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ABSTRACT

So-called reliability adaptive systems are able to adapt their
system behavior based on the current reliability of the system.
This allows them to react to changed operating conditions or
faults within the system that change the degradation behavior.
To implement such reliability adaptation, self-optimization
can be used. A self-optimizing system pursues objectives, of
which the priorities can be changed at runtime, in turn chang-
ing the system behavior.

When including system reliability as an objective of the sys-
tem, it becomes possible to change the system based on the
current reliability as well. This capability can be used to con-
trol the reliability of the system throughout its operation pe-
riod in order to achieve a pre-defined or user-selectable sys-
tem lifetime. This way, optimal planning of maintenance in-
tervals is possible while also using the system capabilities to
their full extent.

Our proposed control system makes it possible to react to
changed degradation behavior by selecting objectives of the
self-optimizing system and in turn changing the operating pa-
rameters in a closed loop. A two-stage controller is designed
which is used to select the currently required priorities of the
objectives in order to fulfill the desired usable lifetime.

Investigations using a model of an automotive clutch system
serve to demonstrate the feasibility of our controller. It is
shown that the desired lifetime can be achieved reliably.

1. INTRODUCTION

Self-optimizing mechatronic systems are a class of intelli-
gent technical systems that are able to autonomously adapt
their behavior if user requirements or operating conditions
change (Gausemeier, Rammig, Schäfer, & Sextro, 2014). To
this end, the current situation is monitored and the objectives
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of the system are determined. Using model based multiob-
jective optimization, for which a model of the dynamical be-
havior of the system is used, optimal system configurations
are calculated before operation of the system. To adapt the
system behavior during operation, the self-optimizing system
selects among these optimal system configurations.

In order to use self-optimization to ensure that the require-
ments regarding reliability of the system are met, a suitable
selection process has to be implemented. To adapt the sys-
tem behavior advantageously with regard to system reliabil-
ity, it has to be possible to lower work load or wear on critical
components by selecting appropriate optimal system config-
urations. Thus it is also necessary to include system degra-
dation in the objective functions used for the multiobjective
optimization.

To control the remaining useful lifetime, the whole system
history has to be taken into account as well. This could not
be achieved by directly including remaining useful lifetime in
the model used for multiobjective optimization, as then each
objective function evaluation would require a simulation of
the whole system lifetime. Such a simulation requires a lot of
computing effort, rendering this approach impossible. Thus
a process to take the system history into account separately
during operation is required. For this, our presented self-
optimization based remaining useful lifetime controller can
be used.

2. MAINTENANCE PLANNING

The big advantage of actively controlling the reliability of
a system becomes apparent if the whole life-cycle including
maintenance is considered. Within the scope of this section,
it is assumed that after maintenance, a system is as-good-as-
new. Traditionally, maintenance was conducted as either cor-
rective of preventive maintenance (Birolini, 2007). In correc-
tive maintenance, system functionality is reestablished once a
failure occurs. This strategy is cheap at first, but once a failure
occurs and the system is unavailable, maintenance has to be
conducted as soon as possible, making the repair expensive. It
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Figure 1. Maintenance planning techniques and their effect
on usable lifetime.

also comes with the risk of catastrophic failures which make
it unsuitable for many systems. This approach maximizes the
usable lifetime, as can be seen in Fig. 1. Availability, how-
ever, is limited due to unnecessarily long unscheduled main-
tenance.

Preventive maintenance, on the other hand, allows a high avail-
ability of the system by retaining system functionality. This
is achieved by conducting maintenance before a failure oc-
curs, making the maintenance schedulable and thus highly
efficient. Usually, suitable maintenance intervals are deter-
mined using stochastic models for large fleets of systems (Joo,
Levary, & Ferris, 1997). This approach has the advantage
of achieving high availability with planned maintenance in-
tervals, but usable lifetime until maintenance is lower than
usable lifetime until failure. This increases the cost of opera-
tion due to earlier maintenance than necessary. Also it is best
suited for large fleets of identical systems and can hardly be
implemented for unique machinery.

