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ABSTRACT

This paper presents an overview of various aspects of uncer-

tainty quantification in prognostics and health management.

Since prognostics deals with predicting the future behavior

of engineering systems and it is almost practically impossible

to precisely predict future events, it is necessary to account

for the different sources of uncertainty that affect prognostics,

and develop a systematic framework for uncertainty quantifi-

cation and management in this context. Researchers have de-

veloped computational methods for prognostics, both in the

context of testing-based health management and condition-

based health management. However, one important issue is

that, the interpretation of uncertainty for these two differ-

ent types of situations is completely different. While both

the frequentist (based on the presence of true variability) and

Bayesian (based on subjective assessment) approaches are

applicable in the context of testing-based health management,

only the Bayesian approach is applicable in the context of

condition-based health management. This paper explains that

the computation of the remaining useful life is more meaning-

ful in the context of condition-based monitoring and needs to

be approached as an uncertainty propagation problem. Nu-

merical examples are presented to illustrate the various con-

cepts discussed in the paper.

1. INTRODUCTION

Prognostics is the art of predicting the future behavior of en-

gineering systems, analyzing possible failure modes, and es-

timating the remaining useful life (RUL) of such systems.

Since it is practically impossible to precisely predict future

events and future behavior, it is imperative for an efficient and

accurate Prognostics and Health Management (PHM) sys-

tem to account for the different sources of uncertainty that

are associated with system behavior and quantify the com-
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bined effect of these sources of uncertainty on prognostics

and remaining useful life prediction in order to facilitate risk-

informed decision-making.

Existing methods for prognostics and health management can

be broadly classified as being applicable to two different types

of situations: testing-based prognostics and condition-based

prognostics. Methods for testing-based prognostics are based

on rigorous testing before and/or after operating an engineer-

ing system (offline), whereas methods for condition-based

prognostics are based on monitoring the performance of the

engineering system during operation (online). Researchers

have developed computational methods for both testing-based

and condition-based prognostics and health management. Both

data-driven methods and model-based approaches been pur-

sued for these purposes. While some of the initial research

efforts did not explicitly account for the effects of uncertainty,

some of the later efforts have exclusively focused on uncer-

tainty quantification and management in prognostics.

Several researchers have developed methods for uncertainty

quantification in crack growth analysis (Sankararaman, Ling,

Shantz, & Mahadevan, 2011; Sankararaman, Ling, & Ma-

hadevan, 2011), structural damage prognosis (Farrar & Lieven,

2007; Coppe, Haftka, Kim, & Yuan, 2010), electronics (Gu,

Barker, & Pecht, 2007), and mechanical bearings (Liao, Zhao,

& Guo, 2006), primarily in the context of offline testing. Such

approaches may be applicable to smaller components since

it is possible and affordable to perform laboratory tests un-

til these components fail. However, it may not practically

feasible to extend this approach to large scale expensive sys-

tems that cannot be tested. Further, the estimation of re-

maining useful life is more significant in an online health

monitoring context where the performance of a system un-

der operation needs to be monitored and its remaining useful

life needs to be calculated. Engel et. al (Engel, Gilmartin,

Bongort, & Hess, 2000) discuss several issues involved in

the estimation of remaining useful life in online prognostics

and health monitoring. Though some of the initial studies

on remaining useful life prediction lacked uncertainty mea-
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sures (Celaya, Saxena, Kulkarni, Saha, & Goebel, 2012), re-

searchers have recently started investigating the impact of un-

certainty on estimating the remaining useful life. For exam-

ple, there have been several efforts to quantify the uncertainty

in remaining useful life of batteries (Saha & Goebel, 2008)

and pneumatic valves (Daigle & Goebel, 2010) in the con-

text of online health monitoring. Different types of sampling

techniques (Daigle, Saxena, & Goebel, 2012) and analytical

methods (Sankararaman, Daigle, Saxena, & Goebel, 2013)

have been proposed to predict the uncertainty in the remain-

ing useful life.

A review of the aforementioned articles reveal that there ex-

ist several challenges in applying uncertainty quantification

methods for prognostics. The primary challenge lies in the

understanding the philosophical differences between testing-

based health management and condition-based health man-

agement, since these differences significantly influence the

interpretation of uncertainty (Sankararaman & Goebel, 2013c;

Celaya, Saxena, & Goebel, 2012). Such interpretation is key

to guide different types of decision-making activities during

the operation of engineering systems.

The paper focuses on providing an overview of the state-of-

the-art in the topic of uncertainty quantification and manage-

ment in prognostics and health monitoring. To begin with,

the significance of uncertainty in prognostics is explained in

detail in Section 2. Then, the various aspects of uncertainty in

testing-based health management and condition-based health

management are discussed in detail in Section 3 and 4, and

the differences between these two approaches are clearly ex-

plained. It is also explained that the prediction of remaining

useful life is more meaningful only in the context of condition-

based health management, and this topic is discussed in fur-

ther detail. Numerical examples are presented in Sections 3

and Section 4, to illustrate the various concepts discussed in

this paper. Finally, conclusions are presented in Section 5.

