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ABSTRACT

Prognostics and Health Management (PHM) is a multidisci-
plinary field aiming at maintaining physical systems in their
optimal functioning conditions. The system under study is
assumed to be monitored by sensors from which are obtained
measurements reflecting the system’s health state. A health
index (HI) is estimated to feed a data-driven PHM solution
developed to predict the remaining useful life (RUL). In this
paper, the values taken by an HI are assumed imprecise (IHI).
An IHI is interpreted as a planar figure called polygon and a
case-based reasoning (CBR) approach is adapted to estimate
the RUL. This adaptation makes use of computational geom-
etry tools in order to estimate the nearest cases to a given
testing instance. The proposed algorithm called RULCLIP-
PER is assessed and compared on datasets generated by the
NASA’s turbofan simulator (C-MAPSS) including the four
turbofan testing datasets and the two testing datasets of the
PHM’08 data challenge. These datasets represent 1360 test-
ing instances and cover different realistic and difficult cases
considering operating conditions and fault modes with un-
known characteristics. The problem of feature selection, health
index estimation, RUL fusion and ensembles are also tackled.
The proposed algorithm is shown to be efficient with few pa-
rameter tuning on all datasets.

1. INTRODUCTION

Knowledge-based systems and Case-Based Reasoning approa-
ches (CBR) have appeared as suitable tools for data-driven
Prognostics and Health Management (PHM) (Saxena, Wu,
& Vachtsevanos, 2005; T. Wang, Yu, Siegel, & Lee, 2008;
T. Wang, 2010; Ramasso, Rombaut, & Zerhouni, 2013). In
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CBR, historical instances of the system - with condition data
and known failure time - are used to create a library of degra-
dation models or health indices. Then, for a test instance, the
similarity with the degradation models is evaluated generat-
ing a set of Remaining Useful Life (RUL) estimates which are
finally aggregated.

The required assumptions for CBR implementation are lim-
ited, the main issues consisting in, on the one hand, the choice
of an appropriate similarity measure and, on the other hand,
the selection of the relevant training instances. CBR approa-
ches are also flexible since it is simple to incorporate quanti-
tative and qualitative pieces of knowledge such as measure-
ments and expertise.

We consider applications for which the noise due to various
sources, such as operational conditions or fault modes, can
not be well characterised and where filtering may change the
meaning of the health index. We assume that the health index
can not be well defined by a single real value but only by Im-
precise Health Index (IHI). To fix ideas, an illustration taken
from the turbofan engine dataset (Saxena, Goebel, Simon, &
Eklund, 2008) (used and detailed in experiments) is given in
Figure 1. The figure pictorially represents the IHI taken from
the fourth dataset (made of two fault modes and six operating
conditions) for the 8th training data (P1), the 100th training
data (P2) and the 1st testing data (P3) of this dataset. As de-
picted, fault modes may generate

• sudden changes in wear (e.g in P1, t ∈ [225, 275]) that
may increase the lifetime of the unit. It may be due to
both fault modes and operating conditions, for example
a drastic decrease of speed to cope with mechanical inci-
dents or meteorological phenomenons.

• Unexpected changes in the trend, such as increasing in-
stead of decreasing (e.g. P2, t > 125) that may disturb
the algorithm. It may be due to component failures such
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as sensors or electronics.
• Sudden bursts characterised by low signal-to-noise ratio

(SNR) on a possibly short duration which deeply affect
the HI (e.g. on P3 with t ∈ [10, 75]) that may affect the
lifetime accordingly to the fault type which is generally
unknown.
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Figure 1. Effect of fault modes and operating conditions on
health indices estimation. HIs (here obtained from training
instances) are described with planar figures called polygons.

The representation and the propagation of imprecision (or un-
certainty) is of paramount importance in engineering analyses
(Vachtsevanos, 2006; Orchard, Kacprzynski, Goebel, Saha,
& Vachtsevanos, 2008; Beer, Ferson, & Kreinovich, 2013).
Several mathematical theories (Klir & Wierman, 1999) have
been used in prognostics such as probability theory (including
Bayesian approaches) (Peng et al., 2012), set-membership ap-
proaches (including fuzzy-sets) (Chen, Zhang, Vachtsevanos,
& Orchard, 2011; El-Koujok, Gouriveau, & Zerhouni, 2011)
and Dempster-Shafer’s theory of belief functions (Serir, Ra-
masso, & Zerhouni, 2012; Ramasso et al., 2013). Facing im-
precision in HIs for prognostics is thus not new but the way
to handle it can be considered differently.

We assume 1-D health index to be available but obtained from
noisy measurements. The data points are supposed to repre-
sent vertices of a simple planar polygon. The IHI is thus a
polygon-shaped health index represented by a planar figure.
Three polygons are depicted in Figure 1. Using computa-
tional geometry tools, a prognostics method is proposed that
handles IHI without knowing nor estimating the noise prop-
erties. The method is based on CBR for which a similarity
measure adapted to IHI and polygon is developed. The set
of cases is made of training instances represented by poly-
gons and the similarity with a testing instance recorded on the
in-service system is made dependent on the degree of inter-
section between both training and testing polygon instances.
The prognostics algorithm introduced is called “RULCLIP-
PER” (Remaining Useful Life estimation based on impreCise
heaLth Index modeled by Planar Polygons and similarity-
basEd Reasoning”).

The next Section is dedicated to the presentation of a method-
ology to build imprecise health index and perform prognos-
tics. The methodology is then applied on C-MAPSS datasets.

2. PROGNOSTICS BASED ON IMPRECISE HEALTH INDEX:
A CBR APPROACH

A health index (HI) takes the form of a 1-dimensional real-
valued signal H = [x1 x2 . . . xj . . . xT ]T, xj ∈ R obtained
at some instants t1, t2 . . . tT .