In order to overcome these drawbacks, condition based main-
tenance can be used. According to (Jardine, Lin, & Ban-
jevic, 2006), a condition based maintenance program con-
sists of three steps: Data acquisition, data processing and
maintenance decision making. In the first two steps, the cur-
rent state of the system is assessed. After evaluation, effi-
cient maintenance policies are recommended. A condition
based maintenance program is comprised of two important
aspects: Diagnostics and prognostics. In diagnostics, exist-
ing faults are detected, isolated and identified before they

ω1
ω2 Θ2

FN
μ

Friction
plates

Engine Driven
system

Figure 2. Basic structure of clutch system.

lead to a failure. Prognostics, on the other hand, deals with
the prediction of future faults. The main objective is to es-
timate the time until a fault occurs or the probability of it
occuring. Using this information, the system can be operated
without wasting usable lifetime for overly cautious mainte-
nance intervals and also without requiring unscheduled main-
tenance. While this is advantageous over corrective and pre-
ventive maintenance, it remains a reactive method in which
the system degradation drives the scheduling of maintenance
operations and which makes planning of inspection and main-
tenance complex (Chena & Trivedi, 2005).

By combining information about the current system reliabil-
ity with a feedback to system operation, it becomes possible
to adjust system behavior according to its current reliability.
This allows reversal of the usual approach. It now becomes
possible to schedule maintenance operations with the system
adapting its behavior and its degradation accordingly. The
proposed closed loop control allows for such operation.

3. APPLICATION EXAMPLE

A single plate dry clutch has already been introduced as ap-
plication example in (Meyer, Sondermann-Wölke, Kimotho,
& Sextro, 2013) and is used again in this contribution. This
type of clutch is commonly utilized in passenger vehicles to
connect an internal combustion engine to the drivetrain. The
basic outline of the clutch system is shown in Fig. 2. It con-
sists of two friction plates with coefficient of friction µ, of
which the input plate is connected to the engine while the
output plate is connected to the driven system, e.g. a gear-
box. The input and the output plates are rotating at speeds
ω1 = 1 rad

s and ω2 respectively. To engage the clutch, both
plates are pressed against each other by the force FN , thus
transmitting torque Tf from the input plate to the output plate
and in turn applying this torque to the driven system.

The system dynamics can be modelled with

Tf (t) = FN (t) · µ (∆ω (t)) · reff , (1)

ω̇2 (t) =
1

Θ2
· (Tf (t)− d2 · ω2 (t)) , (2)

µ (∆ω) = µ0 ·
2

π
· arctan

(
∆ω

ω̂

)
(3)
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Figure 3. Pareto front of clutch system with two objective
functions: f1: minimize wear and f2: Minimize accelera-
tions, i.e. maximize comfort. Note that the duration of an
actuation cycle tr has a great effect on both objectives.

where µ0 = 1 is the nominal coefficient of friction, ∆ω =
ω2−ω1 is the difference in revolutionary speed of the plates,
ω̂ = 0.1 rad

s is the accuracy parameter, reff = 1 m is the
effective radius of the plates, Θ2 = 1 kg

m2 is the moment of
inertia of driven system, d2 = 1N ·m · s

rad is the damping factor
of the driven system. Arbitrary values, which do not model a
particular system, were chosen to demonstrate the proposed
control method.

Also in (Meyer et al., 2013) it was shown that using multi-
objective optimization techniques, a control trajectory for the
actuation force FN (t) can be computed to actuate the clutch
system. Multiobjective optimization techniques attempt to
minimize user defined objective functions by adapting sys-
tem parameters. Typically, it is not possible to minimize mul-
tiple objective functions at once, but instead as one objective
function value is lowered, another objective function value
rises. This leads to the so-called Pareto front, which con-
sists of all optimal compromises between multiple objective
functions. To each point on the Pareto front, system parame-
ters are given in the Pareto set. To compute Pareto front and
Pareto set, a genetic algorithm which comes with the Matlab
global optimization toolbox has been used.