2. SIGNIFICANCE OF UNCERTAINTY IN PROGNOSTICS

In an ideal scenario, it would be possible to perfectly and pre-

cisely predict the behavior of engineering systems and facil-

itate decision-making with a significant amount of trust and

confidence. However, this is not possible in practical engi-

neering applications. First of all, it is almost impossible to be

able to accurately predict the operating conditions and envi-

ronmental conditions under which the system operates. Fur-

ther, the future loading demands on the system cannot be pre-

cisely known in advance; for example, the future behavior of

a simple electric vehicle depends upon several factors such as

the driving terrain, climatic conditions, desired speed and ac-

celeration, characteristics, properties, and parameters of the

internal batteries, remaining charge, etc. While some factors

are internal to the engineering system, other factors are ex-

ternal to the system. In order to be able to account for all of

these factors and perform prognostics, it is necessary to ac-

knowledge the presence of uncertainty in all of these factors

and develop a systematic framework in order to account for

these uncertainties in prognostics.

When information regarding uncertainty is used for decision-

making, it can lead quantifying the amount of risk involved

in different types of decisions. Risk consists of two important

components: the likelihood of occurrence of adverse events

and the cost associated with the occurrence of adverse events.

While the latter can be easily quantified by analyzing the dif-

ferent types of losses that occur due to such occurrence of

adverse events, the former can only be quantified by rigor-

ously accounting for the different sources of uncertainty in

prognostic and decision-making activities.

It is a common misconception that the effect of uncertainty

can be included at latter stages of the analysis when the fun-

damental deterministic problem has been solved without ac-

counting for uncertainty. It is necessary to account for un-

certainty right from the initial stages of system-level concep-

tion through analysis, design, testing, and operations. During

these stages, there are several types of activities that need to

be performed in order to accurately account for the effect of

uncertainty in prognostics.

In the context of prognostics and health management, uncer-

tainties have been discussed from representation, quantifica-

tion, and management points of view (Hastings, D. and Mc-

Manus, H., 2004; Orchard, Kacprzynski, Goebel, Saha, &

Vachtsevanos, 2008; Tang, Kacprzynski, Goebel, & Vachtse-

vanos, 2009). While these three are different processes, they

are often confused with each other and interchangeably used.

In this paper, the various tasks related to uncertainty quantifi-

cation and management are classified into four, as explained

below. These four tasks need to performed in order to ac-

curately estimate the uncertainty in the RUL prediction and

inform the decision-maker regarding such uncertainty.

1. Uncertainty Representation and Interpretation: The

first step is uncertainty representation and interpretation,

which in many practical applications, is guided by the

choice of modeling and simulation frameworks. There

are several methods for uncertainty representation that

vary in the level of granularity and detail. Some common

theories include classical set theory, probability theory,

fuzzy set theory, fuzzy measure (plausibility and belief)

theory, rough set (upper and lower approximations) the-

ory, etc. Amongst these theories, probability theory has

been widely used in the PHM domain (Celaya, Saxena,

& Goebel, 2012); even within the context of probabilistic

methods, uncertainty can be interpreted and perceived in

two different ways: frequentist (classical) versus subjec-

tive (Bayesian). While the former interpretation of un-

certainty implies that uncertainty exists only when there

is natural randomness across multiple nominally identi-
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cal experiments, the latter facilitates associating uncer-

tainty even with events that are not random and such un-

certainty is simply reflective of the analyst’s regarding

the occurrence or non-occurrence of such events.

2. Uncertainty Quantification: The second step is uncer-

tainty quantification, that deals with identifying and char-

acterizing the various sources of uncertainty that may af-

fect prognostics and RUL estimation. It is important that

these sources of uncertainty are incorporated into models

and simulations as accurately as possible. The common

sources of uncertainty in a typical PHM application in-

clude modeling errors, model parameters, sensor noise

and measurement errors, state estimates (at the time at

which prediction needs to be performed), future loading,

operating and environmental conditions, etc. The goal

in this step is to address each of these uncertainties sep-

arately and quantify them using probabilistic/statistical

methods. The Kalman filter is essentially a Bayesian tool

for uncertainty quantification, where the uncertainty in

the states is estimated continuously as a function of time,

based on data which is also typically available continu-

ously as a function of time.

3. Uncertainty Propagation: The third step is uncertainty

propagation and is most relevant to prognostics, since

it accounts for all the previously quantified uncertain-

ties and uses this information to predict (1) future states

and the associated uncertainty; and (2) remaining useful

life and the associated uncertainty. The former is com-

puted by propagating the various sources of uncertainty

through the prediction model. The latter is computed us-

ing the estimated uncertainty in the future states along

with a Boolean threshold function which is used to in-

dicate end-of-life. In this step, it is important to under-

stand that the future states and remaining useful life pre-

dictions are simply dependent upon the various uncer-

tainties characterized in the previous step, and therefore,

the distribution type and distribution parameters of future

states and remaining useful life should not be arbitrar-

ily chosen. Sometimes, a normal (Gaussian) distribution

has been assigned to the remaining useful life prediction;

such an assignment is erroneous and the true probability

distribution of RUL needs to be estimated though rig-

orous uncertainty propagation of the various sources of

uncertainty through the state space model and the EOL

threshold function, both of which may be non-linear in

practice.

