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ABSTRACT 

Recently, the rapid expansion of wind energy activity has 

led to an increasing number of publications that deal with 

wind turbine health monitoring. In real practice, 

implementing a prognostics and health management (PHM) 

strategy for wind turbines is challenging. Indeed, wind 

turbines are complex electro-mechanical systems that often 

work under rapidly changing environment and operating 

load conditions. Although several review papers that 

address wind turbines fault diagnosis were published, they 

are mostly focused on a specific component or on a specific 

category of methods. Therefore, a larger snapshot on recent 

advances in wind turbine fault diagnosis is presented in this 

paper. Fault diagnosis approaches could be grouped in three 

major categories according to the available a priori 

knowledge about the system behavior: 

quantitative/qualitative model, signal analysis and artificial 

intelligence based approaches. Each of the proposed 

methods in the literature has its advantages and drawbacks. 

Therefore, a comparison between these methods according 

to some meaningful evaluation criteria is conducted. 

1. INTRODUCTION 

Wind power industry continues to show a significant 

worldwide growth during the last decade. However, due to 

the competitive environment associated with the power 

generation industry, costs for operation and maintenance 

(O&M) of wind turbines need to be reduced (Arabian-

Hoseynabadi, Oraee, & Tavner, 2010). Prognostics and 

Health Management (PHM) is one of the best strategies to 

achieve such purpose. Indeed, inspection tasks and time 

based maintenance activities are often expensive and require 

undesired downtime to be performed (Lu, Li, Wu, & Yang, 

2009). Moreover, implementing a PHM policy allows to 

support system long-term performance through accurate 

monitoring, incipient fault diagnosis and prediction of 

impending faults (Kalgren, Byington, & Roemer, 2006). A 

fault diagnosis function estimates the current system health 

state from health features or sensors measurements. 

Whereas, a prognosis procedure seeks to predict when a 

potential upcoming failure will occur given the current 

system health state and the future usage conditions (Roemer, 

Nwadiogbu & Bloor, 2001). 

However, a number of challenges remain to be met while 

performing wind turbines health assessment tasks owing to: 

- The complex structure of the wind turbine (Fischer, 

Besnard & Bertling, 2012) 

- The non-linearity and non-stationarity of the 

aerodynamics of such system (Lu et al., 2009) 

- Fault tolerant nature of its control system (Simani, 

Castaldi & Tilli, 2011). 

In order to address these constraints, a better understanding 

of the multiple failure modes associated with various 

components and their interactions is needed. In addition, 

symptoms related to the operating loads, environmental 

conditions and maintenance scenarios should be 

distinguished from actual wind turbine performance loss. 

Then, fault diagnosis and prognosis functions could be 

reliable.  

Although a number of review papers addressing these topics 

have been published (Hameed, Hong, Cho, Ahn, & Song, 

2009), (Sharma & Mahto, 2013), (Azarian, Kumar, Patil, 

Shrivastava & Pecht, 2011), (García Márquez, Tobias, Pinar 
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Pérez & Papaelias, 2012), (Nie & Wang, 2013), (Lu & 

Sharma, 2009) (Sheng, 2011), they are mostly focused 

either on a particular component (gearbox components, 

insulated gate bipolar transistors (IGBTs)…) or on 

condition monitoring techniques and signal analysis tools. 

Therefore, in this review paper, a larger snapshot of recent 

diagnosis research works is explored in order to compare the 

proposed methods according to some meaningful evaluation 

criteria. Prior to that, a brief description of the wind turbine 

system and the most common condition monitoring tools is 

given. 

2. WIND TURBINES HEALTH MONITORING 

A wind turbine is a rotating mechanical device that converts 

wind kinetic energy to practical mechanical energy, 

resulting in electricity production. The rotary part can be 

either vertical or horizontal. The most recently used wind 

turbines are horizontal-axis based with two or three blades. 