2.1. Polygon-shaped representation of IHI

An IHI is defined as a polygon where each vertex is repre-
sented by a data point estimated from the original HI. The set
of vertices is obtained by first rearranging the data points to
define an ordered sequence that is made possible by extract-
ing the upper and lower envelopes of the noisy HI. For that,
let’s define H̃ = [x̃1 x̃2 . . . x̃j . . . x̃T ]T a smooth HI ob-
tained by applying a filter over H such that the extraction of
both envelopes of H is made easier. The filter used in this
paper was a 15-point moving average.

A polygon (representing an IHI) is thus defined as a set of
pairs (xj , tj) made of HI values xj at time index tj .

The upper envelope of H denoted S is defined by

S = {(xj , tj)|xj ≥ x̃j} ∪ {(xj−1, tj)|xj < x̃j} , (1)

meaning that, for a given data point j, if the HI value xj at
time tj is greater than the filtered value x̃j then the upper en-
velope is equal to the HI value, otherwise it takes its previous
value. The lower envelope I is defined similarly by

I = {(xj , tj)|xj < x̃j} ∪ {(xj−1, tj)|xj ≥ x̃j} . (2)

The ordered pairs of vertices listed counterclockwise repre-
sents a bounding closed polygonal chain that separates the
plane into two regions. The word “polygon” refers to a plane
figure bounded by the closed path defined as:

P =
{

(x1, t1)S , (x2, t2)S . . . (xj , tj)
S . . . (xT , tT )S ,

(xT , tT )I , (xT−1, tT−1)I . . . (x1, t1)I , (x1, t1)S
}

(3)
with (xj , tj)

S ∈ S and (xj , tj)
I ∈ I. To close the polygon,

the first and last vertices are the same. The pairs of vertices
define a finite sequence of straight line segments representing
the polygon.

More specifically, a polygon is a region of the plane enclosed
by a simple cycle of straight line segments where nonadjacent
segments do not intersect and two adjacent segments intersect
only at their common endpoint (Rosen, 2004). However, the
second part of the definition of the bounds may generate some
segment intersections. These inconsistencies can be corrected
easily by exchanging the corresponding values of the lower
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and upper bounds when an intersection is detected. When
consistent bounds are obtained, the polygon is made of non-
intersecting line segments which characterise a Jordan’s sim-
ple closed curve also called simple polygon (Filippov, 1950).
This category of polygon enables one to apply some standard
algorithms from Computational Geometry (Rigaux, Scholl,
& Voisard, 2002; Rosen, 2004; Longley, de Smith, & Good-
child, 2007). Note that some of the most efficient algorithms
for operations on polygons can manage self-intersections (Vatti,
1992; Greiner & Hormann, 1998) but these inconsistencies
generally increase time-consumption.

2.2. CBR approach for prognostics based on IHI

2.2.1. Training dataset

We assume the training dataset to be composed of N training
instances:

L = {Pi,Ki}Ni=1 (4)

where Pi is the ith polygon attached to the ith imprecise
health index Hi and Ki = [y1 y2 . . . yj . . . yT ]T, yj ∈
N represents a discrete-valued signal reflecting a system’s
state. The component Ki may be useful in some applications
where the system can be described by means of latent vari-
ables (Ramasso & Denoeux, 2013; Javed, Gouriveau, & Zer-
houni, 2013). In that case, Ki may represent a partial knowl-
edge about the state. For example, in (Ramasso et al., 2013),
partial knowledge was encoded by belief functions to express
imprecision and uncertainty about the states.

2.2.2. Determining the nearest case

A testing instance takes the form of a health index H∗ from
which the envelopes can be estimated as explained in the pre-
vious paragraph, leading to the polygon representation P∗.
As in usual CBR approaches for prognostics (T. Wang, 2010;
Ramasso et al., 2013), the goal is to sort the training instances
with respect to their similarity to the testing instance. How-
ever, since the training instances are made of polygons, the
usual Euclidean distance is not adapted. We propose the fol-
lowing similarity measure.

Getting inspired from the Computer Vision community (Powers,
2011), recall, precision and Fβ indices are used to quantify
the relevance of a training instance compared to the testing
one. Precision represents the fraction of the retrieved instance
that is relevant, while recall is the fraction of the relevant in-
stance that is retrieved. The Fβ is an harmonic mean which
gives equal weight to recall and precision when β = 1. Note
that the three indices are normalised into [0, 1].

More precisely, for the ith training instance:

1. Estimate the area of the intersection between the polygon
Pi and P∗:

A∩ = Area (Pi ∩ P∗) (5)

2. Compute the “recall”:

Rec =
A∩
Ai

(6)

3. Compute the “precision”:

Prec =
A∩
A∗

(7)

4. Compute the “Fβ,i”, in particular for β = 1, characteriz-
ing the similarity with the ith training instance:

F1,i = 2
Rec · Prec

Rec + Prec
(8)

where Ai,A∗,A∩ represent the area of polygons Pi, P∗ and
of their intersection respectively.

Example 1 An illustration of intersection is given in Fig-
ure 2 where the darkest polygon represents a training in-
stance and the two other polygons are testing ones. The whitest
polygon is within the testing instance meaning that the preci-
sion is high, but the recall is pretty low since it covers only a
small part of the testing instance. On the opposite, the third
polygon covers entirely the testing instance leading to a high
recall but its spread decreases the precision.

0 20 40 60 80 100 120 140
−1

−0.5

0

0.5

1

1.5

Time unit

P
o

ly
g

o
n

al
 H

I

 

 

R → 1, P → 0

Healh index

P → 1, R → 0

Figure 2. Illustration of recall and precision.