4. Uncertainty Management: The fourth and final step is

uncertainty management, and it is unfortunate that, in

several articles, the term “Uncertainty Management” has

been used instead of uncertainty quantification and/or prop-

agation. As a result, there are few publications that di-

rectly address the issue of uncertainty management. In

general, uncertainty management is a term used to refer

to different activities which aid in managing uncertainty

in condition-based maintenance during real-time opera-

tion. There are several aspects of uncertainty manage-

ment. One aspect of uncertainty management attempts

to answer the question: “Is it possible to improve the

uncertainty estimates?” The answer to this question lies

in identifying which sources of uncertainty are signifi-

cant contributors to the uncertainty in the RUL predic-

tion. For example, if the quality of the sensors can be

improved, then it may be possible to obtain a better state

estimate (with lesser uncertainty) during Kalman filter-

ing, which may in turn lead to a less uncertain RUL pre-

diction. Another aspect of uncertainty management deals

with how uncertainty-related information can be used in

the decision-making process. Future research needs to

significantly focus on the different aspects of uncertainty

management and develop computational methods for this

purpose.

Most of the research in the PHM community pertains to the

topics of uncertainty quantification and propagation; few ar-

ticles have directly addressed the topic of uncertainty man-

agement. Even within the realm of uncertainty quantification

and propagation, the estimates of uncertainty have sometimes

been misinterpreted. For example, when statistical principles

are used to estimate a parameter, there is an emphasis on

calculating the estimate with the minimum variance. When

this principle is applied to RUL estimation, it is important

not to arbitrarily reduce the variance of RUL itself. Celaya

et al. (Celaya, Saxena, & Goebel, 2012) explored this idea

and explained that the variance of RUL needs to be carefully

calculated by accounting for the different sources of uncer-

tainty. The calculation of RUL is, arguably, the most im-

portant component of a prognostics and health management

system, and this topic of discussed in detail, in the rest of

this paper. Though the majority of this paper focuses on cal-

culating RUL in the context of condition-based monitoring,

some fundamental principles of testing-based health manage-

ment are discussed, particularly from the perspective of un-

certainty quantification, in order to explain the philosophical

differences between these two approaches.

3. TESTING-BASED HEALTH MANAGEMENT

In testing-based prognostics (referred to as “reliability-based

testing” in some publications), the remaining useful life is

typically calculated by testing multiple nominally identical

specimens of the engineering component/system. It may be

noted that the term “remaining” in “remaining useful life”

may not be applicable to all types of testing. This is because,

testing is typically carried out before the engineering system

is under operation. The term “time-to-failure” is more appro-

priate for testing-based health management. It is important

not to confound “time-to-failure” and “remaining useful life”.

The appropriate interpretation of the latter will be clarified
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in the next section, while discussing about condition-based

health management.

Assume that a set of run to failure experiments have been

performed with high level of control, ensuring same usage

and operating conditions. The time to failure for all the n

samples (ri; i = 1 to n) are measured. It is important to

understand that different time-to-failure values are obtained

due to inherent variability across the n different specimens,

thereby confirming the presence of physical probabilities or

true randomness. The various factors that contribute are:

1. Inherent variability in properties and characteristics of

the nominally identical specimens

2. Inherent variability across the loading conditions experi-

enced by each of the individual specimens

3. Inherent variability in operating and environmental con-

ditions for each of the individual specimens

Assume that these random samples belong to an underly-

ing probability density function (PDF) fR(r), with expected

value E(R) = µ and variance V ar(R) = σ2. The goal

of uncertainty quantification is to characterize this probabil-

ity density function based on the available n data. Theoret-

ically, an infinite amount of data is necessary to accurately

estimate this PDF; however, due to the presence limited data,

the estimated PDF is not accurate. Hence, lack of infinite

data adds some additional uncertainty to the aforementioned

list of sources of uncertainty. Statistical approaches, both

frequentist and subjective, express uncertainty regarding the

estimate itself. However, frequentist and subjective analysts

quantify and express this uncertainty in completely different

ways. The following discussion is based on the assumption

that the underlying PDF fR(r) is Gaussian, since closed form

expressions for uncertainty are readily available for this case.

Whenever appropriate and necessary, remarks are provided

for non-Gaussian distributions.

3.1. Confidence Intervals: Frequentist Approach

Since R is Gaussian, estimating the parameters µ and σ is

equivalent to estimating the PDF. In the context of physical

probabilities (frequentist approach), the “true” underlying pa-

rameters µ and σ are referred to as “population mean” and

“population standard deviation” respectively. Let x̄ and s de-

note the mean and the standard deviation of the available n

data. As stated earlier, due to the presence of limited data,

the sample parameters (x̄ and s) will not be equal to the cor-

responding population parameters (µ and σ). The fundamen-

tal assumption in this approach is that, since there are true

but unknown population parameters, it is meaningless to talk

about the probability distribution of any population param-

eter. Instead, the sample parameters are treated as random

variables, i.e., if another set of n data were available, then

another realization of x̄ and s would have been obtained. Us-

ing the sample parameters (µ and σ) and the number of data

available (n), frequentists construct confidence intervals on

the population parameters.

