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ABSTRACT 

Given the critical nature of Gas Turbines in most industrial 

plants, it is a high priority to find ways of reducing 

maintenance costs and increasing the availability. Quickly 

detecting and identifying combustion anomalies enables the 

choice of an appropriate recovery strategy, potentially 

mitigating the consequences of unscheduled down time and 

increased maintenance costs. Monitoring the Exhaust Gas 

Temperature (EGT) profiles is a good means of detecting 

combustion problems: plugged nozzles and/or combustor and 

transition piece failures will always result in distorted exhaust 

gas temperature patterns. However the conventional 

monitoring systems do not allow robust discrimination 

between instrumental failures and real gas turbine issues; 

furthermore weak diagnostic methods can be source of 

numerous false alarms. 

In this paper, we investigate the problem of monitoring the 

combustion chambers of a gas turbine and we attempt to 

address this issue by introducing a strategy for automatic and 

efficient patterns recognition by using Machine Learning 

Classification algorithms. Some historical events have been 

firstly retrieved and analyzed to discover which features are 

useful for classification. Based on the observations, two 

multiclass classification algorithms, one based on logistic 

regression, the other on Artificial Neural Networks (ANN), 

have been developed. Finally, real-world datasets have been 

used to benchmark the performance of the proposed 

algorithms against a traditional physics-based approach. 

1. INTRODUCTION 

Today industrial gas turbines are one of the most widely-used 

prime movers for power generation and mechanical drive 

applications. In the Oil&Gas field these engines are often 

used to drive compression trains (for example in gas pumping 

or injection stations or in natural gas liquefaction plants) and 

to provide power for the plant.   

Maintenance costs and availability are two of the most 

important concerns to a heavy-duty gas turbine equipment 

owner. Gas turbines have to be built and operated with higher 

availability, reliability, and performance in order to ensure 

the customer with sufficient operating revenues and minimal 

fuel costs. Therefore, Remote Monitoring & Diagnostics 

(RM&D) of equipment like heavy duty gas turbine has 

become increasingly important and popular in the industry 

since it’s considered a critical process in preventing costly 

unplanned maintenance and secondary damage.  

To achieve this goal, a large number of critical parameters 

such as engine vibration, bearing temperature, combustion 

profile, etc. are continuously acquired to detect any changes 

in the normal operating conditions of the gas turbine engine. 

This large number of operational data from the everyday 

operation of a gas turbine is usually collected and analyzed 

as soon as new data sets arrive in the monitoring center. 

Anomaly detection rules and models are designed to scan 

through the data and notify the monitoring and diagnostic 

engineers, if any novelties or emerging problems are 

detected. 

For example every day of the year, the RM&D center of 

General Electric Company in Florence (GE Oil&Gas), Italy 

collects more than 3,850 operating hours of data from a fleet 

of more than 700 globally installed equipment (gas turbines, 

compressors, steam turbines and electric generator assets). 

More than 70,000 signals are processed by automatic 

diagnostic rules and about 2,300 recommendations per year 

are sent to customers. Therefore in recent years, in parallel 

with the operational diagnostic service, it has become 

increasingly important the challenge of transforming big data 

into knowledge (Jlang & Foster, 2013) and to detect 

emerging problems at nearly real-time (early warning) with 

the development of advanced analytics. In a great number of 

industrial applications, this continuous supervision of critical 

parameters is driving the gradual transition from systematic 

maintenance to conditional maintenance strategies 

(Vachtsevanos, Lewis, Roemer, Hess, and WU, 2006).  
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2. COMBUSTION MONITORING 

The diagnosis of any malfunction of the combustion system 

of a gas turbine is of great importance for long term engine 

reliability and availability. Main causes of damage of hot-

section components are imbalanced fuel distribution and 

combustion instabilities.  