Practically, intersection construction is the main difficulty and
was tackled quite recently in computational geometry for ar-
bitrary planar polygons. It consists in determining the region
of geometric intersection which can be performed in three
phases (Rosen, 2004) (Chap. 38):

1. Compute the intersection between the boundaries of the
objects using the linearithmic plane sweep algorithm (Bentley
& Ottmann, 1979);

2. If the boundaries do not intersect then determine whether
one object is nested within the other;

3. If the boundaries do intersect then classify the resulting
boundary fragments gathered to create the final intersec-
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tion region (Margalit & Knott, 1989; Chazelle & Edels-
brunner, 1992), which can be performed in linearithmic
time. Regularized Boolean operations ensure the closure
of the interior of the set-theoretic intersection.

In this paper, the Vatti’s algorithm (Vatti, 1992) has been
used because it is generic and can manage most of pratical
cases. Several implementations of this algorithm have been
proposed, especially in (Greiner & Hormann, 1998) which
was shown to be particularly efficient.

2.2.3. Estimating the Remaining Useful Life (RUL)

The F1 measure is used to sort the N training polygon in-
stances in descending order: P(1) > P(2) · · · > P(j) · · · >
P(N) so that P(1) is the closest instance to the testing one and
P(N) the farthest one. The index (i) in P(i) represents a re-
ordering and the symbol > in P(i) > P(j) means that the ith
polygon is more similar to the testing instance that the jth.

CBR assumes that a limited number of instances, say K, are
enough to approximate the testing instance. The K closest
training instances can then be combined to estimate the RUL.
The length of a training instance minus the length of a test-
ing instance provides an estimation of the RUL (Figure 3).
Given the definition of a polygon (Section 2.1) and of the
training dataset (Eq. 4), the length of both the training and
testing polygon instances is given by Ti and T∗ respectively.
Therefore, the estimated RUL is given by

ˆRUL = Ti − T∗ . (9)

Example 2 Two polygons are illustrated in Figure 3, one
coming from the training dataset #1 (the tenth instance) and
one from the testing dataset #1 (the first instance). Since
T1 = 222 and T∗ = 31, the estimated RUL is 191 time-units.
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Figure 3. Polygon instances: training (P1) and testing (P∗).

Each closest training instance P(i) can be accompanied by a
state sequence K(i) so that K estimations of the RUL, de-
noted ˆRULK, can be obtained from the state sequences in
addition to the ones obtained with P(i) and denoted ˆRULP .

Using K(i), the last transition in the sequence is supposed to
represent a jump of the system to a faulty state. This assump-
tion relies on the fact that the last part of a training instance
represents the system’s end-of-life (Ramasso et al., 2013; Ra-
masso & Gouriveau, 2013; Javed et al., 2013).

The 2K estimations of the RUL can then be pooled in one
set: ˆRULPK = { ˆRULP , ˆRULK} and an information fusion
process can then be performed to combine these partial RUL
estimates. According to the application, the fusion rule can
be adapted (Kuncheva, 2004).

A plot chart of RULCLIPPER algorithm is depicted in Fig-
ure 4. Some of the elements will be illustrated in the next
section dedicated to experiments.

3. EXPERIMENTS: METHOD

RULCLIPPER is tested on the datasets obtained from the tur-
bofan engine degradation simulator (Saxena, Goebel, et al.,
2008). Before presenting results, several details about the
datasets have to be presented, in particular how to select the
features and how to compute the health index.

3.1. Turbofan engine degradation simulator

The simulation model (Saxena, Goebel, et al., 2008) was built
on the Commercial Modular Aero-Propulsion System Simu-
lation (C-MAPSS) developed at NASA Army Research Lab.,
able to simulate the operation of an engine model of the 90.000
lb thrust class. A total of 21 output variables were recorded
to simulate sensor measurements to the system. Another 3
variables representing the engine operating conditions were
recorded, namely altitude (kilo feet), Mach number (speed)
and Throttle Resolver Angle (TRA) value which is the angu-
lar deflection of the pilot’s power lever having a range from
20% to 100%. In the sequel, references to variables are made
by using their column position in the data files as provided on
the data repository of the Prognostics Center of Excellence
website: it begins by number 6 and finishes to 26 (see (Saxena,
Goebel, et al., 2008) for details).

3.2. Datasets

Six datasets generated from independent simulation experi-
ments were provided, each with some specificities (Saxena,
Goebel, et al., 2008).

Datasets #1 and #2 include only one fault modes (HPC degra-
dation) while datasets #3 and #4 include two (HPC degrada-
tion and fan degradation). Datasets #1 and #3 include a sin-
gle operational condition against six for datasets #2 and #4.
Dataset #4 represents the most complex case study. Datasets
#5T (semi-final testing dataset) and #5V (final validation
dataset) were generated for the 2008’s PHM data challenge
with one fault mode and six operating conditions. The two
last datasets have common training instances. A summary of
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Figure 4. The sequence of operations involved in the proposed approach.

the six datasets are shown in Table 1 according to information
taken from (Saxena, Goebel, et al., 2008).

Each dataset is divided into training and testing subsets. The
training set includes instances with complete run-to-failure
data (to develop life prediction models), and the actual fail-
ure mode for training instances in #3 and #4 is not labeled.
The testing datasets include instances with data up to a certain
cycle and are used for RUL estimation and algorithm perfor-
mance evaluation.

The testing instances are also simulated run-to-failure and
only an earlier portion of the history is provided. The ac-
tual life (RUL) of the testing instances are known only for
datasets #1, #2, #3 and #4 and can only be used for test-
ing algorithm. For datasets #5T and #5V , results have to
be uploaded to the data repository: uploading is allowed only
once a day for #5T whereas only a single try is possible for
dataset #5V .

The validation can be performed by many performance mea-
sures (Saxena, Celaya, et al., 2008) among which accuracy-
based measures such as the timeliness, also called scoring
function in the sequel since it has been used in the data chal-
lenge to sort participants algorithm. The review of papers us-
ing the C-MAPSS datasets show that the timeliness was the
most used performance measure (about 30% of papers). Note
that, for datasets #5T and #5V , this performance measure is
returned for each submission by the data challenge chairs.