Confidence intervals can be constructed for bothµ and σ (Haldar

& Mahadevan, 2000). Consider multiple nominally identical

specimens of an engineering component. The term “nom-

inally identical” implies that there is inherent variability in

the properties and behavior of these specimens. Suppose that

these specimens have been subjective to failure analysis, and

their time-to-failure times are available. If the true probabil-

ity distribution of time-to-failure across multiple specimens

is assumed to be Gaussian, the (1 − α)% confidence interval

of the mean run-to-failure time can be calculated as:
[

x̄− tα

2

s√
n

, x̄+ tα

2

s√
n

]

,

where x̄, s, and n denote the sample mean, sample standard

deviation, and number of samples respectively. If the run-

to-failure times are given by {100, 105, 98, 110, 92, 97, 85,

120, 93, 101}, then µ = 100.10, s = 9.87, n = 10, and the

95% confidence interval on the mean run-to-failure is given

by [93.98, 106.22]. Using the properties of the chi-square

distribution (χ2), the confidence interval on the variance can

be calculated as:
[

(n−1)s2

χ2

1−
α

2

,
(n−1)s2

χ2
α

2

]

.

For this numerical example, the corresponding confidence in-

terval on the standard deviation is given by [6.79, 18.02].

While the above expressions for confidence intervals on mean

and standard deviation are applicable only to Gaussian distri-

butions, similar confidence intervals can also be constructed

for other types of distributions; in general, it is easier to con-

struct confidence intervals for mean than it is for standard

deviation (or equivalently, variance).

Nevertheless, it is important that these confidence intervals be

interpreted correctly. To begin with, the above confidence in-

tervals will decrease as more data is available; therefore, the

width of these confidence intervals is simply related to the

number of data. The actual uncertainty in the run-to-failures

times is given only by the estimate of the standard deviation,

and this uncertainty is the result of variability (in material

properties, operating conditions, etc.) across all the nomi-

nally identical specimens. Further, as stated earlier, the inter-

pretation of confidence intervals may be confusing and mis-

leading. A 95% confidence interval on µ does not imply that

“the probability that µ lies in the interval is equal to 95%”;

such a statement is wrong because µ is purely deterministic

and physical probabilities cannot be associated with it. The

random variable here is in fact x̄, and the confidence inter-

val is calculated using x̄. Therefore, the correct implication

is that “the probability that the estimated confidence interval

contains the true population mean is equal to 95%”. Thus, it
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is easy to understand that, the width of the confidence inter-

vals is indicative of lack of infinite data and the actual value

of the standard deviation is indicative of the uncertainty in R.

A practical challenge is that, in many applications, it may

not be possible to know what type of probability distribution

(for example, Gaussian distribution had been “assumed” in

the above discussion) needs to be assumed to in order to cal-

culate the above confidence intervals; obviously, the proce-

dure for calculation of confidence intervals depends on the

choice of distribution type (Gaussian, Weibull, lognormal,

etc.), and the presence of such distribution type uncertainty

further adds to the confusion regarding the interpretation of

confidence intervals. As the sample size increases, the confi-

dence intervals for the mean and standard deviation may get

narrower. This may be misleading since the confidence inter-

vals should be interpreted only based on the underlying as-

sumption of distribution type (which might have been wrong

to begin with). Computational methods are being developed

to deal with distribution type uncertainty (Sankararaman &

Mahadevan, 2013a), however they have not been implemented

in prognostics and health management applications.

3.2. Probability Distribution: Bayesian Approach

Alternatively, it is also possible to address the problem of

computing fR(r) purely from a subjective (Bayesian) point of

view. One important difference now is that the Bayesian ap-

proach does not clearly differentiate between “sample param-

eters” and “population parameters”. The probability distribu-

tion of µ is directly computed using the available data (recall

that this was impossible in the frequentist approach since µ

is the underlying mean that is precise but unknown), and this

uncertainty is referred to as the analyst’s degree of belief for

the underlying true parameter µ. Similarly, the probability

distribution of σ can also be computed using Bayes’ theorem.

Consider a set of time-to-failure times, given by ri (i = 1 to

n). In order to compute the probability distribution of µ and

σ, the first step is construct their joint likelihood as (Sankararaman

& Mahadevan, 2011):

L(µ, σ) ∝

m
∏

i=1

fR(ri|µ, σ) (1)

The maximum likelihood estimate of the parameters P can

be calculated by maximizing the above expression. Instead of

maximizing the likelihood, the entire likelihood function can

be used to construct the PDF of the distribution parameters.

Further, sometimes time-to-failure data may also be available

in terms of intervals. For example, intermittent inspections

may be performed to check whether failure has occurred in

a specimen; if failure is found to have occurred between 10

minutes and 11 minutes, the resultant time to failure is ac-

tually an interval. The above likelihood-based approach can

also be extended to account for interval data, in order to com-

pute the uncertainty in the distribution parameters.