Some of the common problems experienced in gas turbines 

operation are: random re-ignition, combustor blowout, 

abnormal combustion dynamics, and non-compliant 

emissions. Modern dry low NOx combustors can target very 

low emissions levels, but need to operate within very narrow 

equivalence ratio. Premixed combustors are often susceptible 

to thermoacoustic combustion instability, which can lead to 

large pressure oscillations in the combustor and decreased 

durability of components.  

Other causes of combustion issues are clogged or loose fuel 

nozzles, which may lead to severe burning problems. 

Abnormal fuel mass distribution among nozzles may cause 

high emissions of either NOx (due to hot spots in the 

combustion zone) or CO and unburned hydrocarbons (due to 

cold spots and poor mixing or atomization). Those hot spots 

reduce the time taken for failure in creep (phenomenon of 

plastic deformation) of the combustion liners, transition 

pieces, turbine nozzles and blades. In fact creep life of metal 

components in the hot section of a gas turbine is extremely 

sensitive to metal temperature. 

The consequences of hot-section component failures caused 

by overheating might be quite costly. In extreme cases, 

combustion liner failures can allow hot flames to impinge on 

the turbine pressure casing, which can result in catastrophic 

combustion casing failure (Figure 1). Even before casing 

failure occurs, broken pieces of the liner can pass into the 

expander section and cause extensive blade damage. 

Monitoring the gas turbine exhaust temperature spread via 

thermocouples mounted at the gas turbine exhaust section 

(i.e. maximum - minimum) is a good means of detecting 

combustion problems. In fact, almost all gas turbine control 

systems monitor this parameter and issue an alarm when it 

reaches an OEM-specified value. However most modern 

diagnostic systems often do not display expected exhaust gas 

turbine spread profiles (EGT spread) and do not figure out 

the source of the high-temperature spread. Moreover many 

false alarms are often triggered as a result of instrumental 

problems. 

In this paper, we discuss the application of a pattern 

recognition technique to the monitoring of the exhaust gas 

turbine temperature profile. Although physical insight is 

without any doubt an important step to enhance knowledge 

of the processes within the combustion chamber, large 

datasets can also be exploited with data-mining techniques 

based on black box models, such as classifiers or artificial 

neural networks (Hannes, Deneve, Vanderhaegen, & Museur, 

2009).  

 

Figure 1. Broken liner as the result of cracks propagation 

The data-driven approach to fault diagnosis and prognosis is 

usually preferred when system models are not available or 

not robust enough (e.g., when the physics underlying is too 

complex to be modeled), but instead system monitoring data 

is available (Namburu, Azam, Luo, Choi, & Pattipati, 2007).  

The key challenge in implementing this kind of approach is 

developing an algorithm that can flag anomalies without also 

sending out false alarms when something else changes such 

as engine operating conditions. Pure data-driven modeling 

techniques work well if sufficient labeled data are available. 

However in real-world applications like in gas turbine 

monitoring, obtaining sufficient labeled data is labor-

intensive, if ever possible. In particular, true positive cases 

might be sparse or noisy and using small set of labeled data 

may cause model over-fitting or ill-formed model 

representation (Yan, Yu, Sherbahn, and Brahmakshatriya, 

2013).  

In this paper, an anomaly detection method based on 

classifiers technology is discussed in detail and implemented 

on E-class gas turbines. These black box models, trained on 

historical data (training set), are used to detect the presence 

of anomaly patterns in unseen data of the EGT profile (test 

set). These specific signatures not only can alert the operator 

to a possible problem, but they also identify its severity and 

can guide in understanding the possible root cause. 

3. CLASSIFICATION  

In machine learning and statistics, classification is the 

problem of identifying to which of a set of categories a new 

observation belongs, on the basis of a training set of data 

containing observations whose category membership is 
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known. Example of classification would be to predict 

whether a patient has a given disease or not, classifying a 

given email as “spam” or “non-spam”, an online transactions 

as fraudulent or not, etc. It’s worth noting that the response 

variable y is qualitative instead of quantitative. All these 

cases above are examples of binary classification problems 

because the variable y that we'd like to predict admits only 

two possible outcomes (usually coded as "0" or "1"), but the 

same concept can be extended to multi-class cases to deal 

with situations where the outcome can have three or more 

possible types (e.g., "disease A" vs. "disease B" vs. "disease 

C"). 