These turbines also have a nacelle, which is held up by the 

tower and contains the gearbox and the generator. The 

gearbox increases the speed of the low-speed shaft to a 

suitable value required by the generator. A yaw system, 

which turns the nacelle and the rotor to face the wind, 

enables the turbine to capture the maximum amount of 

energy. According to the type of the generation system, the 

gearbox and the converter, different wind turbines 

categories can be distinguished (Kahrobaee & Asgarpoor, 

2011). Among them, the variable-speed wind turbines offer 

advantages such as four quadrant power capabilities, 

maximum aerodynamic efficiency and reduced mechanical 

stress (Flórez, 2012). The double fed induction generator 

(DFIG) is today one of the most popular schemes for 

variable-speed wind turbines which has been introduced to 

replace the fixed-speed, squirrel-cage induction generators 

(Figure 1). In general terms, from the viewpoint of health 

monitoring, fixed speed turbines have a greater occurrence 

of mechanical failures (often in the gearbox) while electric 

failures are predominant in variable-speed turbines. More 

details about wind turbines configurations and their failures 

modes could be found in several papers (Fischer et al., 

2012) (Arabian-Hoseynabadi et al., 2010), (Kahrobaee & 

Asgarpoor, 2011). 

 

Figure 1. Typical configuration of a DFIG-based wind 

turbine (Flórez, 2012). 

2.1. Condition Monitoring Systems for wind turbines 

Among the review papers on wind turbines health 

monitoring and fault diagnosis, several of them were 

focused on Condition Monitoring Systems (CMS) tools 

used for that purpose. A CMS includes a set of sensors, 

signal acquisition and processing software, cabling and 

installations that gives continuous information about the 

monitored component condition. The CMS is used on wind 

turbines (especially off-shore ones) in order to monitor the 

most critical components such as gearboxes, generators, 

main bearings and blades. García Márquez et al. (2012) 

found that vibration analysis is the most known technology 

employed in wind turbines, especially for rotating 

equipment such as gearboxes components and bearings that 

supports the low speed shaft. Acoustic emission analysis is 

another condition monitoring tool used for rotating wind 

turbines components as well as for the blades (Hameed et 

al., 2009). In addition, oil analysis is typically applied to the 

gearbox and may have two purposes: (1) guaranteeing the 

oil quality (by measuring the oil temperature, its 

contamination and moisture) or (2) monitoring various 

rotating parts condition/wear (by looking for oil 

contamination or variation of particulates properties) 

(Sharma & Mahto, 2013). For more thorough summaries on 

condition monitoring techniques related to different wind 

turbines subassemblies, see (Hameed et al., 2009) and (Lu 

& Sharma, 2009). 

Based on the above references, it is worth mentioning that: 

- For the drive train components, the variable-speed 

operation and the stochastic characteristics of the 

aerodynamic loads prevent the usage of traditional 

frequency domain analysis techniques. Therefore, time-

frequency analysis (e.g. wavelet transforms) is more suitable 

(Lu et al., 2009), 

- The acoustic emission based tools give earlier 

warning of wind turbines gearbox failure at low-speeds 

compared to the classical vibration-based ones. However, 

acoustic emission techniques require higher sampling rates 

and they may not be a cost-effective solution to the gearbox 

fault detection (Azarian et al., 2011), 

- Despite many research achievements in developing 

condition monitoring techniques, their implementation in 

practice still faces some challenges. Indeed, they still suffer 

from false alarms and they do not demonstrate satisfactory 

performance in the detection of incipient faults especially 

those related to electrical/electronic components (Yang, 

Tavner, Sheng & Court, 2012). 

A CMS has the advantage to be accurate in monitoring 

specific kinds of failures. However, it requires more sensors 

and equipment to be installed in wind turbines as well as 

higher data storage costs resulted from a higher sampling 

rate of the acquired signals. To date, and because of these 

high implementation costs, such systems are more used for 
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offshore wind turbines where maintenance visits are more 

complicated (Yang, Tavner, Crabtree & Wilkinson, 2008). 

2.2. Towards SCADA data based health monitoring 

In comparison with a CMS which is intended only to health 

monitoring purpose, the Supervisory Control and Data 

Acquisition (SCADA) system is able to resolve certain 

supervisory control tasks by automatically starting, 

stopping, and resetting the turbines in case of small 

fluctuations (Verma, 2012). Furthermore, SCADA records 

tend to be a major data source for monitoring wind turbines 

condition in the last years (Sharma & Mahto, 2013). Indeed, 

SCADA data might be fault informative. These data are of 

two types: status codes and operational data. The status data 

are recorded whenever the system undergoes status changes, 

whereas the operational data are recorded at predefined time 

intervals (Kusiak & Verma, 2011). Operational SCADA 

data include operational variables such as the produced 

power, the wind speed, some components temperatures and 

even vibration and oil debris monitoring data in some cases 

(Nie & Wang, 2013). Thus, SCADA based health 

monitoring is considered to be a cheaper solution than CMS 

since no additional sensors are required. However, wind 

turbines SCADA systems usually limit the amount of data 

to a number of records (10 min average data) and they are 

not initially designed for condition monitoring purposes. 