This approach is generally applicable for any type of para-

metric probability distribution, where the probability density

function (PDF) can be expressed as fR(r|P ). If R is Gaus-

sian, then P represents the vector of mean and standard de-

viation. Let f(P ) denote the joint PDF of the distribution

parameters P . It is easy to apply Bayes theorem, choose uni-

form prior density (f ′(P ) = h), and calculate the joint PDF

as:

f(P ) =
hL(P )

∫

hL(P )dP
=

L(P )
∫

L(P )dP
(2)

Note that the uniform prior density function can be defined

over the entire admissible range of the parameters P . For ex-

ample, the mean of a normal distribution can vary in (−∞, ∞
) while the standard deviation can vary in (0, ∞) because the

standard deviation is always greater than zero. Both these

prior distributions are improper prior distributions because

they do not have finite bounds.

For the above numerical example, i.e., if the run-to-failure

times are given by {100, 105, 98, 110, 92, 97, 85, 120, 93,

101}, the probability distribution of µ and σ can be calculated

as shown in Figs. 1 and 2.

80 90 100 110 120
0

0.02

0.04

0.06

0.08

0.1

µ

P
D

F

Figure 1. PDF of µ

Recall that one realization of the parameters (µ and σ) uniquely

define the PDF fR(r). However, since the parameters are

themselves uncertain, R is now represented by a family of

distributions (Sankararaman & Mahadevan, 2011, 2013b). This

family of distributions will shrink to the true underlying PDF

as the number of available data increases, and asymptotic

PDF (as the number data increases) is simply reflective of

the variability (in material properties, operating conditions,

etc.) across all the nominally identical specimens. Alterna-

tive to the family of PDFs approach, a single unconditional

PDF of X , which includes both the variability in X and the

uncertainty in the distribution parameters P , as:

f ′
R(r) =

∫

fR(r|P )f(P )dP (3)
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Figure 2. PDF of σ

Note that the RHS of Eq. 3 is not conditioned on P anymore.

Some researchers refer to this PDF f ′
R(r) as the predictive

PDF (Kiureghian, 1989) of R. The predictive PDF for the

above numerical example is shown in Fig. 3.

0 50 100 150
0

0.01

0.02

0.03

0.04

R

P
D

F

Figure 3. Predictive PDF of R

Note that the predictive PDF f ′
R(r) will indicate the presence

of larger uncertainty in R than the original PDF fR(r), be-

cause the former accounts for the lack of infinite data. As

the number of data increases, f ′
R(r) will tend towards fR(r).

Of course, this is true only when the correct distribution type

was assumed for R; in many cases, the choice of distribution

type (referred to as “statistical model” by some researchers)

is a challenge by itself, and contributes to additional uncer-

tainty (Sankararaman & Mahadevan, 2013a).

4. CONDITION-BASED HEALTH MANAGEMENT

Most of the discussion pertaining to testing-based prognostics

is not applicable to condition-based monitoring and prognos-

tics. The distinctive feature of condition-based monitoring

is that each component/subsystem/system is considered by

itself, and therefore, “variability across specimens” is non-

existent. Any such “variability” is spurious and must not be

considered. At any generic time instant tP at which prognos-

tics needs to be performed, the component/subsystem/system

is at a specific state. The actual state of the system is purely

deterministic, i.e., the true value of each state is completely

precise, however unknown. Therefore, if a probability distri-

bution is assigned for this state, then this distribution is sim-

ply reflective of the analyst’s knowledge regarding this state

and cannot be interpreted from a frequentist point of view.

Thus, by virtue of definition of condition-based monitoring,

physical probabilities are not present here, and a subjective

(Bayesian) approach is only suitable for uncertainty quantifi-

cation.

The goal in condition-based prognostics is, at any generic

time instant tP , to predict the remaining useful life of the

component/subsystem/system as condition-based estimate of

the usage time left until failure. Such computation needs to

be, ideally, performed in real-time. In other words, the per-

formance of the system during its operation needs to be an-

alyzed, possible failure modes and future degradation needs

to be prediction, and the remaining useful life needs to be

computed while the system is under operation. These calcu-

lations help in operational decision-making activities such as

path planning, mission routing, etc.

The following prognostics architecture can be used to achieve

these goals. First, measurements until time tP are used to

estimate the state at time tP . Then, using a degradation-

prediction model (that may be model-based or data-driven),

future state values (corresponding to time instants greater than

tP ) are computed, and the first time time instant at which a

failure threshold is true is calculated; this information is then

used to calculate the remaining useful life. In order to forecast

future state values, it is also necessary to assume future load-

ing conditions (and operating conditions), and this is a major

challenge in condition-based prognostics. Typically, the an-

alyst subjectively assumes statistics for future loading condi-

tions based on past experience and existing knowledge; thus,

the subjective interpretation of uncertainty is clearly consis-

tent across the entire condition-based monitoring procedure,

and therefore, inferences made out of condition-based moni-

toring also need to be interpreted subjectively. The prediction

of degradation (forecasting of future state values) is stopped

when failure is reached, as indicated by a boolean threshold

function that checks whether failure has occurred or not. This

indicates the end-of-life (EOL) and the EOL can be directly

used to compute the remaining useful life (RUL) prediction.