For comparison purpose, the scoring function is also used in

this paper with the same parameters as in the challenge:

S =

N∑
n=1

Sn (10a)

Sn =

{
e−dn/13 − 1, dn ≤ 0

edn/10 − 1, dn > 0
, n = 1 . . . N (10b)

dn = estimated RUL− true RUL (10c)

This function, that assigns higher penalty to late predictions,
has to be minimised. In addition to the scoring function (com-
puted for all datasets), a second performance measure was
used (on datasets #1 to #4 for which we know the RUL)
called accuracy measure A that evaluates the percentage of
testing instances for which the RUL estimate is within the in-
terval [−13,+10] around the true RUL (Saxena, Celaya, et
al., 2008). These values are the same as the scoring function
and was used in several papers such as (Ramasso et al., 2013)
for dataset #1.

3.3. Related results on C-MAPSS

For comparison purpose, results of predictions from other
researchers (as exhaustive as possible) on these datasets are
summarised below for each dataset. Note that some authors
also used the simulator to create their own datasets (Sarkar,
Jin, & Ray, 2011; Zein-Sabatto, Bodruzzaman, & Mikhail,
2013; Al-Salah, Zein-Sabatto, & Bodruzzaman, 2012). Ref-
erences have been put on the NASA PCOE website.

To our knowledge, the full testing dataset of #1 was only
used in two papers: In (Liu, Gebraeel, & Shi, 2013) where
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Datasets
C-MAPSS DATASETS

TURBFOFAN CHALLENGE
#1 #2 #3 #4 #5T #5V

Nb. of faults 1 1 2 2 1 1
Nb. of operating conditions 1 6 1 6 6 6
Nb. training instances 100 260 100 249 218
Nb. testing instances 100 259 100 248 218 435
Minimum RUL 7 6 6 6 10 6
Maximum RUL 145 194 145 195 150 190

Table 1. Datasets characteristics according to the organisers. In this paper, results for all datasets are provided in the exper-
iments, but more details are given specifically for datasets #1 and #3. Note that the datasets called “data challenge” have
a common training datasets made of 218 instances. The “semi-final” testing dataset (#5T ) is made of 218 instances and the
“final” validation dataset (#5V ) is made of 435 instances.

the authors reported results by using an average error between
true RUL and prediction; and to evaluate the EVIPRO algo-
rithm in (Ramasso et al., 2013) where the performance was
assessed by using the accuracy measure which was equal to
53% on the testing dataset #1. The full testing datasets of
#2, #3, #4 were not used in the past (only a few instances
were considered in a few papers).

Testing datasets #5T (corresponding to a “semi-final” test-
ing dataset) and #5V (corresponding to the “final” valida-
tion dataset) represent datasets for which the true RULs is not
known. These datasets were used in many papers summarised
in Table 2 (for published work after 2008) and in Table 3 (for
results of challengers during the competition in 2008). The
complete review of scores on these datasets were found on
the web or obtained by request to the conference chairs. In
Table 3, methods (1), (2) and (3) were published in (T. Wang
et al., 2008), (Heimes, 2008) and (Peel, 2008) respectively.

It can be observed that no score has been mentioned in the lit-
erature on the final validation dataset #5V since 2008, whereas
the semi-final testing dataset #5T was used in several papers.
The final dataset is complex and the performances obtained
by the challengers are high. According to our knowledge,
good performances (in terms of scoring) can be obtained on
the final dataset only if the algorithm is robust. Indeed, a few
important mistakes (too late or too early predictions) can lead
to bad scores. This was also observed with RULCLIPPER
on the other datasets. Robustness can be evaluated by com-
puting several PHM metrics (Saxena, Celaya, et al., 2008) as
proposed in (T. Wang, 2010).

Therefore, the generalisation capability of the algorithm should
be ensured before trying the final dataset. This is illustrated
in Tables 2-3 and Figure 6 which depict the scores obtained
on the semi-final dataset #5T and on the final dataset #5V .
Some algorithms exhibited very low score on #5T (made of
218 instances), whereas a relatively poor score was obtained
on the final dataset. The winner obtained 737 on #5T (ac-
cording to the conference chairs) which is not the best score,
but only 5636 on the final dataset #5V .

Algo. (pseudo.) #5T #5V
RULCLIPPER 752 11572
SBL (P. Wang, Youn, & Hu, 2012) 1139 n.a.
DW (Hu, Youn, Wang, & Yoon, 2012) 1334 n.a.
OW (Hu et al., 2012) 1349 n.a.
MLP (Riad, Elminir, & Elattar, 2010) 1540 n.a.
AW (Hu et al., 2012) 1863 n.a.
SVM-SBI (Hu et al., 2012) 2047 n.a.
RVM-SBI (Hu et al., 2012) 2230 n.a.
EXP-SBI (Hu et al., 2012) 2282 n.a.
GPM3 (Coble, 2010) 2500 n.a.
RNN (Hu et al., 2012) 4390 n.a.
REG2 (Riad et al., 2010) 6877 n.a.
GPM2B (Coble, 2010) 19200 n.a.
GPM2 (Coble, 2010) 20600 n.a.
GPM1 (Coble, 2010) 22500 n.a.
QUAD (Hu et al., 2012) 53846 n.a.

Table 2. Performance of the state-of-the-art approaches on
#5T (semi-final dataset) and #5V (final dataset) after 2008
(published work).

Note that some papers using the datasets of the data chal-
lenge are not mentioned in the table because error measures
(accuracy-based) were given and that is not possible by us-
ing the original testing datasets for which the true RULs are
not known: testing errors are not possible on testing datasets
#5T and 5V , but only on the training dataset. This rule (de-
fined from 2008 to 2014) may change in the near future so
that other metrics (in addition to the scoring function) could
be obtained on demand to the data challenge chairs.