Then, conventional condition monitoring approaches which 

are developed for highly sampled CMS data are mostly not 

valuable and an appropriate SCADA data analysis tool is 

needed (Yang, Court & Jiang, 2013). 

3. WIND TURBINES FAULT DIAGNOSIS APPROACHES 

Regardless of used condition monitoring tools, several fault 

detection and diagnosis methods have been developed. In 

general and according to the nature of the available process 

knowledge, these methods can be categorized into three 

main classes: model-based, signal analysis and artificial 

intelligence (AI) methods. 

 Model based methods 

For this first broad category, a priori knowledge about the 

system operation modes is complete enough to be 

formalized into a quantitative or qualitative model. The 

quantitative models are in the form of fundamental laws 

described by mathematical relationships on the system 

input-output measurements. The quantitative models based 

approaches are of two categories: parameter estimation, and 

output observer based approaches. 

The parameter estimation based methods use a system 

identification technique on input/output measurements in 

order to monitor the evolution of the system characteristic 

parameters against a nominal parameter set. Output observer 

(or residual generation) methods use an observer, often a 

Kalman filter, in order to assess the difference between the 

actual and the estimated output (reconstructed from the 

system model and controlled inputs). However, qualitative 

models use qualitative relationships or knowledge bases to 

draw conclusions regarding the state of a system and its 

components (Katipamula & Brambley, 2005). Hence, a 

qualitative model could be either a qualitative physics-

based, discrete event or rule-based model. 

 Signal analysis methods 

Signal analysis methods are based on time and frequency 

domain analysis without any explicit mathematical model. 

Only knowledge about suitable fault features is required. 

Fault features can be derived from raw signals (vibration, 

acoustic emission, electrical signatures…) in order to 

evaluate the system operating state. Fast Fourier 

transformation, cepstrum (spectral representation of signals) 

and envelope curve analysis are some common approaches. 

More details about these techniques are given in (Jardine, 

Lin & Banjevic, 2006). 

 Artificial intelligence methods 

When a process is too complex or poorly known to be 

monitored through quantitative or qualitative models, and if 

signal analysis techniques do not allow an unambiguous 

diagnosis, artificial intelligence (AI) approaches can be used 

to overcome these limitations. AI based methods learn the 

complex model exclusively from available historical data 

(Venkatasubramanian, Rengaswamy, Kavuri & Yin, 2003). 

Artificial neural networks and clustering/classification 

techniques belong to this category of methods. 

Without concern of exhaustiveness, the present review gives 

some examples from recent wind turbine fault diagnosis 

studies in order to illustrate each category of methods. 

3.1. Literature review 

Different wind turbines components are considered within 

the reviewed works. Moreover, both CMS and SCADA 

based monitoring tools could be found. The only 

differentiator is the category of the fault diagnosis methods 

used. 

Within the quantitative model based fault diagnosis 

category, Chen, Ding, Sari, Naik, Khan and Yin (2011) put 

forward an observer-based fault detection and isolation 

scheme for the wind turbine pitch system and the drive train. 

They utilized a Kalman filter for residual generation. Then, 

a generalized likelihood ratio test and a cumulative variance 

index were applied for residual evaluation. Test data were 

extracted from a wind turbine simulator proposed within 

(Odgaard, Stoustrup & Kinnaert, 2009). Another example of 

an observer based approach implemented using SCADA 

data is reported in (Guo, 2011). In this paper, the normal 

behaviour of the generator bearing temperature is modelled 

based on a nonlinear state estimate technique (NSET). 

When residuals between the NSET estimates and the 
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measured values exceed predefined thresholds, an incipient 

fault is flagged. Effectiveness of this approach was 

evaluated by the analysis of a manual drift added to the 

historical SCADA data. Simani et al. (2011) performed a 

parameter identification/estimation based method for 

converters fault diagnosis. Since the studied component is 

non-linear and the wind speed measurement is highly noisy, 

a fuzzy multiple model was considered. Such model 

consists of a collection of several local affine models, each 

of them describes a different operating mode. Thus, they 

used a fuzzy clustering technique in order to determine the 

regions in which the measured data could be approximated 

by local models. The effectiveness of such method was 

shown on a simulated process. On the other hand, 

Kostandyan and Sørensen (2012) explored a physics of 

failure model in order to assess the accumulated linear 

damage for a given load profile. It is applied to evaluate the 

damage value and predict the wind turbines power 

electronics reliability. 