There are many possible classification techniques, or 

classifiers, that one might use to predict a qualitative 

response. Some of these are: logistic regression, Artificial 

Neural Networks, K-nearest neighbors, decision tree and 

Support Vector Machines (James, Witten, Hastie, and 

Tibshirani, 2013). 

In this work, logistic regression and artificial neural networks 

techniques are investigated. Today logistic regression is one 

of the most popular and most widely used learning algorithms 

thanks to the interpretability of model parameters and ease of 

use. On the other hand, neural networks can be seen as 

nonlinear generalizations of logistic regression, and thus they 

are considered more flexible algorithms (Dreiseitl & Ohno-

Machado, 2002). 

3.1. LOGISTIC REGRESSION 

In a binary classification problem, where the response y falls 

into one of two categories, 0 or 1, logistic regression models 

the probability that y belongs to a particular category. The 

surface that partitions the vector space into two sets, one for 

each class, is called decision boundary. 

The function that satisfies the property that a prediction is 

between 0 and 1 is the hypothesis function 0 ≤ ℎ𝜃(𝑥) ≤ 1, 

defined as ℎ𝜃(𝑥) = 𝑔(𝜃𝑇𝑥) , where the function g is the 

logistic or sigmoid function 𝑔(𝑧) =
1

1+𝑒−𝑧 , that takes the 

shape of the S-curve shown in Figure 2 for values of z in the 

range of real numbers from −∞ to +∞. Putting these two 

equations together, we obtain an alternative form of the 

hypothesis function. 

    ℎ𝜃(𝑥) =
1

1+𝑒−𝜃𝑇𝑥
              (1) 

The output value of the hypothesis function is the estimated 

probability that the variable y is equal to 1 on a new input 

example x.  

Suppose that the hypothesis output is 0.7, the interpretation 

is that for a patient with features x, the patient has a 70% 

chance of having a specific disease. More formally we can 

write this as ℎ𝜃(𝑥) = 𝑃(𝑦 = 1|𝑥; 𝜃) probability that y = 1, 

given feature x, parameterized by θ. 

 

 

Figure 2. Sigmoid function 

The parameter vector θ is the vector of unknown linear 

regression coefficients of the nth order polynomial 𝜃0𝑥0 +
𝜃1𝑥1 + … + 𝜃𝑛𝑥𝑛 = 𝜃𝑇𝑥 . High-dimensional vector can be 

used in non-linear problems to get more complex decision 

boundary, but the model will be more susceptible to 

overfitting, which means that it may fit the training set very 

well, but fail to generalize to new examples. 

In every supervised learning problem, a training set of m 

training examples is required 

{(𝑥(1), 𝑦(1)), (𝑥(2), 𝑦(2)), ⋯ , (𝑥(𝑚), 𝑦(𝑚))} 

where each example is represented by an N+1 dimensional 

feature vector x, and its associated label y can be either 0 or 

1. 

𝑥 ϵ [

𝑥0

𝑥1

⋯
𝑥𝑛

]  𝑥0 = 1, 𝑦 ϵ{0,1} 

The training process of a classifier involves finding the best 

parameter θ vector for the logistic regression cost 

function  𝐽(𝜃) , given the dataset of x and y values. This 

optimization problem consists in minimizing the sum of the 

square difference between the output of the hypothesis ℎ𝜃(𝑥) 

and class label y, which is finding parameters θ that minimize 

the function:  

𝐽(𝜃) =
1

2𝑚
[∑(ℎ𝜃(𝑥𝑖) − 𝑦𝑖)2 + 𝜆 ∑ 𝜃𝑗

2

𝑛

𝑗=1

𝑚

𝑖=1

]        (2) 

where λ is the regularization parameter. This optimization 

problem can be solved with any standard numerical 

optimization algorithm, like the gradient descent or more 

advanced methods. 