3.4. Priors about the datasets

Some rules were used to improve prognostics on these datasets,
some have been proposed in previous papers:

R1: The first rule is related to the fact that, according to (Saxena,
Goebel, et al., 2008), the maximum RUL in testing in-
stances for #5T was greater than 10 and lower than 150
time-units, while being greater than 6 and greater than
190 in testing instances for #5V . Moreover, most of pre-
vious approaches agreed on limiting the RUL estimates
around 135 (depending on papers (T. Wang et al., 2008;
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Algo. (pseudo.) / Data #5T #5V
heracles (1) 737 (3rd) 5636 (1st)
FOH (2) 512 (2nd) 6691 (2nd)
LP (3) n.a. 25921
sunbea 436.8 (1st) 54437 (22nd)
bobosir 1263 8637
L6 1051 9530
GoNavy 1075 10571
beck1903 1049 14275
Sentient 809 19148
A 975 20471
mjhutk 2430 30861
RelRes 1966 35863
phmnrc 2399 35953
SuperSiegel 1139 154999

Table 3. Pseudonyms and scores (known on both #5T and
#5V ) during the 2008’s PHM data challenge. Methods (1),
(2) and (3) were published

T. Wang, 2010; Heimes, 2008; Riad et al., 2010)) be-
cause too large and late estimates are greatly penalized
by the scoring function. So, for most of tests presented
below, the RUL was given by max(6,min( ˆRUL, 135))
where ˆRUL was the estimated RUL.

R2: The difference between 1 and the average of the first
5% of an instance was used as an offset to compel the
health index (HI) to begin around 1. Even though the
health index function (Eq. 11) already compels it, there
are some cases, in particular for #2,#3 and #4, for
which the health index was strongly disturbed by fault
modes and operating conditions.

R3: To limit the impact of fault modes (datasets #3 and
#4), a detection of the monotonicity (Coble, 2010) is
performed. When the testing instance is less than the
half of the training instance and if more than 25 consec-
utive samples are above the training instance, then the
training instance is not taken into account. This simple
rule was applied on all datasets considered (even without
fault modes or without operating conditions).

R4: To decrease the risk of overpredictions, the sequence of
states K were made of two states, the second state being
activated only 15 samples before the end-of-life. This
setting similar to (Ramasso & Gouriveau, 2013), was the
same for all tests and all datasets.

3.5. Local/global health index estimation

To reflect a real-world and practical cases, the health indices
(HI) for both training and testing datasets were not given by
the organisers (Saxena, Goebel, et al., 2008). An adaptation
of the approach proposed in (T. Wang, 2010) is presented be-
low to estimate the HI for each instance. These HIs (highly
corrupted by noise) are the basis of the proposed methodol-
ogy described in previous sections (Fig. 4).

The set of features for the ith unit is Xi = [x1 x2 . . .xt . . .xTi
]T

where xt = [xt,1 xt,2 . . . xt,m . . . xt,q] is the q-dimensional
feature vector at t (composed of sensor measurements), and
ut is the vector of operating conditions at t. The operational
conditions variables can be clustered into a finite number of
operating regimes (T. Wang, 2010). Crisp outputs are ob-
tained such that the current regime at time t, Ct, is precisely
known. Then, for samples (ut,xt) collected at early age of
the system, e.g. t < σ1, the health index attached to the ith
training unit is HI(xt, θθθp) = 1, where the set of parameters θθθp

depends on the model used to link regimes and sensor mea-
surements.

At late age of the system, e.g. t > σ2, the corresponding
output is HI(xt, θθθp) = 0. In (T. Wang, 2010), the author
used only the data at t > σ2 and t < σ1 in addition to 6
models (one for each operating mode) built on all data. In
comparison, we propose to make use of samples between σ1
and σ2 while building a local model for each operating mode
in each training instance. Moreover, we have used one HI for
each training instance while in (T. Wang, 2010) a global HI
model was estimated using all instances.

The corresponding output of the index is set to

ĤIi(xt, θθθp) ≡ 1− exp

(
log(0.05)

0.95 · Ti
· t
)
, t ∈ [σ1, σ2]. (11)

This function allows to compel the health index to be glob-
ally decreasing, from 1 (healthy) to 0 (faulty). As proposed
in (T. Wang, 2010), σ1 = Ti · 5% and σ2 = Ti · 95% where
Ti is the length of the ith training instance. We used lo-
cal linear models for multi-regime health assessment so that
θθθpi = [θpi,0 θ

p
i,1 . . . θ

p
i,q] represents the parameters of a linear

model defined conditionnally to the pth regime. The health
index at time t given the pth regime can be estimated as

HIi(xt, θθθ
p
i ) = θpi,0 +

q∑
n=1

θpi,n · xt,n (12)

where θθθp can be estimated by standard least-squares algo-
rithms. In experiments, in case the estimation of HI is per-
formed by considering the three operating conditions, then it
will be called a local approach (Fig. 4) and global otherwise.
HIs are then transformed into IHIs as proposed in previous
sections (Fig. 4).

3.6. Information fusion for improved RUL estimation

The first family of rules is a combination of minimum and
maximum RUL estimates suggested in (T. Wang, 2010):

αmM(R) = α ·minR+ (1− α) ·maxR (13)

where R is a set of RUL estimates and αmM(R) the combi-
nation result. For example, in (T. Wang, 2010), α = 13/23.
In this paper, we consideredα ∈ {0.1, 0.2, 0.3, . . . 0.9, 13/23}.
The authors in (T. Wang, 2010) also added two outlier re-
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moval (OR) rules to keep RULs within the interquartile range:

OR : {a ∈ R : a ∈ [q25, q75]} (14)

and

WL : {a ∈ R : q50−3·(q50−q25) < a < q50+2·(q75−q50)}
(15)

The set of RUL estimates provided by the algorithm, con-
sidering either discrete (K) or continuous predictions (P), is
denoted

R ≡ ˆRUL
[OR|WL],[th],M

P[K] (16)

Only the M first RULs estimates were taken into account
(sorted according to the F1 measure) with M ∈ {11, 15} in
this study. OR|WLmeans that one of the outlier removal op-
erators was applied. The optional parameter [th] means that
only training instances with F1 measure greater than 0.5 were
kept.