The required objective functions are included in a full model
of the system dynamics. For our system, the objective func-
tions are f1, which represents the power loss in the clutch Pf
and in turn corresponds to the wear rate of the clutch plates,
and f2, which represents e.g. comfort of vehicle passengers:

f1 =

∫ t0+tr

t0

(Pf (t))
2

d t =

∫ t0+tr

t0

(TF (t) ·∆ω (t))
2

d t,

f2 =

∫ t0+tr

t0

(ω̇2 (t))
2

d t.
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Figure 4. Pareto set of clutch system with 84 possible actua-
tion trajectories FN (t).

To compute the values of these objective functions, the dy-
namical model of the system is simulated over the period
t = t0 . . . t0 + tr using trajectories for FN (t) as simulation
input.

The duration of the actuation cycle and the shape of the trajec-
tory are the optimization parameters. To include these in the
optimization procedure, the trajectory was subdivided into 16
sections with equal durations. For the trajectory to begin with
a completely disengaged clutch and end with a completely en-
gaged clutch, FN (t0) = 0 N and FN (t0 + tr) = 100 N are
assumed. The optimization parameters are then the total du-
ration of the actuation cycle tr and the shape computed by us-
ing 15 intermediate values FN

(
t0 + 1

16 · i · tr
)
, i = 1 . . . 15.

Linear interpolation is used between these values. This way,
the Pareto front shown in Fig. 3 with the corresponding Pareto
set shown in Fig. 4 is obtained. A short total duration of
the actuation cycle yields low energy losses but high accel-
erations, as opposed to a long duration, which yields inverse
results. Each trajectory is a trade-off between these two ob-
jectives.

4. CONTROLLING THE RELIABILITY

In prior works (Meyer et al., 2013), a basic controller for
the reliability of the clutch system was presented. However,
the approach outlined therein was limited in its effectiveness
since it did not take the inherent non-linearities and deviations
between multiobjective optimization model and real system
into account. It was not capable of handling deviations that
required a great change from the nominal working point. The
approach presented in the remainder of this contribution over-
comes these drawbacks and offers better generalizability to
other engineering problems.

A two-stage controller design has been favored for the possi-
blity to be designed separately for high-frequency perturba-
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Figure 5. Full two-stage control loop.

tions on the inner loop and for low-frequency perturbations
on the outer loop.

While priorities of objectives of a self-optimizing system may
be selected arbitrarily, the system behavior does not neces-
sarily reflect this immediately. On the one hand, an adapta-
tion usually takes some time to take full effect; on the other
hand the system model used for multiobjective optimization
and the real system might deviate from one another, thus if a
working point is chosen based an pre-calculated optimal sys-
tem configurations, which are based on the system model, the
actual system might behave differently. This leads to differ-
ences between desired objectives and achieved objectives.

To overcome these shortcomings, Krüger et al. developed a
closed loop control for the objectives of a self-optimizing sys-
tem (see (Krüger, Remirez, Kessler, & Trächtler, 2013)), col-
loquially called “Pareto controller”. The purpose of this con-
troller is to ascertain a pre-selected system configuration is
actually being used, despite of perturbations or deviations be-
tween optimization model and actual system. To this end, the
desired system configuration is selected with a so-called α-
parameterization, which can be defined individually for each
system. Suggestions are made, e.g. to use a Simplex-based
method or to calculate the ratio among two objectives. In the
course of this paper, we define the α-parameterization as fol-
lows, it is also included in Fig. 3:

α =
f1

f2
.

The desired parameterization value αdes is used as controller
input. The current value of the α-parameterization, αcur is
required for the controller to calculate the used value αused
according to the difference between αcur and αdes. Once
αused has been calculated, the parameters of the system are
determined by the so-called s-transform and set in the sys-
tem. After a certain time, the resulting system behavior is
evaluated to determine the current value αcur of the α-pa-
rameterization.

It is assumed that the behavior adaptation and evaluation of
the actual system behavior takes some time to take full effect.
For this reason, the Pareto controller works in discrete time
on a slow time scale, where one discrete time step is the con-
stant time period required for the full behavior adaptation and
evaluation process. For this reason, in the abstract model of
the system, the output is delayed by the unit delay 1

z .