3.2. ARTIFICIAL NEURAL NETWORKS 

In computer science and related fields, Artificial Neural 

Networks are computational models inspired by the neural 

structure of the brain that are capable of machine learning and 
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pattern recognition. Due to their high connectivity and 

parallelism, ANNs are able to link, in a non-linear way, a 

multi-dimensional input space with a multi-dimensional 

output space, allowing very high computational speed 

(Haykin, 1999). 

The neural network architecture used in this paper for gas 

turbine combustion monitoring is the multilayer feedforward 

neural network (see Figure 3), in which the artificial neurons 

are arranged in layers, and the neurons of a layer are linked 

to all the neurons of the following layer, while, there are no 

links among neurons of the same layer. The input layer 

consists of a set of nodes (where no data processing occurs) 

equal to the number of ANN inputs, while the number of 

neurons in the output layer is equal to the number of ANN 

outputs. 

 

Figure 3. Artificial Neural Network architecture 

Feedforward networks often have one or more hidden layers 

of sigmoid neurons also called activation functions (Eq. (1)) 

followed by an output layer of linear or sigmoid neurons. 

Multiple layers of neurons with nonlinear transfer functions 

allow the network to learn nonlinear relationships between 

input and output vectors. The linear output layer is most often 

used for function fitting (or nonlinear regression) problems, 

while sigmoid transfer function is used to constrain the 

outputs of a network (such as between 0 and 1). This is the 

case when the network is used for pattern recognition 

problems (in which a decision is being made by the network). 

All the calculations are performed in hidden and output 

layers. In particular, if xij is the ith input of the jth neuron and 

wij is the weight of xij, the neuron output yj is determined by 

means of an activation function f applied to the weighted sum 

of the inputs plus the bias b. 

𝑦𝑖 = 𝑓 (∑ 𝑤𝑖𝑗𝑥𝑖𝑗 + 𝑏

𝑚𝑗

𝑖=1

)     ,     𝑗 = 1, … , 𝑛𝑁           (3) 

The process of training a neural network involves tuning the 

values of the weights and biases of the network to optimize 

network performance, which generally is the mean square 

error mse, namely the average squared error between the 

network outputs y and the target outputs t. It is defined as 

follows: 

𝐹 = 𝑚𝑠𝑒 =
1

𝑁
∑(𝑒𝑖)

2

𝑁

𝑖=1

=
1

𝑁
∑(𝑡𝑖 − 𝑦𝑖)2

𝑁

𝑖=1

         (4) 

For training multilayer feedforward networks, any standard 

numerical optimization algorithm can be used to optimize the 

performance function, but there are a few key ones that have 

shown excellent performance for neural network training. 

These optimization methods use either the gradient of the 

network performance with respect to the network weights, or 

the Jacobian of the network errors with respect to the weights. 

The gradient and the Jacobian are calculated using a 

technique called backpropagation algorithm, which involves 

performing computations backward through the network.  

Although the functional forms for logistic regression and 

artificial neural network models are quite different, a network 

without a hidden layer is actually identical to a logistic 

regression model if the logistic (sigmoidal) activation 

function is used.  

Since artificial neural networks are aggregations of nonlinear 

functions (neurons), in classification problems ANNs are 

able to represent complex models that form non-linear 

hypotheses, differently from logistic regression that is only a 

linear classifier. The type of decision boundary that the 

network can learn is determined by the number of hidden 

layers.  

4. MODEL DEVELOPMENT 

The first step towards the development of a classifier for gas 

turbine combustion monitoring is the definition of the 

categories to be classified.  

Polar plot of EGT profiles is often used in diagnostics to 

identify uneven temperature distributions. The calculation of 

the exhaust swirl angle is then used to map temperatures back 

to the originating combustion chamber. Based on experience, 

the 4 classes of Figure 4 have been identified, each of which 

is characterized by a specific temperature distribution in the 

polar plot. 