Weighted average is the second family of rules:

mw
[e],[OR]
L =

L∑
i=1

ω
[e],[OR]
i ·R(i) (17)

where the weights are made dependent on the similarity F1,i

(Eq. 8) between the testing instance and the ith training in-
stance; R(i) is the ith RUL estimate in set of RULs R sorted
in descending order with respect to the similarity (F1,i) ; L ∈
{3, 5, 7, 9, 11, 15} is the number of RULs kept to compute the
average while applying or not the outlier removal rule OR.
The weights are given by the following equations:

ωi = F1,i/

L∑
k=1

F1,k , (18)

with softmax normalisation:

ωei = exp(F1,i)/

L∑
k=1

exp(F1,k) , (19)

using outlier removal (OR):

ωORi = OR(F1,i)/

L∑
k=1

OR(F1,k) , (20)

and combining OR and softmax:

ωe,ORi = exp(OR(F1,i))/

L∑
k=1

exp(OR(F1,k)) . (21)

The third kind of rules is a combination of the previous ones:

ˆRUL = 0.5 · αmM(R) + 0.5 ·mw[e],[OR|WL]
L (22)

Considering several combinations of parameters, about 3168

rules were considered.

3.7. Selecting the subset of sensors

As shown by the literature review presented beforehand, many
combinations of features can be used (among 21 variables),
and a subset was particularly used made of features {7, 8,
12, 16, 17, 20} (involving key sensors for the turbofan degra-
dation (Sarkar et al., 2011)). To this preselection, a subset of
sensors was added from every possible subsets with cardinal-
ity equal to 1, 2, 3 and 4 in {∅, 9, 10, 11, 13, 14, 18, 19, 22,
25, 26} as well as subsets of cardinality 5 comprising sensor
9 leading to a total of 511 cases. For each combination (511
cases for each dataset), we applied the prognostics algorithm
RULCLIPPER introduced previously and the best subset was
selected by minimising the scoring function.

3.8. Testing datasets

Given the training instances of a given dataset, the first task
is to create a testing dataset in order to estimate 1) the in-
put features and 2) the fusion RUL of RULCLIPPER. The
training instances were truncated at a time instant randomly
selected from a uniform distribution between 10% and 80%
of the half-remaining life. This procedure allowed to obtain
instances with small enough RULs to allow the occurrence of
substantial degradation, and also large enough RULs to test
the robustness of algorithms (Hu et al., 2012). The obtained
testing datasets were used in RULCLIPPER with all subsets
of features (511 subsets, 3168 fusion rules) and with two sub-
sets of features (511×511 combinations for each fusion rule).

4. RESULTS AND DISCUSSIONS

Results are presented and compared to past work for all datasets
(turbofan and data challenge). More details are given for
datasets #1,#3 and #5T and #5V .

4.1. Performances on datasets #1 and #3

The results can be represented in the penalty – accuracy plane
for all combinations of features. A point in that plane with
coordinates (P1(S1, A1)) is obtained by considering the ac-
curacy (A1) for the lowest penalty score (S1) given a subset
of features. In order to represent the imprecision concern-
ing the performances, a second point P2(S2, A2) is taken and
defined by the lowest score plus 25% (S2 = S1 + 25%S1)
with accuracy (A2): these two points define a rectangle in the
penalty – accuracy plane.

Figure 5 represents the accumulation of these rectangles for
all combinations of features in the testing datasets #1 and
#3. The whitest part corresponds to the area where most of
rectangles are located and thus to the likeliest performances
given several subsets of features. If the white area is large
then it means that the subset of features should be carefully

8
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selected. If the area is concentrated then several subsets of
features provided similar performances: it is an image of the
robustness with respect to the choice of the subsets. The
scores have been divided by the number of testing instance
for comparison purpose.

For dataset #1, the performance’s centroid is located around
(60%; 4.0) (or (60%; 400)). One can draw any subset of fea-
tures (among the 511 combinations considered) and can ex-
pect a score between S = 310 and S = 440 with an accuracy
between A = 56 and A = 64. A few “optimal” subsets
led to better performances (reported in Table 4 for the testing
datasets). The effect of the fault mode on the performances is
important. The scores are more spread and a clear global de-
crease of the accuracy is observed (translation of the cluster
of performances to the left hand-side). The level of the col-
orbar indicates that the choice of the features becomes more
and more crucial as the difficulty of the dataset increases: it
is simpler to find a subset of features for dataset #1 leading
to low penalty and high accuracy because the level is quite
similar on a large area (with a value around 8). However, it is
more sensitive for dataset #3 for which the level is around 12
on a very local area. A similar (and magnified) observation
was obtained on the other datasets.

Figure 5. Performances for #1 (top) and #3 (bottom).