Note that it is important to interpret the uncertainty in EOL

and RUL subjectively.

4.1. Illustrative Example

Consider a generic engineering component whose health state

at any time instant is given by x(t). Consider a simple degra-

dation model, where the rate of degradation of the health state

(that decreases with time, due to the presence of damage) is
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proportional to the current health state. This can be mathe-

matically expressed as:

ẋ(t) ∝ x(t), (4)

where the constant of proportionality is a negative number.

Since differential equations are usually solved by considering

discrete time instants, the above equation can be rewritten as:

x(k + 1) = a.x(k) + b, (5)

where k represents the discretized time-index. The condition

that “the constant of proportionality in Eq. 4 is negative” is

equivalent to the condition that “a < 1 in Eq. 5”. For the sake

of illustration, let a denote the loading on the system, b denote

the model of the degradation model above, and let a and b be

constant and time-invariant. In practical examples, more than

one variable may be necessary to represent the loading con-

ditions and there may be multiple model parameters and state

variables; further, the loading variables and model parameters

may also be time-varying, just like the state x.

In order to compute the remaining useful life, it is necessary

to chose a threshold function that defines the occurrence of

failure. Since x(k) is a decreasing function, the threshold

function will indicate that failure occurs when the state value

x becomes smaller than a critical lower bound (l), and the

first time instant at which this event occurs indicates the end

of life, and this time instant can be used to calculate the RUL.

Therefore, the remaining useful life (r, an instance of the ran-

dom variable R) is equal to the smallest n such that x(n) < l.

Therefore RUL can be calculated as

r = inf{n : x(n) < l}, (6)

For a given value of x(0) (or x(tP ), where tP denotes the

time at which prediction needs to be performed), a, b, it possi-

ble to calculate the end-of-life and remaining useful life using

the above set of equations. However, in practical conditions,

all of these are uncertain. However, note that the uncertainty

in x(0), a, b are related only to the knowledge regarding this

particular unit and not an ensemble of units; recall that an en-

semble of nominally identical units was considered earlier in

Section 3. The presence of these uncertainties leads to un-

certainty in the RUL prediction. This leads to the obvious

question: How to compute the uncertainty in RUL? Prior to

answering this question, the next subsection lists the different

sources of uncertainty in generic condition-based prognostic

applications.

4.2. Sources of Uncertainty

Typically, researchers have classified the different sources of

uncertainty into different categories in order to facilitate un-

certainty quantification and management. While it has been

customary to classify the different sources of uncertainty into

aleatory (arising due to physical variability) and epistemic

(arising due to lack of knowledge), such a classification may

not be suitable for prognostics in the context of condition-

based monitoring and RUL prediction because, as mentioned

earlier, “true variability”’ is not present in condition-based

monitoring. A completely different approach for classifica-

tion, particularly applicable to condition-based monitoring, is

proposed in this paper.

1. Present uncertainty: Prior to prognosis, it is important

to be able to precisely estimate the condition/state of the

component/system at the time at which RUL needs to be

predicted. Typically, damage (or faults) are expressed

in terms of states, and therefore, estimating the state is

equivalent to estimating the extent of damage (or fault).

This is related to state estimation and is commonly ad-

dressed using filtering. Output data (usually collected

through sensors) is used to estimate the state and many

filtering approaches (Kalman filtering, particle filtering,

etc.) are able to provide an estimate of the uncertainty in

the state. In the illustrative example, the state uncertainty

is equal to the uncertainty associated with x(0). Practi-

cally, it is possible to improve the estimate of the states

and thereby reduce this uncertainty, by using better sen-

sors and improved filtering approaches. It is important to

understand that the system is at particular state at any

time instant, and the aforementioned uncertainty sim-

ply describes the lack of knowledge regarding the “true”

state of the system.

2. Future uncertainty: The most important source of un-

certainty in the context of prognostics is due to the fact

that the future is unknown, i.e. the loading, operating,

environmental, and usage conditions are not known pre-

cisely, and it is important to assess this uncertainty be-

fore performing prognosis. In the illustrative example,

the future uncertainty is equal to the uncertainty regard-

ing the loading value, i.e., a, from the time of prediction

until the time of failure. If there is no uncertainty re-

garding the future, then there would be no uncertainty

regarding the true remaining useful life of the engineer-

ing component/system. However, this true RUL needs to

be estimated using a model; the usage of a model imparts

additional uncertainty as explained below.