For example, in a fault–free case (Class 1) the exhaust 

temperature profile is expected to be quite regular; it will be 

peaked on the abnormal thermocouple in presence of a sensor 

anomaly (Class 2) and asymmetric with more than one 

thermocouple far from the average temperature in the case of 

a cold (Class 3) or hot spot (Class 4). 

The underlying idea in this paper is that a classification model 

can be trained on real cases of normal behavior, sensor 

anomaly, cold spot and hot spot to recognize their specific 

patterns when new data are presented. 
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Figure 4. Polar plots of exhaust gas temperature profiles 

This would allow greater performance than traditional 

diagnostic systems that are simply based on the monitoring 

of the exhaust spread. 

4.1. REGULARIZED LOGISTIC REGRESSION TRAINING AND 

VALIDATION  

For the 4-classes classification problem presented here, a 

multi-class classification algorithm called “one-vs-all” is 

implemented. This algorithm handles the training set as 4 

separate binary classification problems, where each class i is 

separated from the remaining ones. In other words the logistic 

regression classifier ℎ𝜃
(𝑖)(𝑥)  is trained for each class i to 

predict the probability that y=i, ℎ𝜃
(𝑖)

= 𝑃(𝑦 = 𝑖|𝑥; 𝜃) . To 

make the final prediction, the 4 classifiers are run 

simultaneously on the input x, and the class with the highest 

probability max
𝑖

ℎ𝜃
(𝑖)(𝑥) is then selected. 

For the creation of the training dataset, historical events 

ground truth data have been primarily collected from RM&D 

issue database. Operating data of about 150 heavy-duty gas 

turbines in a period of 2 years operation are available for the 

analysis. Since we focus on anomaly detection algorithm, 

these data include both abnormal units and normal units, 

which are referred as positive and negative cases 

respectively. Secondly, time series of classifier input data x 

of some historical cases are extracted from the data historian 

and analyzed to generate the training dataset as explained 

below.  

The most reliable way to get a high performance machine 

learning system is to take a low bias learning algorithm and 

to train it on a massive training set. However in real-world 

applications true positive cases are sparse and only small 

labeled training set are available.  

An artificial data synthesis method can be used to create new 

data from scratch or to amplify a given dataset. The second 

case has been put in place to turn the relative small training 

set available into a larger training set. For intellectual 

property protection, we are not allowed to give details and 

how this procedure was carried out and the number of feature 

x considered for the model. 

Through the procedure explained above, a dataset of 11000 

samples was generated and divided in three subsets for 

training, validation and test with following ratio 0.7, 0.15 and 

0.15 respectively. 

A first order polynomial was too simple for the data and 

resulted in underfitting (high bias), so a 2° order polynomial 

was used. The regularization parameter λ can significantly 

affect the results of the polynomial regression. In particular, 

a model without regularization (λ = 0) fits the training set 

well, but does not generalize. Conversely, a model with too 

much regularization (λ = 100) does not fit the training set and 

testing set well. A good choice of λ can provide a good fit to 

the data.  

We used the Matlab® fminunc optimization solver to optimize 

the cost function Jtrain(θ) with parameters θ on the training 

dataset. Concretely we passed to fminunc function the 

following inputs: 

 The initial values of the parameters to be optimized 

 A function that, when given the training set and a 

particular θ, computes the logistic regression cost and 

gradient with respect to θ for the dataset (x, y). This allows 

fminunc to use the gradient when minimizing the 

function. 