This Pareto controller is used as inner loop of the full con-
trol loop. It is not able to take the full lifetime information
into account and serves the purpose of reliably achieving the
desired system behavior.

The outer loop, on the other hand, is responsible for control-
ling the remaining useful lifetime. For this, an abstract model
of the system adaptation process is required. As the inner
loop already controls the desired behavior, the outer loop does
not need to take actual system parameters into account but in-
stead relies on using the α-parameterization as system input.
System output and controlled variable is the remaining use-
ful lifetime RUL. The reference input is denoted by RULdes.
However, the relationship between α and RUL is highly non-
linear. The difference in remaining useful lifetime ∆RUL (α)
over a single actuation cycle i can, however, be approximated
using the system model. This is called the r-transform:

∆RUL (α) = r (s (α)) .

To obtain the current remaining useful lifetime, an integral
element z

z−1 in the dynamic system, and a unit delay 1
z for the

evaluation of the current remaining useful lifetime are added,
as shown in Fig. 5.

As controller for the remaining useful lifetime, a P controller
was chosen. An integral element is not required to correct
for steady state errors due to the integrating properties of the
wear process. It calculates the r-transformed desired α-pa-
rameterization r (s (αdes)) according to:

GRUL =
r (s (αdes))

RULdes − RUL
= Kp,RUL (4)

4



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

This discrete controller can be implemented in the same dis-
crete time used for the Pareto controller. The controller out-
put is then converted by the inverse r-transform s−1

(
r−1
)

to
give αdes.

The reference input generated for the RUL-controller needs
to be strictly monotonically decreasing. If it was not, an actu-
ation cycle with no or even negative wear would be required,
which is physically impossible. The chosen reference input
begins with RULdes (new system) = 100% and ends with
RULdes (end of specified lifetime) = 0%. Linear interpo-
lation is chosen for intermediate cycles. The reference input
can be altered during operation in case of changed require-
ments. An adaptation of system behavior is then conducted
by means of the control loop.

5. SETUP OF THE CONTROLLER FOR THE APPLICATION
EXAMPLE

When controlling the remaining useful lifetime, the system
behavior is adapted by changing system objectives. However,
it needs to be ascertained that these objectives are met. As
was mentioned in the basic introduction of the control loop
in section 4, a specifically designed closed loop control by
Krüger et al. (Krüger et al., 2013) is used. This control loop
as well as the RUL-controller that builds on it are working
in discrete time, their stepsize is big compared to the system
dynamics. Since the clutch system has discrete events, one
step corresponds to one full actuation cycle. Due to this, the
stepsize of both controllers is 1 cycle.

5.1. Pareto controller

The basic idea of the closed loop Pareto controller is to define
the desired system behavior using a so-called α-parameteri-
zation. The value of this parameterization is used as reference
input αdes for the controller. The actual current value αcur is
computed from signals or measured variables of the system.

At first, the α-parameterization needs to be defined. For the
clutch system, which pursues two objectives only, the frac-
tion of both objective values is used, i.e. α = f1

f2
. This ap-

proach has several advantages over more complex parameter-
izations, e.g. the Simplex-based parameterization suggested
in (Krüger et al., 2013). First, it is very simple to calculate,
thus requiring low computational time. Second, and more
importantly, no knowledge about the Pareto front, such as an
approximating function, number of known points or values at
the edges, is required. This makes evaluating the currently
achieved value αcur independent of any assumptions about
other possible working points.

The α-value needs to be transformed into a set of parameters
to be used by the actual system. For this, the s-transform is
used. It determines the desired Pareto point from the Pareto
front and selects the Pareto set, which contains all system pa-

rameters, accordingly. For the clutch system, linear interpo-
lation between pre-calculated Pareto points is used. This is
done in three steps: At first, the two Pareto points closest to
the desired α-parameterization αdes are searched. In the next
step, the two sets of parameters are selected from the Pareto
set Pset. Last, linear interpolation is used for each pair of
parameters to obtain the final parameter.