Based on these results obtained on the testing datasets, the
fusion rule and the subset of features were selected for final
evaluation of the testing datasets by minimising the scoring
function (as done for the PHM data challenge) and maximis-
ing the accuracy. The results obtained on the testing datasets
#1 and #3 are summarised in Table 4 (note that the features
indicated in the table have to be assembled with features 7, 8,

12, 16, 17, and 20). For each dataset, the combinations of fea-
tures are given with respect to the two best scores (“Best S”)
and the two best accuracies (“Best A”). For example, the first
line of Table 4 concerns dataset #1 for which the best score
is S = 261 (with A = 63%) when using features 9, 10, 14,

25 and 26, and the RUL fusion “0.9mM( ˆRUL
th,11

P ) ⊕mw7”
which corresponds to the combination of two elements: 1)
the output of the min/max operator (Eq. 13) with parameter
α = 0.9 applied on the 11 first RUL estimates and keeping
only estimates with a similarity greater than 0.5, and 2) the
weighted average (Eq. 17) of the L = 7 first RUL estimates
after outlier removal. The high value of α (0.9) implies more
weight to the minimum (early) estimate. An accuracy of 70%
on #1 was obtained with the same subset of features while
keeping a low score at S = 301. This accuracy obtained by
the RULCLIPPER algorithm is significantly higher (+16%)
than the previous known results given by the EVIPRO-KNN
algorithm (Ramasso et al., 2013) which yielded 53%. Other
metrics were computed (see Table 6) for performance com-
parison with previous approaches: An exponential-based re-
gression model with health index estimation proposed in (Liu
et al., 2013) that provided MAPE = 9% on #1 and an Echo
State Network with Kalman filter and submodels of instances
presented in (Peng et al., 2012) with1 MSE = 3969.

The part entitled (#1,#3)/S indicates the best scores for the
same subset of features tested with the same fusion method
on both datasets. Considering simultaneously #1 and #3 is
equivalent to a situation where the engine is degrading while
developing a fault. As the score is low and the accuracy high
on both datasets using the same subset of features and the
same method, it means that this parameterisation makes the
prognostics robust to the introduction of the fault mode.

4.2. RULCLIPPERs ensemble to manage sensors faults

Two RULCLIPPERs were considered, each with one particu-
lar subset of features. All couples of subsets of features were
studied (about 130000 combinations) on each testing dataset.
The best couples are given in Table 5.

Beyond the important improvement of scores and accuracies
compared to the previous results (Table 4), it shows it is not
enough to take the two subsets leading to the two best results
and expecting an improvement of the performances. Indeed,
in most cases, performances for the single feature subsets se-
lected are not the best ones, but their combination yielded
to significative improvement of the performances compared
to Table 4. For example, for dataset #1, combining RUL
estimates provided by subset of features {10, 11, 14, 22} (in
addition to 7, 8, 12, 16, 17, 20) with {13, 18, 19, 22} led to
S = 216 and P = 67%. It represents 27% of improvement
on the score and +4% on accuracy compared to the best per-

1Authors in (Peng et al., 2012) actually provided the best RMSE obtained
equal to 63, so MSE was computed as 3969 = 632.
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TYPE DATA FEATURES FUSION S A

Best /S #1 9, 10, 14, 25, 26 0.9mM( ˆRUL
th,11

P )⊕mw7 272 68

Best /A #1 9, 10, 14, 25, 26 0.9mM( ˆRUL
th,11

P )⊕mw13 301 70

Best /S #3 9, 13, 14, 22, 26 0.9mM( ˆRUL
WL,11

PK )⊕mwOR3 353 57

Best /A #3 9, 19, 25 0.8mM( ˆRUL
WL,11

PK ) 632 63

Best /A (2) #3 18, 25, 26 mwe,ORe,5 ⊕mw5 580 63

Best /A (3) #3 9, 10, 14, 18, 25 0.8mM( ˆRUL
WL,11

PK )⊕mw3 476 60

(#1,#3) /S #1 9, 11, 14, 25, 26 0.9mM( ˆRUL
th,11

P )⊕mwe,OR9 294 64
#3 − − 480 55

(#1,#3) /S(2) #1 9, 10, 14, 25, 26 0.9mM( ˆRUL
th,11

P )⊕mwOR13 299 63
#3 − − 480 56

(#1,#3) /S(2) #1 9, 10, 14, 25, 26 0.9mM( ˆRUL
th,11

P )⊕mwOR5 315 66
#3 − − 435 54

Table 4. Subset of features (in addition to 7, 8, 12, 16, 17, 20) leading to the best performances in terms of scores (and the
corresponding accuracies) for each dataset using a single RULCLIPPER.

Data Type Features Fusion S PSubset 1 S1 P1 Subset 2 S2 P2

#1 Best /S 10, 11, 14, 22 301 64 13, 18, 19, 22 325 62 0.9mM( ˆRUL
th,11

P )⊕mwOR5 216 67

Best /A 10, 11, 14, 22 301 64 13, 18, 19, 22 325 62 0.9mM( ˆRUL
th,11

P )⊕mwOR7 224 70

#3
Best /S 13, 19, 25, 26 525 61 9, 13, 14, 22, 26 353 58 0.9mM( ˆRUL

th,11

P ) 317 59

Best /A 14, 18, 19, 26 499 61 9, 10, 13, 14, 26 399 58 0.9mM( ˆRUL
WL,15

P )⊕mwOR11 332 63

Table 5. Combination of subsets of features (in addition to 7, 8, 12, 16, 17, 20) leading to the best performances in terms of
scores (and the corresponding accuracies) for each dataset using the fusion of two RULCLIPPERs.

formances obtained in Table 4 with subset {13, 14, 18, 25},
and more when considering the performances of single sub-
sets (S1 = 301 and P1 = 64%, or S2 = 325 with P2 = 62%).
Similar observations can be made on #3.

4.3. Results on the PHM data challenge (#5T ,#5V )

Based on the 218 training instances provided, RULCLIPPER
was run on the testing dataset using the 511 combinations of
features with the 3168 fusion rules. The results were sorted
by ascending order with respect to the scoring function. The
first five best subsets of features were then selected: {9, 11, 26},
{9, 18, 22, 25}, {9}, {9, 10, 13, 25}, {9, 10, 18, 25, 26} (in ad-
dition to 7, 8, 12, 16, 17, 20 for each subset).