For the regularized logistic regression, the Eq. (2) of the cost 

function becomes 

𝐽(𝜃) =
1

𝑚
∑ [−𝑦(𝑖)𝑙𝑜𝑔 (ℎ𝜃(𝑥(𝑖))) − (1 − 𝑦(𝑖))𝑙𝑜𝑔 (1 −𝑚

𝑖=1

ℎ𝜃(𝑥(𝑖)))] +
𝜆

2𝑚
∑ 𝜃𝑗

2𝑛
𝑗=1                                                    (5) 

Correspondingly, the partial derivative of regularized logistic 

regression cost for θj is defined as 

𝜕𝐽(𝜃)

𝜕𝜃0

=
1

𝑚
∑(ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))𝑥𝑗

(𝑖)

𝑚

𝑖=1

                        𝑓𝑜𝑟 𝑗 =  0 

𝜕𝐽(𝜃)

𝜕𝜃𝑗

= (
1

𝑚
∑(ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))𝑥𝑗

(𝑖)

𝑚

𝑖=1

) +
𝜆

𝑚
𝜃𝑗       𝑓𝑜𝑟 𝑗 ≥ 1 

After that the optimal values of θ were found, the model was 

then validated on the cross-validation dataset computing the 

cost function JCV(θ) for different values of λ. We found that, 

for the dataset considered, λ=8 is the value that works best in 

terms of having a small cross-validation and test set error 

(Figure 5).  
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Figure 5. Selecting λ using a cross-validation set 

Finally the model's performance has been evaluated on the 

test set, since it was not used in any part of training (that is, it 

was neither used to select the λ parameters, nor to learn the 

model parameters θ). The test error for λ = 8 was Jtest(θ) = 

0.64e-04 with 100% accuracy, that is the percentage of 

examples that the classifier got correct. 

After learning the parameters θ, to help visualize the model 

learned by the classifier, we have plotted the non-linear 

decision boundary that separates the positive and negative 

examples in a 3-dimensional space.  

 

Figure 6. Class 1 classifier decision boundaries 

 

 
Figure 7. Class 2 classifier decision boundaries 

 

 
Figure 8. Class 3 classifier decision boundaries 

 
Figure 9. Class 4 classifier decision boundaries 

In Figure 6 to Figure 9, the decision boundary for each of the 

4 assigned classes is shown in green. The red dots are the 

positive example, while the yellows ones are the negative 

examples. 

4.2. NEURAL NETWORK TRAINING AND VALIDATION 

The same dataset of section 4.1 was used to build a neural 

network based classifier. The architecture selected for the 

network is the feed-forward with sigmoid transfer functions 

in both hidden and output layers. The network has four output 

neurons, because there are four categories associated with 

each input vector, thus each output neuron represents a 

category. When an input vector x of the appropriate category 

is applied to the network, the corresponding neuron should 

produce a 1 and the other neurons should output 0. The 

influence of the number of neurons in the hidden layer was 

evaluated by comparing the response of different ANNs with 

different numbers of hidden neurons. Ten neurons in the 

hidden layer were considered an acceptable compromise 

between ANN accuracy and computational time required for 

the training. Due to the high number of patterns used for the 

training, the overfitting phenomenon (when the model learns 

the training data so well that it loses the ability to generalize) 

is unlikely to happen.  

The Matlab® Neural Network Toolbox was used for the 

training process. The best validation performance was found 

at iteration 93 with 100% of cases perfectly classified. 
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5. RESULTS ON REAL WORLD DATASETS 

As explained in section 4.1, the training dataset was obtained 

through an artificial data synthesis method on the observation 

of some relevant cases. For the validation on real data, time 

series with a one-minute sampling rate are used. Datasets 

prepared have duration of about one week before and after 

the event for positive cases and total length of 5 months for 

negative cases.  

Starting from combustion labeled cases stored in the RM&D 

issue database and other past events notified to customers, 5 

datasets, one for each class, have been identified (25 fault-

free cases, 25 cases of anomalies, 25 sensor failures/out of 

range, 25 cold spots and 4 hot spots). The hot spots cases are 

less numerous because they have a lower probability of 

occurrence. An additional class has been added to those seen 

previously in this paper, this new class contains out of range 

anomalies, which in most cases are broken probes with 

unreliable or full scale values. These cases are filtered by the 

algorithm without passing through classifier and must be 

correctly detected by the diagnostic system. 