3. Modeling uncertainty: It is necessary to use a func-

tional degradation model in order to predict future state

behavior, i.e. model the response of the system to an-

ticipated loading, environmental, operational, and usage

conditions. Further, the end-of-life is also defined us-

ing a Boolean threshold functional model, that is used to

indicate whether failure has occurred or not. These two

models are jointly used to predict the RUL, and they may

either be physics-based or data-driven. It may be practi-

cally impossible develop models that accurately predict

the underlying reality. Modeling uncertainty represents

7
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the difference between the predicted response and the

true response (that can neither be known nor measured

accurately), and comprises of several parts: model pa-

rameters, model form, and process noise. While it may

be possible to quantify these terms until the time of pre-

diction, it is challenging to know their values at future

time instants. In the illustrative example, Eq. 5 repre-

sents the degradation model, x(n) < l represents the

Boolean threshold function that indicates failure, b is a

model parameter, and the uncertainty in b corresponds

to one aspect of modeling uncertainty. Another aspect

is the choice of the “linear” form of the model in Eq. 5;

the underlying physical phenomena may differ from this

assumption.

4. Prediction method uncertainty: Even if all the above

sources of uncertainty can be quantified accurately, it is

necessary to quantify their combined effect on the RUL

prediction, and thereby, quantify the overall uncertainty

in the RUL prediction. It may not be possible to do this

accurately and this leads to additional uncertainty. For

example, when sampling-based approaches are used for

prediction, the use of limited number of samples causes

uncertainty regarding the estimated probability distribu-

tion.

4.3. Computing Uncertainty in RUL

The goal in condition-based prognostics is to meaningfully

integrate the degradation equation along with the failure thresh-

old equation, and account for the different sources of uncer-

tainty in x(0), a, and b, and thereby, estimate the uncertainty

in the remaining useful life. For any given realization of x0,

a, and b, it is possible to compute the first time instant (in-

dicates the end-of-life) at which the failure threshold criteria

will be valid, i.e., calculate the smallest value of n at which

x(n) < l. The challenge is to compute the combined effect

of uncertainty in x(0), a, and b on RUL, and estimate the

probability distribution of RUL.

It can be easily demonstrated that the state value at any future

time instant can be expressed as a function of the initial state

x(0), as:

x(n) = an.x(0) +

j=n−1
∑

j=0

ajb (7)

Note that that x(n) is decreasing and failure happens when

x < l. Therefore, the remaining useful life (r, an instance

of the random variable R) is equal to the smallest n such that

x(n) < l. Therefore RUL can be calculated as

r = inf{n : an.x(0) +

j=n−1
∑

j=0

ajb < l}, (8)

Assuming that the chosen time-discretization level is infinites-

imally small, it is possible to directly estimate the RUL by

solving the equation:

ar.x(0) +

j=r−1
∑

j=0

aj.b = l. (9)

The above equation calculates the RUL (r) as a function of

the initial state x(0), a and b. Even if the only considered

source of uncertainty is the state estimate x(0) (that is, a and

b are constants), RUL R follows a Gaussian distribution if

and only if it is linearly dependent on x(0). In other words,

R follows a Gaussian distribution if and only if Eq. 9 can be

rewritten as:

α.r + β.x(0) + γ = 0 (10)

for some arbitrary values of α, β, and γ. If it were possible to

estimate such values for α, β, and γ, the distribution of RUL

can be obtained analytically.

In order to examine if this is possible, rewrite Eq. 9 as:

x(0) =
1

ar
(l −

j=r−1
∑

j=0

aj .b) (11)

While x(0) is completely on the left hand side of this equa-

tion, r appears not only as an exponent in the denominator

but is also indicative of the number of terms in the summa-

tion on the right hand side of the above equation. Therefore,

it is clear that the relationship between r and x(0) is not lin-

ear. Therefore, even if the initial state (x(0), a realization of

X(0)) follows a Gaussian distribution, the RUL (r, a real-

ization of R) does not follow a Gaussian distribution. Fur-

thermore, it is not even possible to analytically estimate the

distribution of RUL. Thus, it is clear that even for a simple

problem consisting of linear state models, an extremely sim-

ple threshold function, and only one uncertain variable that is

Gaussian, the calculation of the probability distribution of R

is neither trivial nor straightforward.

Practical problems in the prognostics and health management

domain may consist of:

1. Several non-Gaussian random variables that affect the

RUL prediction,

2. A non-linear multi-dimensional state space model,

3. Uncertain future loading conditions

4. A complicated threshold function that may be defined in

multi-dimensional space.

The fact that the distribution of RUL simply depends on quan-

tities such as degradation model and model parameters, thresh-

old function, state estimate, future loading conditions, etc.,

implies that it is technically inaccurate to artificially assign

the probability distribution type (or any statistic such as the

mean or variance) to RUL. It is important to understand that

8
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RUL is a dependent quantity and that the probability distri-

bution of RUL needs to be accurately estimated using com-

putational approaches. It has been illustrated the the problem

of computing the uncertainty in the RUL prediction can be

posed as an uncertainty propagation problem (Sankararaman

& Goebel, 2013b), and therefore, it may be helpful to investi-

gate statistical uncertainty propagation techniques in order to

accomplish this goal.