These combinations of features were considered and evalu-
ated on the dataset #5T . The best score was given by aver-
aging three configurations of RULCLIPPERs, each with en-
sembles based on three subsets of features:

• RULCLIPPER 1 with inputs {9, 11, 26}, {9, 18, 22, 25}
and {9};

• RULCLIPPER 2 with inputs {9, 11, 26}, {9, 18, 22, 25}
and {9, 10, 13, 25};

• RULCLIPPER 3 with inputs {9, 11, 26}, {9, 18, 22, 25}
and {9, 10, 18, 25, 26}.

The RUL limit was set to 135 as described in Section 3.4
and the fusion rule was the same for all individual RULCLIP-
PER, namely 0.9mM( ˆRUL

11

PK)⊕mwOR15 . The score obtained
on dataset #5T (on the NASA’s website) was equal to 752,
which is the 3rd score compared to published works. An al-
ternative was considered by increasing the RUL limit from
135 to 175. The fusion rule was the same as previously and
the score obtained was 934 which is quite low relatively to
the high risk taken by setting the RUL limit to 175.

The average of the three configurations given above provided
a set of RULs parameterised by both a RUL limit (135, 175)
and a fusion method. Three parameterisations were consid-
ered and combined: Ω1 = (135, 0.8mM( ˆRUL

11

PK)⊕mwOR5 ),
Ω2 = (175, 0.9mM( ˆRUL

11

PK) ⊕ mwOR9 ), and Ω3 = (175,

0.9mM( ˆRUL
11

PK)⊕mw15). The motivation of this configu-
ration was to make long-term predictions possible while min-
imising the risk of making late predictions. The RULs ob-
tained by Ω2 and Ω3 were averaged and the resulting com-
bined by a weighted average with with Ω1. The weights were
set by a sigmoid (with shape parameter: 0.3 and position:
120) to increase the importance of RULCLIPPERs Ω2 and
Ω3 when the estimation is greater than 120 while giving more
importance to Ω1 otherwise.
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This methodology was then applied with the final testing dataset
(#5V ) yielding 11672. The comparison with approaches can
be quantified on Figure 6. The generalisation of RULCLIP-
PER parameterised as proposed in this paper is lower than
the first five algorithms (see square markers on the left-hand
side). Indeed, some of these algorithms provided higher scores
on #5T but lower on the final dataset #5V . One explanation
accounting for the lack of generalisation capability compared
to the first five algorithms may hold in the “rules” integrated
in RULCLIPPER (section 3.4). These rules have been tuned
according to observations on the five other datasets but may
be not relevant for dataset #5V if the statistics governing the
generation of instances have been modified (Saxena, Goebel,
et al., 2008). In order to show the applicability of RULCLIP-
PER algorithm with as less parameterisation as possible, the
author intentionally kept the same settings for all datasets
without distinction in particular concerning the number of
fault modes or thresholds on RUL limits.

However, the generalisation is better than the 23 remaining
algorithms, for which lower scores on #5T have been ob-
tained with higher ones on #5V (see square markers on the
right-hand side). RULCLIPPER provided a relatively low
score on both datasets using the same parameters (816 on
#5T and 11672 on #5V ). The authors remarked on the pre-
vious datasets (#1 to #4) that a few instances can disturb
the algorithm (in particular to test the robustness), generating
very late or very early predictions, degrading drastically the
scores. The important difference on scores between #5T and
#5V can be due to this particularity.

A summary of results of RULCLIPPER on C-MAPSS datasets
is given in Table 6. The best performances were selected
according to the scoring function (better accuracies can be
obtained as shown in previous tables but with lower scores).
Metrics are defined in (Saxena, Celaya, et al., 2008).

5. CONCLUSION

The RULCLIPPER algorithm is proposed to estimate the re-
maining lifetime of systems in which noisy health indices
are assumed imprecise. RULCLIPPER is made of elements
inspired from both the computer vision and computational
geometry communities and relies on the adaptation of case-
based reasoning to manage the imprecise training and testing
instances. The combination of these elements makes it an
original and efficient approach for RUL estimation as shown
in experiments.

RULCLIPPER was validated with the six datasets coming
from the turbofan engine simulator (C-MAPSS), including
the so-called turbofan datasets (four datasets) and the data
challenge (two datasets), and compared to past work. These
datasets are considered as complex due to the presence of
fault modes and operating conditions. In addition to RUL-
CLIPPER, a method was proposed to estimate the health indi-

cator (in presence of faults and operating conditions) and the
problem of the selection of the most relevant sensors was also
tackled. Information fusion rules were finally studied to com-
bine RUL estimates as well as ensemble of RULCLIPPERs.
The review of past work, the presentation of the datasets, as
well as the results on sensor selection, health index estima-
tion, information fusion rules and RULCLIPPER ensembles
are expected to give a hand to other researchers interested in
testing their algorithms on these datasets.

The use of the same algorithm (RULCLIPPER) for all datasets
lets suppose that, more generally, computational geometry
seems promising for PHM in presence of noisy HIs. How-
ever, as for all similarity-based matching algorithm (T. Wang,
2010), the computational cost associated to sort instances is
the most important limitation of RULCLIPPER. Two solu-
tions can be considered. Firstly, since operations on convex
polygons are simpler (and faster), a procedure can be used to
approximate the bounds and to decrease the number of seg-
ments.

The second solution concerns implementations, particularly
of the intersection algorithm. Computational geometry has
become a very active field in particular to improve memory
and time requirements, with applications in multimedia (com-
puter graphics such as games). CUDA implementations on
processor arrays (using graphic cards) can be pointed out as
a promising solution. With such implementations, real-time
and anytime prognostics can be considered. The extension of
RULCLIPPER to multiple health indices is also under study,
in particular by using polytopes.
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