Regarding the qualitative model based approaches, 

Echavarria, Tomiyama, Huberts and Van Bussel (2008) 

developed a model-based reasoner for the overall system. 

The authors used qualitative physics in order to describe the 

behavior of the wind turbine in terms of qualitative 

characteristics changes over time. Such approach allows the 

possibility to model systems of higher complexity such as 

wind turbines. Work done by Rodriguez, Garcia, Morant, 

Correcher and Quiles (2008) has shown that Petri Nets are 

also suited for system-level modeling and namely for wind 

turbines fault diagnosis. 

Within the scope of this review, signal analysis based fault 

diagnosis works are the most prevalent in the literature. 

Classical signal processing techniques were widely applied 

for studying wind turbines components, mainly the gearbox 

and the generator components. Indeed, Yang et al., (2008) 

applied a wavelet-based adaptive filter in order to extract the 

energy of the generator power signal at prescribed, fault-

related frequencies. In addition, the signal non-stationarity 

was treated by adjusting the filter bandwidth according to 

the fluctuation of the wind speed. Both mechanical and 

electrical abnormalities were assessed experimentally on a 

wind turbine test rig. A similar work on generator fault 

diagnosis is done by Amirat, Choqueuse and Benbouzid 

(2010). They highlighted the use of the Hilbert 

transformation on the stator current data. Vibration signals 

were also widely used with classical signal processing tools 

in both time and frequency domain (Zhang, Verma & 

Kusiak, 2012) (Liu, Zhang, Han & Wang, 2012).  

The construction of some SCADA data curves and studying 

their deviation from a reference one is being more adopted 

for a global wind turbine health monitoring. This kind of 

approaches is specific to wind energy domain and can be 

integrated among AI methods. Kusiak and Verma (2013) 

studied three operational curves: power curve, rotor curve 

and blade pitch curve, which plot three measurements 

against the wind speed. A k-means clustering and 

Mahalanobis distance were used to extract smooth 

performance curves by removing outliers without any 

pretreatment on raw data. The obtained performance curves 

will be considered as baseline curves to detect fault drifts. In 

a similar manner, Yang et al. (2013) established several 

reference plots by extracting correlations between relevant 

SCADA variables. However, input variables were first 

preprocessed and normalized relatively to the wind speed or 

to the generator speed values in order to obtain smooth 

curves. 

With regards to more known AI based approaches, Laouti, 

Sheibat-Othman and Othman (2011) conducted a fault 

diagnosis for pitch system sensors and actuators by means 

of a support vector machine classifier. Fault features were 

manually constructed and a wind turbine simulator data was 

used for this purpose. For gearbox fault diagnosis, Kim, 

Parthasarathy, Uluyol, Foslien, Sheng and Fleming (2011) 

proposed a fault detection method based on SCADA 

measurements. They applied principal components analysis 

and a clustering technique in order to diagnose gearbox 

faults. Tong and Guo (2013) proposed an improved data-

mining algorithm for the extraction of association rules on 

status codes (considered as fault alarms). The purpose was 

to extract implied causal relationships between status codes 

that lead to an effective fault alarm. In such a way, the 

number of alarms was reduced and then operators’ work 

efficiency improved. Kusiak and Li (2011) proposed to use 

the occurrence time of certain status codes which are related 

to the diagnosed faults in order to label the SCADA data. 

The obtained labeled training data set was then used by 

several data-mining algorithms (Neural network, standard 

classification and regression tree (CART), the Boosting 

Tree Algorithm (BTA), SVM…) in order to predict the 

diverter malfunction. Work done by Godwin and Matthews 

(2013) dealt with the development of an expert system for 

the classification and detection of wind turbine pitch faults. 

Decision rules were extracted by a decision tree-type rule 

learning algorithm and then validated by an independent 

expert. A similar approach could be found within (Yongxin, 

Tao, Wenguang & Dongxiang, 2012) where a trained 

decision tree was used in order to construct fault diagnosis 

rules of a wind turbines gearbox.  