A criterion to evaluate performance of classification problem 

is the contingency table that contains information about the 

outcome of the classifier compared with the target, giving 

information about the true or false positives and true or false 

negatives. The True Positive is a Target correctly identified 

whereas the True Negative is a Target correctly rejected. The 

False Positive, also known as Type I error, is a test result that 

is read as positive when it is really negative, whereas the 

False Negative, also known as Type II error, is a test result 

read as negative when it is really positive. 

Table 1: Sensor Failure Contingency Table 

Sensor Failure 
Target (Gold Standard) 

Positive Negative 

Test Outcome 

Positive 
True Positive 

25 

False Positive 

0 

Negative 
False Negative 

0 

True Negative 

25 

 

Table 2: Anomaly Contingency Table 

Anomaly 
Target (Gold Standard) 

Positive Negative 

Test Outcome 

Positive 
True Positive 

24 

False Positive 

0 

Negative 
False Negative 

1 

True Negative 

25 

 

Table 3: Cold Spot Contingency Table 

Cold Spot 
Target (Gold Standard) 

Positive Negative 

Test Outcome 

Positive 
True Positive 

25 

False Positive 

0 

Negative 
False Negative 

0 

True Negative 

25 

 

Table 4: Hot Spot Contingency Table 

Hot Spot 
Target (Gold Standard) 

Positive Negative 

Test Outcome 

Positive 
True Positive 

4 

False Positive 

0 

Negative 
False Negative 

0 

True Negative 

25 

 

The contingency tables from Table 1 to  

Table 4 summarize the results obtained with the classifier 

based on logistic regression for each class. It’s evident that 

the performance of the classifier is very satisfactory, since it 

fails to predict only one case from the anomaly test set, 

whereas the other predictions are correct. These results are 

also summarized in the confusion matrix in Table 5. 

A benchmarking with other two algorithms has been done 

using the same labeled cases. In particular we considered the 

Artificial Neural Network classifier described before and a 

Physics-Based (P-B) approach. The latter is a proprietary 

algorithm based on the monitoring of the EGT spread and is 

reinforced with the adjacency check between the 

coldest/hottest thermocouple and the second coldest/hottest 

thermocouple for the detection of cold and hot spot 

anomalies. 

Table 5: Confusion Matrix 

 

Target Class 

 

S
en

so
r 

F
a

il
u

re
 

N
o

rm
a

l 

A
n

o
m

a
ly

 

C
o

ld
 S

p
o

t 

H
o

t 
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t 
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Sensor 

Failure 
25 0 0 0 0 100% 

Normal 0 25 1 0 0 
96.2

% 

Anomaly 0 0 24 0 0 100% 

Cold Spot 0 0 0 25 0 100% 

Hot Spot 0 0 0 0 4 100% 

 
100

% 

100

% 

96

% 

100

% 

100

% 
99% 

In order to compare the three different algorithms, it is 

necessary to define some appropriate metrics. Starting from 

the contingency table explained above, it is possible to derive 

various indicators like precision and recall.  

In binary classification, precision is the ratio of the number 

of relevant records retrieved to the total number of irrelevant 

and relevant records retrieved, while recall is the ratio of the 

number of relevant records retrieved to the total number of 

relevant records in the database (Labatut, Cherifi, 2011).  

So, precision and recall are defined as: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
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𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

From the definition above it turns out that a good classifier 

must have high precision and high recall. In fact, a low 

precision classifier produces high number of false alarms, 

whereas a low recall classifier gets a high number of missing 

alarms. 

Analyzing the results obtained in Table 6 and Table 7, the 

logistic regression classifier shows better performance in 

terms of precision and recall compared to the other two 

algorithms used for the benchmark. 