To determine the closest Pareto point, the α-paramterization
value for each pre-calculated Pareto point is calculated. For
this, k = 1 . . . n, k ∈ N, n ∈ N Pareto points are assumed:

αk =
f1,k

f2,k
.

The following two steps are conducted at runtime. At first, k
closest to the currently desired value αdes is searched:

min
k

(|αk − αdes|) .

Once this is known, linear interpolation among two points
with α-values closest to the desired value αdes is conducted
to find system parameters W from the Pareto set Pset:

P (αdes) =


(Pset,k+Pset,k+1)·αdes

αk+αk+1
,

if 1 < k < n and
|αk − αk−1| < |αk − αk+1|,

(Pset,k−1+Pset,k)·αdes

αk−1+αk
,

if 1 < k < n and
|αk − αk−1| > |αk − αk+1|,

Pset,k, else.

The advantage of this approach is that even though a limited
number of Pareto points is known from numerical multiob-
jective optimization, a close approximation for intermediate
values can be found. This is important in subsequent steps,
since all controllers developed herein have continuous output
values and expect the system, i.e. s-transform, clutch system,
objective evaluation, and s−1-transform, to accept such and
work continuously as well.

With linearly interpolating between Pareto points, it is as-
sumed that all computed possible solutions Pset to the op-
timization problem are similar. Proof that this assumption
holds is difficult, but clear indications can be seen in Fig. 4.

The s−1-transform, on the other hand, is very simple once
current values of the system objectives f1,cur and f2,cur are
determined by evaluating measured variables or signals from
the system:

αcur =
f1,cur

f2,cur
.

With these transformations all set, the actual controller can
be parameterized. It was created according to (Krüger et al.,
2013) without modifications. The controller parameters were
chosen as Kp = 0.05 and Ki = 0.05.

The controller reference input is the desired α-parameteriza-
tion αdes. It is set by the outer loop which controls the re-
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maining useful lifetime of the system and induces a behavior
adaptatation by changing αdes.

5.2. RUL controller

The purpose of the outer control loop is to determine the cur-
rently required desired α-parameterization αdes from the de-
sired remaining useful lifetime RULdes and the current re-
maining useful lifetime RUL.

At first, the remaining useful lifetime RUL needs to be de-
termined. This is highly application-specific. A model-based
approach has been selected to estimate the remaining useful
lifetime of the friction plates. It is based on the assump-
tion that clutch plate wear is proportional to friction energy
Ef (Fleischer, 1973). For each actuation cycle i with time
span t = t0,i . . . t0,i + tr, where tr is the duration of the ac-
tuation cycle, the wear w (i) occuring during this cycle is:

w (i) = pf ·∆Ef (i) = pf ·
∫ t0,i+tr

t0,i

Pf (t) d t

= pf ·
∫ t0,i+tr

t0,i

TF (t) ·∆ω (t) d t. (5)

The proportionality factor is assumed to be pf = 1 for normal
wear behavior. Due to e.g. errors in manufacturing or materi-
als, it might deviate, thus requiring a changed operating point
in order to fulfill the specified lifetime.

To estimate the remaining useful lifetime, all actuation cycles
need to be taken into account. To do so, the sum of the wear
occuring in each cycle w (i) is summed over all prior m cy-
cles, i.e. i = 1 . . .m, i ∈ N,m ∈ N. The remaining useful
lifetime RUL for the next cycle m+ 1 can then be estimated
by taking the maximum amount of wear wmax of the clutch
into account. This results in the following relation:

RUL (m+ 1) = 1−
(∑m

i=1 w (i)

wmax

)
. (6)

To convert the RUL-controller output to a desired value of the
α-parameterization, the inverse r-transform s−1

(
r−1
)

needs
to be defined next. Since ∆RUL (α) can not easily be com-
puted analytically, the main cause of wear needs to be deter-
mined. As was shown in eqns. 5 and 6, the remaining use-
ful lifetime mainly depends on the friction energy ∆Ef , thus
∆RUL (α) ∼ ∆Ef .