4.4. Uncertainty Propagation Methods

The most commonly used uncertainty propagation technique

is Monte Carlo sampling (Caflisch, 1998), which is based on

drawing random samples of independent quantities, and com-

puting corresponding realizations of the dependent quantity

(in this case, the RUL). For instance, in the conceptual exam-

ple, if x(0) follows a Gaussian distribution (with mean and

standard deviation equal to 975 and 50 respectively), a fol-

lows a uniform distribution (with lower and upper bounds of

0.990 and 0.995), and b follows a uniform distribution (with

lower and upper bounds of -0.005 and 0 respectively), then

the RUL (defined by Eq. 6, where l = 50) can calculated as

a probability distribution, using Monte Carlo sampling. Us-

ing unit discretization (i.e., the time interval between the kth

and (k + 1)th instants is equal to one second) for solution,

the resultant probability density function (PDF) is shown in

Fig. 4. It is clear that this distribution is not a typical paramet-

ric distribution (such as normal, lognormal, etc.) and that is

why rigorous uncertainty propagation methods are necessary

to accurate estimate this PDF.
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Figure 4. RUL: Conceptual Example

While Monte Carlo sampling can be accurate, it is compu-

tationally expensive and time-consuming, and therefore, re-

searchers have focused on developing advanced methods that

are computationally cheaper. These approaches include Latin

hypercube sampling (Loh, 1996), adaptive sampling (Bucher,

1988), importance sampling (Glynn & Iglehart, 1989), un-

scented transform sampling (Van Zandt, 2001), etc. Alter-

natively, there are analytical methods such as the first-order

second moment method (Dolinski, 1983), first-order reliabil-

ity method (Hohenbichler & Rackwitz, 1983; Sankararaman

& Goebel, 2013a), second-order reliability method (Der Ki-

ureghian, Lin, & Hwang, 1987), etc. In addition, there are

also methods such as the efficient global reliability analy-

sis (Bichon, Eldred, Swiler, Mahadevan, & McFarland, 2008)

method which involve both sampling and the use of analyti-

cal techniques. All of these methods empirically calculate the

probability distribution of RUL; while some of these meth-

ods calculate the PDF (fR(r)) of RUL, some other methods

calculate the CDF (FR(r)), and some other methods directly

generate samples from the desired probability density func-

tion (fR(r)). Due to some limitations of each of these meth-

ods, it may not be possible to accurately calculate the actual

probability distribution of R. Accurate calculation is possi-

ble only by using infinite samples for Monte Carlo sampling.

Any other method (for example, the use of a limited, finite

number of samples) will lead to uncertainty in the estimated

probability distribution, and this additional uncertainty is re-

ferred to as prediction-method uncertainty. It is possible to

decrease (and maybe eventually eliminate) this type of un-

certainty either by using advanced probability techniques or

powerful computing power.

It is necessary to further investigate the aforementioned un-

certainty propagation methods, and identify whether they can

be applied to prognostics health monitoring. Some earlier

publications have investigated the use of certain methods such

as Monte Carlo sampling, unscented transform sampling, first-

order reliability methods, etc. in this regard.

5. CONCLUSION

This paper presented an overview of uncertainty quantifica-

tion in prognostics and health management in engineering

systems. First, the significance of the uncertainty in prognos-

tics was explained, and the need for a systematic approach

to account for uncertainty in prognostics was discussed. It

was explained that four different activities — uncertainty rep-

resentation and interpretation, uncertainty quantification, un-

certainty propagation, and uncertainty management — need

to be performed in order to rigorously include the effects of

uncertainty in prognostics and provide useful information for

decision-making under uncertainty. Researchers have pur-

sued two different approaches for prognostics, and these two

approaches are based on testing and condition-based assess-

ment. The philosophical differences between these two ap-

proaches were explained and it was demonstrated that the

concept of remaining useful life is more meaningful in the

context of condition-based assessment since the engineering

system is under operation. Further, these differences are used

to analyze the interpretation of uncertainty in prognostics.

Probability and uncertainty can be interpreted in two ways.

The frequentist interpretation of uncertainty is applicable in

the presence of true randomness, as is the case in testing-

based health management. The Bayesian (subjective) inter-

pretation of uncertainty is applicable even while talking about

9
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events that may not be random, and therefore, this interpreta-

tion is applicable for both testing-based health management

and condition-based health management. In fact, only the

Bayesian interpretation of uncertainty is applicable in condition-

based health management. Techniques such as Kalman filter-

ing, particle filtering, etc. that are commonly used in condition-

based prognostics are collectively known as Bayesian track-

ing algorithms, not only because they use Bayes theorem but

also because they are based on the subjective interpretation

probability. Numerical examples were discussed in order to

illustrate the effects of uncertainty interpretation on prognos-

tics.

The final goal of this paper was to investigate methods for

computation of remaining useful life, in the context of condition-

based prognostics. It was illustrated that it is not possible to

analytically calculate the uncertainty in the remaining use-

ful life prediction even for certain simple problems involving

Gaussian random variables and linear state-prediction mod-

els. Therefore, it is necessary to resort to computational method-

ologies for such uncertainty quantification and compute the

probability distribution of remaining useful life prediction.

While different types of uncertainty quantification method-

ologies were discussed, there are still several challenges that

exist in this regard (Sankararaman & Goebel, 2014), and fur-

ther research is necessary to investigate the applicability of

these methods to prognostics and health monitoring applica-

tions.
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