In Artificial
neural networks icann 2009 (Vol. 5769, p. 255-264).
Springer Berlin Heidelberg.

Tipping, M. E. (2001). Sparse bayesian learning and the rel-
evance vector machine. J. Mach. Learn. Res., 1, 211–
244.

BIOGRAPHIES
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