3.2. Review results and discussion 

Based on this survey, major advantages and drawbacks of 

each category of wind turbines fault diagnosis approaches 

are listed hereafter:  

- Monitoring data issued from CMS or SCADA systems 

can be used in implementing model-based and 

artificial intelligence approaches. However, signal 

analysis methods are mostly used when accurate and 
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specific fault oriented acquisition system is available, 

i.e. with CMS.  

- Quantitative model approaches, in particular parameter 

estimation based ones, have the advantage of 

identifying the abnormal physical parameters rather 

than faulty signal signatures that are more dependent to 

the load condition (Lu et al., 2009). However, model-

based approaches require a sufficiently accurate a 

priori knowledge to construct a mathematical or 

analytic model for the monitored system. This is hard 

to achieve in case of complex non-linear systems as 

wind turbines.  

- Although qualitative models based approaches require 

deep knowledge about the wind turbines behavior, they 

have the ability to monitor the overall system via the 

causal knowledge and the laws governing the behavior 

of its subsystems (Venkatasubramanian, Rengaswamy, 

Yin & Kavuri, 2003). 

- Signal analysis based approaches are easier to 

implement if a sophisticated data acquisition systems 

and sensors exists. However, successful 

implementation of such approaches is dependent on 

the construction of suitable fault-related features and 

reliable thresholds since subjective and unproven ones 

may result in wrong alerts (Yang et al., 2013). 

- Artificial intelligence approaches achieve multi-

dimensional analysis based on the combination of 

several sensors that monitor the same component. 

However their performance is highly dependent on the 

selection of training data set which must represent all 

operating modes for the wind turbine. In addition, 

since the obtained models are not usually transparent, 

the obtained results can be hard to be interpreted and 

demonstrated. 

As a synthesis of this review, some criteria are proposed to 

compare these three categories of diagnosis methods 

(Table1). Such comparison could support the choice of the 

suitable fault diagnosis approach with respect to the initial 

needs. Chosen criteria for this comparison are the following: 

(1) System’s non-stationary nature: ability to separate 

the actual degradation and environmental or load 

effects 

(2) Needed knowledge: ability to construct model 

without need to a priori knowledge  

(3) System level: ability to deal with system hierarchical 

levels (local component or global system point of 

view) 

Table1 show the rank accorded to each category of methods 

regarding each criterion. A category is accorded the first 

rank when it satisfies the best the criterion in question. 

Considering the first criterion, quantitative model-based 

approaches, are the most suitable for dealing with the 

systems non-stationary nature, especially by using 

parameter estimation techniques. Signal analysis approaches 

can also deal with such non-stationarity by adjusting filters 

bandwidth according to the fluctuation of the wind speed 

(Yang et al., 2008). 

Table 1. Comparison of fault diagnosis methods 

 System non-

stationarity 

Needed 

knowledge 

System 

level 

Model 

Based 
+ + + + + + + 

Signal 

Analysis 
+ + + + + 

AI + + + + + + 

Artificial intelligence approaches are less suited when this 

constraint should be satisfied. Moreover, in terms of the 

third criterion, qualitative models are more appropriate for 

system level monitoring. Artificial intelligence methods can 

be also used if appropriate health features are afforded. 

These results remain broad since they are extracted from a 

wide range of fault diagnosis approaches from the literature. 

Thus, such comparison does not substitute an effective 

implementation and comparison of most major methods 

with specific fault and real condition monitoring data.  

4. CONCLUSION 

Fault diagnosis methods developed for different wind 

turbine components such as gearbox, main bearings and 

generators are widely proposed. However, other critical 

wind turbine components such as blades, pitch systems and 

converters still need more focus. This is because of the -) 

hard modeling and detection of blades icing, deflection and 

fatigue and -) actions of the control feedback which 

compensate the pitch actuators and converter fault effects. 

In addition, the use of SCADA data for wind turbine health 

monitoring has led to the development of specific diagnosis 

methods for wind energy domain. The methods based on the 

analysis of wind turbine performance clearly separate out 

pre-failure data from other normal operating data. However, 

it is challenging to associate a drift in wind turbine 

performance to a particular failure using only global 

features as the produced power. Faults characterization 

requires often measurements about more of specific features 

related to the components dynamical behaviors. Thus, 

algorithms based on SCADA signals analysis should be 

combined with components oriented CMS based signals 

analysis. This combination helps to better diagnose 

components related faults. 
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