Table 6: Precision 

Class 
Precision 

LR 

Precision 

ANN 

Precision 

P-B Rule 

Sensor 

Failure 
100% 100% 100% 

Anomaly 100% 100% 88.88% 

Cold Spot 100% 100% 100% 

Hot Spot 100% 100% 100% 

TOTAL 100% 100% 96.96% 

Table 7: Recall 

Class 
Recall  

LR 

Recall 

ANN 

Recall 

P-B Rule 

Sensor Failure 100% 100% 96% 

Anomaly 96% 80 % 64% 

Cold Spot 100% 100% 80% 

Hot Spot 100% 75 % 100% 

TOTAL 98.73% 92.40% 81.01% 

The ANN based classifier generates 6 false negative, failing 

to predict 5 test cases from the Anomaly dataset and one case 

from the Hot Spot dataset, without generating any false 

positive prediction. This result decreases the recall relative to 

the two classes with the false negative without impacting the 

precision metrics. 

The P-B rule have a very low recall metric due to 5 false 

negatives in Cold Spot dataset, one in Sensor Failure dataset 

and 9 in Anomaly dataset. This rule also produces 2 false 

positives in Anomaly dataset affecting also the precision of 

the rule. 

Another useful metric to compare the three algorithms is the 

F1-Score. This score weights recall and precision equally, 

and a good retrieval algorithm will maximize both precision 

and recall simultaneously. Thus moderately good 

performance on both will be favored over extremely good 

performance on one and poor performance on the other. F1-

score is defined as: 

𝐹1 =  2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

Table 8 confirms the performance results previously found. 

Despite the high accuracy of the ANN obtained in the training 

phase, the logistic regression showed a greater ability to place 

the unseen data in the right classes. This result can be 

probably explained by the fact that, given the strategy used 

for the training set generation, the logistic regression has a 

greater ability to fit the nature of the problem thanks to the 

analytical definition of its decision boundaries. 

Table 8: F1-Score 

Class 
F1-score 

LR 

F1-score 

ANN 

F1-score  

P-B Rule 

Sensor Failure 1 1 0.9795 

Anomaly 0.9795 0.8888 0.7441 

Cold Spot 1 1 0.8888 

Hot Spot 1 0.8571 1 

TOTAL 0.9936 0.9605 0.8827 

6. CONCLUSIONS 

The diagnosis of any malfunction of the combustion system 

of a gas turbine is critical in preventing costly unplanned 

maintenance and in reducing life-cycle costs of power plant 

operations. Monitoring the exhaust temperature spread is a 

good means of detecting combustion problems. However 

conventional monitoring systems do not allow robust 

discrimination between instrumental failures and real 

combustion issues; furthermore weak diagnostic methods can 

be source of numerous false alarms. 

In this research, a Machine Learning technique, based on 

classification technology, is proposed to efficiently recognize 

anomaly patterns of common combustion problems. These 

specific signatures not only can alert the operator to a 

possible problem, but they also identify its severity and can 

guide in understanding the possible root cause. Two 

multiclass classification algorithms, one based on logistic 

regression, the other on artificial neural networks, have been 

trained on labeled patterns extracted from real cases of 

normal behavior, sensor anomaly, cold spot and hot spot 

collected in the RM&D center of Florence. An artificial data 

synthesis method has been used to amplify the original 

dataset, since only small labeled training set is available. 

After training process, the developed classification models 

and an additional physics-based algorithm have been tested 

on real combustion cases.  

The final performance metrics pointed out better results for 

both data-driven methods compared to the physics-based 

model. The best performance, both in accuracy and recall, 

was achieved by the logistic regression algorithm. The ANN 

based classifier, despite having excellent accuracy, generated 

6 false negative resulting in a lower recall. 

Future research could investigate how to enhance the insight 

into the complex combustion system behavior relying not 

only on EGT profiles. For instance, multi-sensor fusion may 

provide robust and complete description of the combustion 

process combining information coming from additional 

sensors, such as combustion dynamic pressures and pressure 

ratio across the combustion fuel nozzles. 
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