To setup the inverse r-transform, the friction energy for each
pre-calculated α-parameterization ∆Ef (α) is computed by
simulating the system model for one full clutch cycle. The
resulting relationship between α-parameterization and ∆Ef
is shown in Fig. 6.

Using a least-squares approach, an approximating function
was fitted to obtain a computationally effective s−1

(
r−1
)
-
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Figure 6. Compensation of nonlinear behavior.

transform. An exponential ansatz was chosen:

αapprox = q1 · eq2·∆Ef .

The parameterized approximating function (q1 = 0.3714,
q2 = 0.5536) is also shown in Fig. 6.

The objective-based controller for the remaining useful life-
time is implemented according to eq. 4. As proportional gain
parameter, Kp,RUL = 1000 was chosen.

6. SIMULATION RESULTS

To evaluate the feasibility of the proposed approach, simula-
tions that span the whole lifetime of the clutch system were
conducted. For this, a model of the dynamic behavior of the
clutch system according to eqns. 1, 2 and 3 was used.

An artifical fault was introduced into the system model: Af-
ter 200 regular clutch cycles, the wear proportionality factor
was changed from pf = 1 to pf = 2. This way, the simu-
lated wearing process was accelerated; the plates wear twice
as fast as they did previously. As can be seen in Fig. 7, the
system behavior is adapted accordingly. At first, a slight de-
viation between desired and obtained RUL can be observed;
however, the system lasts for the required 500 cycles.

In another test of the behavior adaptation process, the require-
ments for the system were changed at 200 cycles. The system
is now required to last for 600 cycles instead of 500 cycles,
as was the initial requirement. As can be seen in Fig. 8, the
adaptation process enables the system to successfully adapt
its behavior to changed requirements.

As was shown, an adaptation to either changed system degra-
dation processes or to changed requirements is possible. The
controlled system fulfills the desired properties regarding re-
liability.
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Figure 7. System behavior if a fault occurs. At 200 cycles,
the proportionality factor pf was changed to simulate a clutch
system wearing twice as fast as was anticipated for a normal
system.

The adaptation to accelerated wear processes and changed
user requirements comes at the expense of degrading perfor-
mance of the system. In case of the clutch system, the value of
the α-parameterization is lowered for both adaptations. This
leads to lower, i.e. better values of the objective minimize
wear and to higher, i.e. worse values of the objective mini-
mize accelerations. As can be seen in Fig. 4, the main dif-
ference between different working points is the duration of
the actuation trajectory. A system running in nominal oper-
ating mode, i.e. before 200 cycles are reached, has an actu-
ation duration of approximately 9.5 s, giving a comfort value
f2 = 0.039. If changed user requirements are to be taken into
account, the actuation duration is shortened to approximately
8.9 s, lowering the comfort value to f2 = 0.064. In order to
compensate accelerated wear processes, the selected working
point requires an even faster actuation duration of approxi-
mately 6.9 s at a comfort value f2 = 0.25. These lower val-
ues signify a quicker and less comfortable acceleration ma-
neuver, which is required to react on these great variations in
system behavior or requirements. Even though the difference
in comfort value suggests severely limited operating poten-
tial, the benefit of reaching pre-defined reliability goals will
in most cases outweigh the loss in comfort.

7. CONCLUSION & OUTLOOK

The behavior adaptation process of an intelligent system is
modelled abstractly. A two-stage control loop was designed
with the inner loop controlling the desired system behavior
whereas the outer loop controls the remaining useful lifetime.
To this end, an existing controller for the inner system behav-
ior is implemented. For the outer loop, a new controller is
added. Simulation results show, that the adaptation of the
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Figure 8. System behavior for changed requirements. At 200
cycles, the system requirements are changed; it is now ex-
pected to sustain 600 actuation cycles.

system behavior based on the remaining useful lifetime suc-
cessfully adapts the behavior if either the system behavior or
the requirements change. In both cases, the desired useful
lifetime can be accomplished.

While simulations show that the system degrades as desired,
experimental validation is still required. Since the behavior
adaptation and experiments that span the whole system life-
time are complex, the setup of a dedicated test rig is currently
being pursued.
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